The present application claims benefit of priority under 35 U.S.C. §365 to the previously filed international patent application number PCT/US08/74800 filed on Aug. 29, 2008, assigned to the assignee of the present application, and having a priority date of Oct. 30, 2007, based upon U.S. provisional patent application No. 61/001,161. The contents of both applications are incorporated herein by reference.
1. Technical Field
The present invention relates to optical modulators in general, and in particular to a method for fabricating butt-coupled electro-absorptive modulators.
2. Description of Related Art
Silicon-based modulators are commonly employed in photonic integrated circuits. However, the indirect bandgap of silicon can prevent any electric field induced light modulation. Thus, devices having germanium grown on silicon wafers are becoming more popular because of the relatively small difference between the indirect and direct bandgaps of germanium, which can overcome some of the difficulties stemmed from silicon-based devices.
Proper device design and fabrication are very important in forming efficient germanium-silicon based modulators because there are many challenges in making workable germanium-silicon based modulators. Ideally, germanium-silicon based electro-absorptive modulators should have the lowest possible loss at a voltage-off state with the highest possible extinction ratio at a voltage-on state. Because germanium-silicon based electro-absorptive modulators inevitably have transmission loss due to the absorption of indirect band gap, the length of germanium-silicon active region has to be very short, typically less than 150 μm, in order to achieve low insertion loss at the voltage-off state. Therefore, it has to be coupled to a low-loss waveguide, such as a silicon waveguide, for on-chip applications. Since germanium-silicon based material system has a relatively high index contrast and its single mode dimension is very small (the single mode cut-off dimension is less than 1 μm), it is a big challenge to achieve an efficient waveguide-modulator coupling. Another problem is that standard reactive ion etching (RIE) of germanium-silicon based material usually results in rough sidewalls that increases the scattering loss in the germanium-silicon based electro-absorptive modulator.
Consequently, it would be desirable to provide an improved method for fabricating germanium-silicon based electro-absorptive modulators.
In accordance with a preferred embodiment of the present invention, a doped semiconductor layer is initially formed on a substrate. A first cladding layer is deposited on the doped semiconductor layer. A waveguide layer is then deposited and patterned to form waveguides. A second cladding layer is deposited on the waveguides. At least one trench is formed by etching through the second cladding layer, the waveguide layer, and the first cladding layer to expose the doped semiconductor layer. A film spacer layer is subsequently deposited on top of the trench. The film spacer layer is etched to form respective sidewalls within the trench. Finally, an electro-absorptive modulator is formed within the trench such that the electro-absorptive modulator is butt-coupled to the waveguides via the sidewalls.
All features and advantages of the present invention will become apparent in the following detailed written description.
The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
a-3h are process flow diagrams of a method for fabricating the germanium-silicon based electro-absorptive optical modulator from
Referring now to the drawings and in particular to
With reference now to
Input waveguide 14 and output waveguide 16 are Si waveguides in the present embodiment; however, they can also be SiOxNy or SiNx waveguides. SiO2 blocks 21-24 can also be substituted by other dielectric materials such as SiOxNy or SiNx, as long as the refractive indexes of the materials in blocks 21-24 are smaller than the core material of input and output waveguides 14 and 16.
In addition, the same inventive optoelectronic device can also be used as a butt-coupled GeSi detector structure. The only difference is that the Si/GeSi/Si p-i-n diode waveguide structure in the photodetector device is usually longer than that in the modulator device in order to increase light absorption. At reverse bias, the electrons and holes excited by the absorbed photons are accelerated by the electric field applied on the GeSi layer through the Si/GeSi/Si p-i-n diode waveguide structure, and are collected by the electrodes. As such, optical signals are transformed into electrical signals for further processing in an electronic integrated circuit.
Referring now to
Next, a Si waveguide layer 33 is deposited and patterned (the patterning is into the page and is not shown). A SiO2 layer 32 is then deposited on top to form the upper cladding of Si waveguide 33, followed by a CMP planarization, as depicted in
Trenches are subsequently etched into the structure to expose the tops of the Si mesas, as shown in
Optionally, in order to reduce deleterious effects caused by the trench etch shown in
Alternatively, oxide layer 31 is planarized, as shown in
GeSi material is selectively grown into the trenches to form respective modulators, and the top is planarized by CMP. A silicon layer 36 with opposite type of doping to the Si mesas underneath GeSi waveguide structures is further deposited and patterned on top of the structure, as depicted in
As has been described, the present invention provides an improved method for fabricating butt-coupled GeSi-based electro-absorptive modulators. The advantage of the added spacers or sidewalls is to prevent Ge defects that can create leakage and noise in the modulators. Ge defects, seems, or fissures are created when the Ge growth protrudes from the ends of the top waveguide as well as from the bottom Si surface. The spacers or sidewalls can prevent defects by inhibiting Ge growth from the ends of the top waveguides.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
The present invention was made with United States Government assistance under Contract No. HR0011-05-C-0027 awarded by Defense Advanced Research Projects Agency (DARPA). The United States Government has certain rights in the present invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/074800 | 8/29/2008 | WO | 00 | 1/20/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/058470 | 5/7/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4420258 | Burns et al. | Dec 1983 | A |
4547072 | Yoshida et al. | Oct 1985 | A |
4737015 | Ishida et al. | Apr 1988 | A |
4748617 | Drewlo | May 1988 | A |
4921354 | SooHoo | May 1990 | A |
5165001 | Takagi et al. | Nov 1992 | A |
5281805 | Sauer | Jan 1994 | A |
5371591 | Martin et al. | Dec 1994 | A |
5430755 | Perlmutter | Jul 1995 | A |
5625636 | Bryan et al. | Apr 1997 | A |
5674778 | Lee et al. | Oct 1997 | A |
5703989 | Khan et al. | Dec 1997 | A |
5736461 | Berti et al. | Apr 1998 | A |
5828476 | Bonebright et al. | Oct 1998 | A |
5834800 | Jalali-Farahani et al. | Nov 1998 | A |
6117771 | Murphy et al. | Sep 2000 | A |
6242324 | Kub et al. | Jun 2001 | B1 |
6331445 | Janz et al. | Dec 2001 | B1 |
6387720 | Misheloff et al. | May 2002 | B1 |
6400996 | Hoffberg et al. | Jun 2002 | B1 |
6477285 | Shanley | Nov 2002 | B1 |
6605809 | Engels et al. | Aug 2003 | B1 |
6677655 | Fitzergald | Jan 2004 | B2 |
6680495 | Fitzergald | Jan 2004 | B2 |
6738546 | Deliwala | May 2004 | B2 |
6785447 | Yoshimura et al. | Aug 2004 | B2 |
6795622 | Forrest et al. | Sep 2004 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6861369 | Park | Mar 2005 | B2 |
6936839 | Taylor | Aug 2005 | B2 |
6968110 | Patel et al. | Nov 2005 | B2 |
6974969 | Taylor | Dec 2005 | B2 |
7006881 | Hoffberg et al. | Feb 2006 | B1 |
7010208 | Gunn, III et al. | Mar 2006 | B1 |
7043106 | West et al. | May 2006 | B2 |
7072556 | Gunn, III et al. | Jul 2006 | B1 |
7082247 | Gunn, III et al. | Jul 2006 | B1 |
7103252 | Ide | Sep 2006 | B2 |
7139448 | Jain et al. | Nov 2006 | B2 |
7215845 | Chan et al. | May 2007 | B1 |
7218809 | Zhou et al. | May 2007 | B2 |
7218826 | Gunn, III et al. | May 2007 | B1 |
7259031 | Dickinson et al. | Aug 2007 | B1 |
7272279 | Ishikawa et al. | Sep 2007 | B2 |
7315679 | Hochberg et al. | Jan 2008 | B2 |
7333679 | Takahashi | Feb 2008 | B2 |
7348230 | Matsuo et al. | Mar 2008 | B2 |
7356221 | Chu et al. | Apr 2008 | B2 |
20030026546 | Deliwala | Feb 2003 | A1 |
20030183825 | Morse | Oct 2003 | A1 |
20040121507 | Bude et al. | Jun 2004 | A1 |
20040146431 | Scherer et al. | Jul 2004 | A1 |
20040190274 | Saito et al. | Sep 2004 | A1 |
20050094914 | Gines et al. | May 2005 | A1 |
20050094938 | Ghiron et al. | May 2005 | A1 |
20060105509 | Zia et al. | May 2006 | A1 |
20060158723 | Voigt et al. | Jul 2006 | A1 |
20060238866 | Von Lerber | Oct 2006 | A1 |
20060240667 | Matsuda et al. | Oct 2006 | A1 |
20070116398 | Pan et al. | May 2007 | A1 |
20070202254 | Ganguli et al. | Aug 2007 | A1 |
20080159751 | Matsui et al. | Jul 2008 | A1 |
20080240180 | Matsui et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
0 818 693 | Jan 1998 | EP |
1 067 409 | Jan 2001 | EP |
9314514 | Jul 1993 | WO |
0127669 | Apr 2001 | WO |
0216986 | Feb 2002 | WO |
2004088724 | Oct 2004 | WO |
2007149055 | Dec 2007 | WO |
Entry |
---|
Kimmet, J. S., “M.S. Thesis: Integrated Circuit Fabrication Details,” Rutgers University, 1999; 18 pp. |
Pruessner et al., “InP-Based Optical Waveguide MEMS Switches with Evanescent Coupling Mechanism”, Journal of Microelectromechanical Systems, vol. 14, No. 5, Oct. 2005. |
May et al., “Integrated Process for Silicon Nitride Waveguide Fabrication”, IBM Technical Disclosure Bulletin, vol. 33, No. 2, Jul. 1990. |
Matsushita et al., “Narrow CoSi2 Line Formation on SiO2 by Focused Ion Beam”, IEEE Xplore 1999. |
“Process Integration”, Cobalt Self-aligned Silicide Process, Chapter 13. |
Liu et al., “Design of Monolithically Integrated GeSi Electro-absorption Modulators and Photodetectors on an SOI Plaform”, Optics Express 623, vol. 15, No. 2, Jan. 22, 2007. |
Fijol et al., “Fabrication of Silicon-on-insulator Adiabatic Tapers for Low Loss Optical Interconnection of Photonic Devices”. |
Yap et al., “Integrated Opteoelectronic Circuits with InP-based HBTs”, Proceedings of SPIE, vol. 4290, 2001. |
Roth, “Electroabsorption Modulators for CMOS Compatible Optical Interconnects in III-V and Group IV Materials”, Aug. 2007, (part 1 of 3). |
Roth, “Electroabsorption Modulators for CMOS Compatible Optical Interconnects in III-V and Group IV Materials”, Aug. 2007, (part 2 of 3). |
Roth, “Electroabsorption Modulators for CMOS Compatible Optical Interconnects in III-V and Group IV Materials”, Aug. 2007, (part 3 of 3). |
Kimberling et al., “Electronic-photonic Integrated Circuits on the CMOS Platform”. |
Chao et al., “Analysis of Temperature Profiles of Thermo-optic Waveguides”, Fiber and Integrated Optics, vol. 33. |
Okyay et al., “Silicon Germanium CMOS Optoelectronic Switching Device: Bringing Light to Latch”, IEEE Transactions on Electron Devices, vol. 54, No. 12, Dec. 2007. |
McAulay et al., “All-optical Switching and Logic with an Integrated Optic Microring Resonator”, Proc. of SPIE vol. 5814. |
Kik et al, “Erbium Doped Optical Waveguide Amplifiers on Silicon”, MRS Bulletin 23(4), 48, Apr. 1998. |
Number | Date | Country | |
---|---|---|---|
20100330727 A1 | Dec 2010 | US |