1. Field of the Invention
The present invention relates to a liquid crystal display, and more particularly, to a method for fabricating a liquid crystal display (LCD) panel by a liquid crystal dropping method.
2. Discussion of the Related Art
A thin flat panel display tends to have a thickness of no more than a few centimeters. Particularly, a liquid crystal display (LCD) has a wide scope of applications, such as notebook computers, computer monitors, gauge monitors for space crafts, and air crafts, and the like.
In general, the LCD is provided with a lower substrate having thin film transistors and pixel electrodes formed thereon, an upper substrate opposite to the lower substrate having a black matrix (BM), a color filter layer, and a common electrode, which are formed thereon, and a liquid crystal layer between the two substrates, for driving the liquid crystal by the electric field generated by the power supply applied to the pixel electrode and the common electrode between the substrates, to regulate the transitivity of the liquid crystal, thereby displaying a picture on the display screen.
In the foregoing LCD, a vacuum injection method has been used for forming the liquid crystal layer between the lower substrate and the upper substrate. In such a method, after the lower substrate and the upper substrate are bonded together, a liquid crystal is injected between the two substrates by using capillary phenomenon and a pressure difference. However, the vacuum injection method takes much time to inject the liquid crystal between the substrates. As a result, productivity is much reduced as the substrate becomes large.
Consequently, a method called a liquid crystal dropping method is suggested for solving such a problem. A method for fabricating an LCD panel by using a related art liquid crystal dropping method will be explained with reference to the attached drawings.
Referring to
A black matrix is formed on the upper substrate 3 for shielding a light leakage from the gate lines, the data lines, and the thin film transistor regions. A color filter layer of red, green, and blue is formed thereon. A common electrode is formed thereon in this order. An orientation film is formed on both of the lower substrate 1 and the upper substrate 3 for an initial orientation of the liquid crystal.
In
The main sealant 7 prevents the liquid crystal from leaking, and bonds the upper and lower substrates. The dummy sealant 8 is formed at the dummy region on the outside of the main sealant 7. The dummy sealant is to protect the main sealant 7.
In the liquid crystal dropping method, the liquid crystal layer is placed between the attached substrates before hardening a sealant. Accordingly, if a thermo-hardening sealant is used to bond the substrates, it may flow and contaminate the liquid crystal during the heating process. Thus, a UV sealant has to be used as a sealant to avoid such a problem.
Referring to
Referring to
Consequently, unit cells the hardened dummy sealant 8 does not cause a problem when the scribing and breaking are processed one by one to obtain unit cells. However, when unit cell one by one by the scribing and breaking are processed at the same time, it will be difficult to cut into the unit cell due to the hardened dummy sealant 8.
Accordingly, the present invention is directed to a method for fabricating a liquid crystal display panel that substantially obviates one or more of problems due to limitations and disadvantages of the related art.
Another object of the present invention is to provide a method for fabricating a liquid crystal display panel, which facilitates an easy cell cutting in the simultaneous scribing and breaking processes.
Additional features and advantages of the invention will be set forth in the description which follows and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a method for fabricating a liquid crystal display panel includes forming a main UV sealant to surround a plurality of unit cells on either one of first and second substrates, the dummy UV sealant being formed at an outside of the main UV sealant, dropping at least one droplet of liquid crystal onto either one of the first and second substrates, attaching the first and second substrates, irradiating a UV ray on the attached substrates with masking regions where the dummy UV sealant and at least one scribing line are crossed, thereby bonding the substrates, and cutting the bonded substrates into a plurality of unit cells.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:
Reference will now be made in detail to the illustrated embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring to
An orientation film is formed on the pixel electrodes for an initial orientation of the liquid crystal. The orientation film may be formed of polyimide, polyamide group compound, polyvinylalcohol (PVA), polyamic acid by rubbing, or a photosensitive material, such as polyvinvylcinnamate (PVCN) and polysilioxanecinnamate (PSCN). Alternatively, cellulosecinnamate (CelCN) group compound may be selected by using photo-alignment method.
A light shielding film is formed on the upper substrate 300 for shielding a light leakage from the gate lines, the data lines, and the thin film transistor regions. A color filter layer of red, green, and blue is formed thereon. A common electrode is formed thereon in this order. Additionally, an overcoat layer may be formed between the color filter layer and the common electrode. The orientation film is formed on the common electrode.
Silver (Ag) dots are formed at the outside of the lower substrate 200, for applying a voltage to the common electrode on the upper substrate 300 after the lower and upper substrates 200 and 300 are bonded with each other. Alternatively, the silver dots may be formed on the upper substrate 300.
In an in plane switching (IPS) mode LCD, a lateral field is induced by the common electrode formed on the lower substrate the same as the pixel electrode. The silver dots are not formed on the substrates.
Referring to
Then, the liquid crystal droplets 500 are placed onto the lower substrate 200 to form a liquid crystal layer. The liquid crystal may be contaminated when the liquid crystal meets the main sealant 700 before the main sealant 700 is hardened. Therefore, the liquid crystal droplets may have to be dropped onto the central part of the lower substrate 200. The liquid crystal droplets 500 dropped at the central part spread slowly even after the main sealant 700 is hardened, so that it is distributed evenly throughout the entire substrate with the same concentration.
Moreover, the liquid crystal droplets 500 and the UV sealants 700 and 800 may be formed on the same substrate. However, the liquid crystal and the sealant may have to be formed on different substrates in order to shorten the fabrication time period. When the liquid crystal droplets 500 and the UV sealants 700 and 800 are formed on the same substrate, there occurs an unbalance in the fabricating process between the substrate with the liquid crystal and the sealant and the substrate without the liquid crystal. For example, the substrate may not be cleaned when the sealant is contaminated before the substrates are attached to each other since the liquid crystal and the sealant are formed on the same substrate.
Spacers may be formed on either of the two substrates 200 or 300 for maintaining a cell gap. The spacers may be sprayed at a high pressure onto the substrate from a spray nozzle mixed with ball spacers and a solution having an appropriate concentration. Alternatively, column spacers may be formed on portions of the substrate of the gate lines or data lines. The column spacers may be used for the large sized substrate since the ball spacers may cause an uneven cell gap for the large sized substrate. The column spacers may be formed of a photosensitive organic resin.
Referring to
Then, referring to
The region masked by the mask 950 is shaded from the UV ray, so that the dummy UV sealant at this region is not hardened. Thus, the dummy UV sealant remains an initial coating condition, i.e., fluidic condition, so that the cell cutting process after the bonding process becomes easy.
Monomers or oligomers each having one end coupled to the acrylic group and the other end coupled to the epoxy group mixed with an initiator are used as the UV sealants 700 and 800. Since the epoxy group is not reactive with the UV irradiation, the sealant may have to be heated at about 120° C. for one hour after the UV irradiation for hardening the sealant. However, even if the dummy sealant is eventually hardened by the thermal process, the hardening ratio drops below 50%, such that the dummy sealant gives no influence to the cell cutting process.
A final inspection (not shown) is carried out after the cutting process. In the final inspection, presence of defects is determined before the substrates cut into the unit cells are assembled, by examining an operation condition of the pixels when a voltage applied thereto is turned on/off.
In the simultaneous scribing and breaking processes, when the substrates are cut in up and down directions starting from the scribe line at the end of the right or left side, the dummy UV sealant on the right or left side may be removed. Therefore, the removed dummy UV sealant gives no influence to the following cell cutting process.
Accordingly, the same result may be obtained in with masking the cell cutting process even if the UV ray is irradiated after upper and lower side regions of the dummy UV sealant overlapped the scribing lines, or only left and right side regions of the dummy UV sealant overlapped the scribing lines.
In the UV irradiation, if UV is irradiated to the entire surface of the attached substrates, the UV ray may deteriorate device characteristics of the thin film transistors on the substrates, and change a pre-tilt angle of the orientation film formed for the initial orientation of the liquid crystal.
Therefore, in
As has been explained, the method for fabricating a liquid crystal display panel of the present invention has the following advantages.
The UV irradiation with masking the crossed regions of the dummy UV sealant and the scribing lines makes cell cutting by the simultaneous scribing and breaking processes easier since the dummy UV sealant on the scribing lines is not hardened.
The UV irradiation with masking the active regions in the main UV sealant prevents the UV irradiation from deteriorating characteristics of the thin film transistors, orientation films, and the like, formed on the substrates.
It will be apparent to those skilled in the art that various modifications and variations can be made in the method for fabricating an LCD panel of the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2002-0012056 | Mar 2002 | KR | national |
This application is a continuation of U.S. patent application Ser. No. 10/124,709 filed Apr. 18, 2002, now U.S. Pat. No. 6,738,124 which is hereby incorporated by reference. This application also claims the benefit of the Korean Application No. P2002-12056 filed on Mar. 7, 2002, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3978580 | Leupp et al. | Sep 1976 | A |
4094058 | Yasutake et al. | Jun 1978 | A |
4255848 | Freer et al. | Mar 1981 | A |
4653864 | Baron et al. | Mar 1987 | A |
4691995 | Yamazaki et al. | Sep 1987 | A |
4775225 | Tsuboyama et al. | Oct 1988 | A |
5247377 | Omeis et al. | Sep 1993 | A |
5263888 | Ishihara et al. | Nov 1993 | A |
5379139 | Sato et al. | Jan 1995 | A |
5406989 | Abe | Apr 1995 | A |
5426522 | Takahara et al. | Jun 1995 | A |
5499128 | Hasegawa et al. | Mar 1996 | A |
5507323 | Abe | Apr 1996 | A |
5511591 | Abe | Apr 1996 | A |
5539545 | Shimizu et al. | Jul 1996 | A |
5548429 | Tsujita | Aug 1996 | A |
5642214 | Ishii et al. | Jun 1997 | A |
5680189 | Shimizu et al. | Oct 1997 | A |
5724110 | Majima | Mar 1998 | A |
5742370 | Kim et al. | Apr 1998 | A |
5757451 | Miyazaki et al. | May 1998 | A |
5852484 | Inoue et al. | Dec 1998 | A |
5854664 | Inoue et al. | Dec 1998 | A |
5861932 | Inata et al. | Jan 1999 | A |
5875922 | Chastine et al. | Mar 1999 | A |
5897414 | Bergeron et al. | Apr 1999 | A |
5898041 | Yamada et al. | Apr 1999 | A |
5952676 | Sato et al. | Sep 1999 | A |
5956112 | Fujimori et al. | Sep 1999 | A |
6001203 | Yamada et al. | Dec 1999 | A |
6010384 | Nishino et al. | Jan 2000 | A |
6011609 | Kato et al. | Jan 2000 | A |
6016178 | Kataoka et al. | Jan 2000 | A |
6016181 | Shimada | Jan 2000 | A |
6055035 | von Gutfeld et al. | Apr 2000 | A |
6163357 | Nakamura | Dec 2000 | A |
6219126 | Von Gutfeld | Apr 2001 | B1 |
6226067 | Nishiguchi et al. | May 2001 | B1 |
6236445 | Foschaar et al. | May 2001 | B1 |
6304306 | Shiomi et al. | Oct 2001 | B1 |
6304311 | Egami et al. | Oct 2001 | B1 |
6337730 | Ozaki et al. | Jan 2002 | B1 |
6414722 | Bramley | Jul 2002 | B1 |
6778249 | Kamosawa et al. | Aug 2004 | B1 |
20010021000 | Egami | Sep 2001 | A1 |
20010026348 | Murata et al. | Oct 2001 | A1 |
Number | Date | Country |
---|---|---|
1 003 066 | May 2000 | EP |
51-65656 | Jun 1976 | JP |
57-38414 | Mar 1982 | JP |
57-88428 | Jun 1982 | JP |
58-27126 | Feb 1983 | JP |
59-57221 | Apr 1984 | JP |
59-195222 | Nov 1984 | JP |
60-111221 | Jun 1985 | JP |
60-164723 | Aug 1985 | JP |
60-217343 | Oct 1985 | JP |
61-7822 | Jan 1986 | JP |
61-55625 | Mar 1986 | JP |
S62-054225 | Mar 1987 | JP |
S62-054228 | Mar 1987 | JP |
S62-054229 | Mar 1987 | JP |
62-89025 | Apr 1987 | JP |
62-90622 | Apr 1987 | JP |
62-205319 | Sep 1987 | JP |
63-109413 | May 1988 | JP |
63-110425 | May 1988 | JP |
63-128315 | May 1988 | JP |
63-311233 | Dec 1988 | JP |
H03-009549 | Jan 1991 | JP |
H05-036425 | Feb 1993 | JP |
H05-036426 | Feb 1993 | JP |
H05-107533 | Apr 1993 | JP |
5-127179 | May 1993 | JP |
5-154923 | Jun 1993 | JP |
5-265011 | Oct 1993 | JP |
5-281557 | Oct 1993 | JP |
5-281562 | Oct 1993 | JP |
H06-018829 | Jan 1994 | JP |
6-51256 | Feb 1994 | JP |
H06-064229 | Mar 1994 | JP |
6-148657 | May 1994 | JP |
6-160871 | Jun 1994 | JP |
H06-194637 | Jul 1994 | JP |
6-235925 | Aug 1994 | JP |
6-265915 | Sep 1994 | JP |
6-313870 | Nov 1994 | JP |
7-84268 | Mar 1995 | JP |
07-128626 | May 1995 | JP |
7-128674 | May 1995 | JP |
7-181507 | Jul 1995 | JP |
H07-275770 | Oct 1995 | JP |
H07-275771 | Oct 1995 | JP |
H08-076133 | Mar 1996 | JP |
8-95066 | Apr 1996 | JP |
8-101395 | Apr 1996 | JP |
8-106101 | Apr 1996 | JP |
H08-110504 | Apr 1996 | JP |
H08-136937 | May 1996 | JP |
8-171094 | Jul 1996 | JP |
8-190099 | Jul 1996 | JP |
8171093 | Jul 1996 | JP |
H08-173874 | Jul 1996 | JP |
8-240807 | Sep 1996 | JP |
9-5762 | Jan 1997 | JP |
9-15614 | Jan 1997 | JP |
9-26578 | Jan 1997 | JP |
H09-001026 | Jan 1997 | JP |
9-61829 | Mar 1997 | JP |
9-73075 | Mar 1997 | JP |
9-73096 | Mar 1997 | JP |
H09-094500 | Apr 1997 | JP |
9-127528 | May 1997 | JP |
9-230357 | Sep 1997 | JP |
9-281511 | Oct 1997 | JP |
9-311340 | Dec 1997 | JP |
10-123537 | May 1998 | JP |
10-123538 | May 1998 | JP |
10-142616 | May 1998 | JP |
10-177178 | Jun 1998 | JP |
H10-174924 | Jun 1998 | JP |
10-221700 | Aug 1998 | JP |
10-282512 | Oct 1998 | JP |
10-333157 | Dec 1998 | JP |
10-333159 | Dec 1998 | JP |
11-14953 | Jan 1999 | JP |
11-38424 | Feb 1999 | JP |
11-64811 | Mar 1999 | JP |
11-109388 | Apr 1999 | JP |
11-133438 | May 1999 | JP |
11-142864 | May 1999 | JP |
11-174477 | Jul 1999 | JP |
11-212045 | Aug 1999 | JP |
11-248930 | Sep 1999 | JP |
H11-262712 | Sep 1999 | JP |
H11-264991 | Sep 1999 | JP |
11-326922 | Nov 1999 | JP |
11-344714 | Dec 1999 | JP |
2000-2879 | Jan 2000 | JP |
2000-29035 | Jan 2000 | JP |
2000-56311 | Feb 2000 | JP |
2000-66165 | Mar 2000 | JP |
2000-066218 | Mar 2000 | JP |
2000-093866 | Apr 2000 | JP |
2000-137235 | May 2000 | JP |
2000-147528 | May 2000 | JP |
2000-193988 | Jul 2000 | JP |
2000-241824 | Sep 2000 | JP |
2000-284295 | Oct 2000 | JP |
2000-292799 | Oct 2000 | JP |
2000-310759 | Nov 2000 | JP |
2000-310784 | Nov 2000 | JP |
2000-338501 | Dec 2000 | JP |
2001-5401 | Jan 2001 | JP |
2001-5405 | Jan 2001 | JP |
2001-13506 | Jan 2001 | JP |
2001-33793 | Feb 2001 | JP |
2001-33795 | Feb 2001 | JP |
2001-42341 | Feb 2001 | JP |
2001-51284 | Feb 2001 | JP |
2001-66615 | Mar 2001 | JP |
2001-91727 | Apr 2001 | JP |
2001-117105 | Apr 2001 | JP |
2001-117109 | Apr 2001 | JP |
2001-133745 | May 2001 | JP |
2001-133794 | May 2001 | JP |
2001-133799 | May 2001 | JP |
2001-142074 | May 2001 | JP |
2001-147437 | May 2001 | JP |
2001-154211 | Jun 2001 | JP |
2001-166272 | Jun 2001 | JP |
2001-166310 | Jun 2001 | JP |
2001-183683 | Jul 2001 | JP |
2001-201750 | Jul 2001 | JP |
2001183675 | Jul 2001 | JP |
2001-209052 | Aug 2001 | JP |
2001-209056 | Aug 2001 | JP |
2001-209057 | Aug 2001 | JP |
2001-209058 | Aug 2001 | JP |
2001-209060 | Aug 2001 | JP |
2001-215459 | Aug 2001 | JP |
2001-222017 | Aug 2001 | JP |
2001-235758 | Aug 2001 | JP |
2001-255542 | Sep 2001 | JP |
2001-264782 | Sep 2001 | JP |
2001-272640 | Oct 2001 | JP |
2001-281675 | Oct 2001 | JP |
2001-281678 | Oct 2001 | JP |
2001-281678 | Oct 2001 | JP |
2001-282126 | Oct 2001 | JP |
2001-305563 | Oct 2001 | JP |
2001-330837 | Nov 2001 | JP |
2001-330840 | Nov 2001 | JP |
2001-356353 | Dec 2001 | JP |
2001-356354 | Dec 2001 | JP |
2002-14360 | Jan 2002 | JP |
2002-23176 | Jan 2002 | JP |
2002-49045 | Feb 2002 | JP |
2002-079160 | Mar 2002 | JP |
2002-82340 | Mar 2002 | JP |
2002-90759 | Mar 2002 | JP |
2002-90760 | Mar 2002 | JP |
2002-107740 | Apr 2002 | JP |
2002-122870 | Apr 2002 | JP |
2002-122872 | Apr 2002 | JP |
2002-122873 | Apr 2002 | JP |
2002-131762 | May 2002 | JP |
2002-139734 | May 2002 | JP |
2002-156518 | May 2002 | JP |
2002-169166 | Jun 2002 | JP |
2002-169167 | Jun 2002 | JP |
2002-182222 | Jun 2002 | JP |
2002-202512 | Jul 2002 | JP |
2002-202514 | Jul 2002 | JP |
2002-214626 | Jul 2002 | JP |
2002-229042 | Aug 2002 | JP |
2002-236276 | Aug 2002 | JP |
2002-258299 | Aug 2002 | JP |
2002-236292 | Sep 2002 | JP |
2002-277865 | Sep 2002 | JP |
2002-277866 | Sep 2002 | JP |
2002-277881 | Sep 2002 | JP |
2002-287156 | Oct 2002 | JP |
2002-296605 | Oct 2002 | JP |
2002-311438 | Oct 2002 | JP |
2002-311440 | Oct 2002 | JP |
2002-311442 | Oct 2002 | JP |
2002-323687 | Nov 2002 | JP |
2002-323694 | Nov 2002 | JP |
2002-333628 | Nov 2002 | JP |
2002-333635 | Nov 2002 | JP |
2002-333843 | Nov 2002 | JP |
2002-341329 | Nov 2002 | JP |
2002-341355 | Nov 2002 | JP |
2002-341356 | Nov 2002 | JP |
2002-341357 | Nov 2002 | JP |
2002-341358 | Nov 2002 | JP |
2002-341359 | Nov 2002 | JP |
2002-341362 | Nov 2002 | JP |
2000-0035302 | Jun 2000 | KR |
Number | Date | Country | |
---|---|---|---|
20040127136 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10124709 | Apr 2002 | US |
Child | 10735730 | US |