Liu et al., “A surfactant-mediated relaxed Si Ge graded layer with a very low threading dislocation dneisty and smooth surface”, Applied Physics Letter voluyme 75, No. 11 p. 1586-1588, Sep. 13, 1999.* |
Y. Zuoya et al., “The Effects of Composition on the Spectral Loss Characteristics of SiGe Planar Waveguide Structures”, Mat. Res. Soc. Symp. Proc. 281:461-465 (1993). |
J. Schmidtchen et al., “Passive Integrated-Optical Waveguide Structures by Ge-Diffusion in Silicon”, Journal of Lightwave Technology 12(5):842-848 (1994). |
S. Janz et al., “Optical Properties of Pseudomorphic Si1−xGex for Si-based Waveguides at the λ = 1300-nm and 1550-nm Telecommunications Wavelength Bands”, IEEE Journal of Selected Topics in Quantum Electronics 4(6):990-996 (1998). |
M.T. Currie et al., “Controlling Threading Dislocation Densities in Ge on Si Using Graded SiGe Layers and Chemical-mechanical Polishing”, Appl. Phys. Lett. 72(14):1718-1720 (1998). |
B.L. Weiss et al., “Wavelength Dependent Propagation Loss Characteristics of SiGe/Si Planar Waveguides”, Electronic Letters 28(24):2218-2220 (1992). |
T. Hackbarth et al., “Alternatives to Thick MBE-grown Relaxed SiGe Buffers”, Thin Solid Films 369:148-151 (2000). |
H. Lafontaine et al., “Growth of Undulating Si0.5Ge0.5 Layers for Photodetectors at λ = 1.55 μm”, J. Appl. Phys. 86(3):1287-1291(1999). |
A. Splett et al., “Integrated Optical Channel Waveguides in Silicon Using SiGe-alloys”, SPIE, Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications 1362:827-833 (1990). |
S.P. Pogossian et al., “High-confinement SiGe Low-loss Waveguides for Si-based Optoelectronics”, Appl. Phys. Lett. 75(10):1440-1442 (1999). |
S.C. Greedy et al., “Fibre Coupling to SiGe Optoelectronic Devices”, Post Graduate Research on Electronics and Photonics; IEE Proc.-Optoelectron. 147(6):391-394 (2000). |
E.A. Fitzgerald et al., “Totally Relaxed GexSi1−x Layers with Low Threading Dislocation Densities Grown on Si Substrates”, Appl. Phys. Lett. 59(7):811-813 (1991). |
M. Robillard et al., “Strain-induced Birefringence in Si1−xGex Optical Waveguides”, J. Vac. Sci. Technol. B 16(4):1773-1776 (1998). |
M.R.T. Pearson et al., “SiGe-based Dual-wavelength Demultiplexers and Polarization Splitters”, Part of the SPIE Conference on Silicon-based Optoelectronics, San Jose, California, SPIE 3630:29-39 (1999). |
L. Liao et al., “Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength”, Journal of Electronic Materials 29(12):1380-1386 (2000). |
S.P. Pogossian et al., “Analysis of High-confinement SiGe/Si Waveguides for Silicon-based Optoelectronics”, J. Opt. Soc. Am. A 16(3):591-595 (1999). |
B. Schüppert et al., “Integrated Optics in Silicon and SiGe-Heterostructures”, Journal of Ligthwave Technology, IEEE 14(10):2311-2323 (1996). |
J.C. Campbell, “Optoelectronics in Silicon and Germanium Silicon”, Germanium silicon: physics and materials, semiconductors and semimetals, edited by R. Hull et al. 56:347-386, Academic Press (1999). |
U. Fischer et al., “Optical Waveguide Switches in Silicon Based on Ge-Indiffused Waveguides”, IEEE Photonics Technology Letters 6(8):978-980 (1994). |
B. Li et al., “2 × 2 Optical Waveguide Switch with Bow-Tie Electrode Based on Carrier-Injection Total Internal Reflection in SiGe Alloy”, IEEE Photonics Technology Letters 13(3):206-208 (2001). |