The present invention relates to a fabrication method for NROMs with trench transistors and separate bit lines.
Extremely small nonvolatile memory cells are required for very large scale integration density in multimedia applications. The further development of semiconductor technology is enabling increasingly larger storage capacities which, however, are not achieved in the context of conventional fabrication technologies.
DE 100 39 441 A1, which is a counterpart application to U.S. Patent Application No. 2002/024092, describes a memory cell having a trench transistor arranged in a trench formed at a top side of a semiconductor body. An oxide-nitride-oxide layer sequence (ONO layer) is in each case present as storage layer between the gate electrode introduced into the trench and the laterally adjoining source region and the drain region adjoining the latter on the other side. This layer sequence is provided for trapping charge carriers (hot electrons) at source and drain.
DE 101 29 958, which is a counterpart application to U.S. Pat. No. 6,548,861, describes a memory cell arrangement in which a further reduction of the dimensions of the memory cells is achieved in conjunction with an access time kept sufficiently short for writing and reading by virtue of the fact that the bit lines are formed with sufficiently low impedance. For this purpose, separate layers or layer sequences patterned in strip form in accordance with the bit lines are arranged as bit lines on the doped source/drain regions of the individual memory transistors. These layer sequences may comprise doped polysilicon or a metallic layer. In particular, the metallic layer may be a siliconized metal layer which is fabricated by the method known by the designation “salicide” as an abbreviation of self-aligned silicide.
NROM memory cells are described in the publication by B. Eitan et al.,: “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell” in IEEE Electron Device Letters 21, 543 (2000). Owing to the particular material properties, source/drain voltages of 4 to 5 volts are typically necessary during programming and erasing for memory cells of this type. Therefore, the channel lengths of the memory transistor cannot be fabricated significantly below 200 nm. It would be desirable, however, if, despite this channel length of 200 nm, the width of the bit lines could be reduced in such a way as to enable a cell area of less than 5 F2. Also desirable are bit lines with sufficiently low electrical resistance, so that multiple connection of the bit lines at intervals within the memory cell array (bit line strapping) could be dispensed with, no contact holes for the electrical connection of the bit lines would have to be fabricated between the word lines and the area required between the bit lines could thereby be reduced.
In one aspect, the present invention specifies how, in the fabrication of NROM memory cells, the above-mentioned requirements can be fulfilled and the fabrication variations are at the same time reduced to a minimum.
This aspect is achieved by means of the method of providing a semiconductor body that is doped to a first conductivity type, the upper portion being doped to a second conductivity type. Conductive lines are formed over the semiconductor body and a recess is etched between the conductive lines and extend through the upper portion of the semiconductor body. A storage layer, with a conductor formed on top, is formed within the recess. Refinements are disclosed herein.
In the method, the memory transistor is formed in a trench at a top side of a semiconductor body or a semiconductor layer. The gate electrode is introduced into the trench and is isolated from the laterally adjoining source/drain regions by a storage layer, in particular an ONO layer. Electrically conductive layers, preferably comprising a plurality of layer elements, are arranged above the source/drain regions parallel to the trenches. It is important to be able to define the trench depth relative to the depth of the source/drain regions, so that the position at which the lower boundary area of the source/drain regions adjoins the trench, the so-called junction, can be set precisely. As a result, the channel length lying between the junctions on both sides is set very precisely in accordance with the predetermined value.
In the method, that is achieved by virtue of the fact that an implantation is introduced for the purpose of defining the position of the junctions after the patterning of the bit line layer and before the etching of the trench or the bit line layer is patterned after an implantation of the source/drain regions using an etching stop layer arranged on the semiconductor material. What is thus achieved is that, after the patterning of the low-impedance bit lines, the distance between the top side of the semiconductor material into which the trench is etched and the depth—measured proceeding from this—of the position of the junctions always has precisely the predetermined value.
If no separate etching stop layer is used, the critical position of the top side of the semiconductor material results during the etching of the bit lines. In this case, the depth of the position of the junctions is subsequently set by means of a separately introduced implantation of dopant, which finally forms the source/drain regions. If the implants for the source/drain regions have already been introduced before the fabrication of the bit lines, what is achieved by an etching stop layer is that the original top side of the semiconductor material remains intact during the patterning of the bit lines, so that the distance between the top side and the junctions maintains the original value in this case, too. With the use of an etching stop layer which is initially applied over the whole area, it is possible to produce a good electrical junction between the bit lines and the source and drain regions by the etching stop layer being partly removed on both sides below the bit lines and the resulting interspaces being filled with an electrically conductive contact layer, e.g., made of conductively doped polysilicon.
Examples of the method are described in more detail below with reference to the accompanying figures, which each show cross sections through intermediate products after different steps of the fabrication method.
The following list of reference symbols can be used in conjunction with the figures:
A preferred exemplary embodiment of the method begins, in accordance with the cross-section illustrated in
Preferably, all STI isolations (shallow trench isolation) are fabricated at this point in the method. The STI isolations (not shown) may surround the entire memory cell array or individual blocks of the memory cell array. It is possible, in addition, to provide those isolation trenches between the individual memory cells which, with respect to the cross-section illustrated in
At least one electrically conductive bit line layer is then applied to the top side in accordance with
Since the remaining portions of the etching stop layer 2 are still present in the regions between the bit line webs to be fabricated, a clear signal that the etching end point has been reached is produced when the etching stop layer 2 is reached. As required, the etching of the first bit line layer 3, which is preferably polysilicon here, may additionally be continued somewhat further in order to ensure that all remaining portions of the polysilicon have been removed. The structure illustrated in
In the exemplary embodiment described here, it is expedient next to cover the bit line webs laterally with a thin oxide layer 6. This is illustrated in cross-section in
In accordance with the cross-section of
The trench 8 depicted in
The illustration in
In order to fabricate the gate electrodes of the memory transistors, a first word line layer 10 made of doped polysilicon is then preferably applied. That portion of this first word line layer 10 which fills the respective trench forms a relevant gate electrode 18. As already mentioned above, STI isolation trenches may have been introduced into the semiconductor material parallel to the word lines. The trenches are therefore interrupted in the longitudinal direction in each case by the insulating material, in particular silicon dioxide, so that, in this last-specified method step, the material of the first word line layer 10 is introduced into the trenches 8 of the memory transistors only between the STI isolation trenches. The gate electrodes 18 thus fabricated are isolated from the source/drain regions 15 by the storage layer 9. Between the junctions 16, the channel region 17 is situated directly below the storage layer 9 in the semiconductor material. A second word line layer 11, applied to the top side of the first word line layer 10, is preferably a metal silicide, in particular tungsten silicide (WSi). A further hard mask layer 12 applied thereto serves for patterning the word lines as strips which run from left to right within the plane of the drawing in
In an alternative exemplary embodiment of the method, no etching stop layer is used or the initially applied pad oxide is completely removed before the bit line layers are applied. A cross-section corresponding to the method step of
In order to attain a precisely defined distance between the junctions and the top side of the semiconductor material in this exemplary embodiment, too, so that the channel length can be set exactly during the trench etching, here the n+-type well 19 is firstly formed only with a small depth, which suffices, however, to achieve a good electrical junction between the bit line strips and the semiconductor material situated underneath. Only after the etching of the bit line webs is the actual n+-type doping effected, by means of which the source and drain regions are fabricated and the positions of the junctions are defined.
The further source/drain implantation is illustrated in cross-section in
The cross-section illustrated in
A further exemplary embodiment of the method is based on a whole-area etching stop layer 2. The bit line layers are applied on the etching stop layer 2, e.g., the pad oxide layer. The cross-section, illustrated in
With the various exemplary embodiments of the method, it is possible
With this method, therefore, it is possible to further reduce the area requirement of an NROM memory.
Number | Date | Country | Kind |
---|---|---|---|
102 25 410.9 | Jun 2002 | DE | national |
This application is a continuation of co-pending International Application No. PCT/DE03/01573, filed May 15, 2003, which designated the United States and was not published in English, and which is based on German Application No. 102 25 410.9, filed Jun. 7, 2002, both of which applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE03/01573 | May 2003 | US |
Child | 11006049 | Dec 2004 | US |