Method for fabrication of a plasma display panel

Information

  • Patent Grant
  • 5967872
  • Patent Number
    5,967,872
  • Date Filed
    Thursday, May 14, 1998
    26 years ago
  • Date Issued
    Tuesday, October 19, 1999
    25 years ago
Abstract
A plasma display panel has a matrix of plural first straight electrodes and plural straight second electrodes, respectively crossing each other, and a unit color element located at a crossing point of the first and second electrodes. A plurality of separator walls are spaced apart from each other and extend along the second electrodes, dividing a discharge space into a plurality of channels extending along respective, second electrodes. The separator walls undulate with a fixed periodicity so as to define alternating wide and narrow portions aligned along each channel and the respective first electrode. A fluorescent material is coated in each channel, the colors emitted from the fluorescent material being identical in each channel. A gas discharge takes place selectively at the wide portions in cooperation with the respective first and second electrodes. Optionally, connecting walls connect respective narrow portions of the adjacent separator walls, a height of the connecting wall being substantially lower than the height of the separator walls so as to allow the wide and narrow portions of each channel to be spatially continuous throughout a length of the channel.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a plasma display panel, referred to hereinafter as a PDP, of matrix type.
2. Description of the Related Art
A PDP is a thin display device that is excellent in the visual observation of a display thereon, is capable of high speed displaying, and easily allows to accomplish a comparatively large screen size.
Especially a PDP of surface discharge type in which display electrodes are arranged on a single substrate in pairs, for voltage application therebetween, is suitable for a color display using fluorescent materials.
FIG. 1 illustrates an exploded, perspective view of a PDP 80 of a prior art, where is shown the structure of a part which corresponds to a single picture element, i.e. a pixel, EG. FIG. 2 is a plane view schematically illustrating an arrangement of the prior art display electrodes.
In prior art PDP 80, each of pixels EG which compose the screen is formed of three sub-pixels EU of R. i.e. red, G, i.e. green & B, i.e. blue, aligned on a line. That is, this arrangement form of the three colors for the color display is a so-called in-line type.
PDP 80 is an AC type PDP of the surface discharge type for allowing the color display, and is composed of front and back glass substrates 11 and 21, a pair of first and second display electrodes Xn & Yn, a dielectric layer 17, a protection film 1, a back glass substrate 21, address electrodes A, separator walls 26, which may be referred to as a separator rib (or a barrier rib), fluorescent layers 28R, 28G & 28B, and a discharge gas enclosed in a discharge space 30 between the front and back glass substrates 11 & 21. Each of first and second display electrodes Xn & Yn is formed of a transparent electrode 41 of a relatively large width and a relatively narrow width metal electrode 42, which may be referred to as a bus electrode, for supplementing the electrical conductivity of the transparent electrode 41. First and second display electrodes Xn & Yn, in a pair, provide the above-mentioned line. Address electrode A extends along a row direction, orthogonal to the line direction, to cross the display electrodes Xn & Yn, and a voltage applied therebetween causes a discharge with respect to the second display electrode Yn in order to control wall charges upon dielectric layer 17 at the crossing point.
Separator walls 26 are straight and parallel when looked down thereat, and are arranged with an equal space measured in the extending direction of display electrodes Xn & Yn, that is, measured in the line direction of the display screen. Discharge space 30 is thus divided by the plural separator walls 26 so as to provide a channel therebetween for each unit display element EU, which is referred to hereinafter as a sub-pixel, divided in the line direction. The height of discharge space 30 is uniform throughout the display area.
Upon an application of a predetermined voltage to between the first and second display electrodes Xn & Yn in pair, an electric discharge takes place therebetween along the surface of dielectric layer 17 at a sub-pixel which has been addressed in the address period, so that fluorescent layer 28R, 28G or 28B in the addressed sub-pixel is excited to emit a light by an ultraviolet ray emitted from the discharge gas.
In the prior art structure shown in FIGS. 1 and 2, the distance d between a second display electrode Yn of one line (n) and the next first display electrode Xn+1 of the next line (n+1) had to be larger than a surface discharge gap g, which is a clearance between the paired display electrodes Xn and Yn, in order prevent an interference between the adjacent lines.
Therefore, there was a problem in that the area of non-luminant region, or portion, in the display screen was relatively large, resulting in a deterioration of the brightness of the whole screen.
There was also a problem in that the discharge in one line was apt to invade, along the row direction, the adjacent line, i.e. to interfere with the adjacent line, resulting in an obscure outline of the sub-pixel.
In addition, due to the sub-pixels EU for each of three colors being aligned on a single line, the width w of each sub-pixel EU measured along the line direction is one third of the pixel pitch ph. Therefore, it was difficult to further decrease the pixel pitch ph.
In order to solve the above problems, there was considered a mesh pattern of the separator walls as disclosed in Japanese Provisional Patent Publication Hei 3-84831. However, because discharge space 30 is divided into each sub-pixel which is divided not only in the line direction but also in the row direction, it was difficult to secure the reliability of the discharge control in driving the cells, and it was also difficult to properly coat the fluorescence layer and to clean up the inside of the divided cells.
SUMMARY OF THE INVENTION
It is an object of the present invention to achieve a sharp color display of long life without ruining the easiness of its fabrication and the driving of the cells.
It is another object of the present invention to enhance the brightness of the display screen by decreasing the area of the non-luminant portion in the display screen.
A plasma display panel, formed of a matrix of a plurality of first electrodes, which may be called display electrodes, and a plurality of second electrodes, which may be called address electrodes, where the first electrodes and the second electrodes are respectively straight and crossing each other, comprises a plurality of separator walls spaced apart from each other extending in parallel to the second electrodes, for dividing a discharge space into a plurality of channels extending in parallel to the second electrodes, wherein the separator walls are in a bank-shape snaking regularly, when looked at from above, said separator walls having alternative wide and narrow portions positioned so that the wide portions and the narrow portions are aligned and alternate along each channel and its associated first electrode, a fluorescent material is coated in each channel, wherein the colors emitted from the fluorescent materials are identical in each channel; and a gas discharge takes place at the wide portion in cooperation with the first and second electrodes.
The plasma display panel may be either a simple matrix type where the discharge takes place between the first and second electrodes, or a surface discharge type having three electrodes, where the discharge for lighting a unit cell is generated between a pair of two adjacent first electrodes, and the second electrode is to address a cell to be lit by forming a wall charge on the cell on the first electrode.
In the above-described configuration, the three unit color elements are located as to the respective wide portions so as to constitute a pixel of three unit color elements in a triangular relationship.
The plasma display panel may further comprise a connecting wall for connecting, at the narrow portion, the adjacent separator walls, where a height of the connecting wall is substantially lower than the height of the separator walls so as to allow the adjacent and alternating wide and narrow portions to be spatially continuous through each channel.
The above-mentioned features and advantages of the present invention together with other objects and advantages, which will become apparent, will be more fully described hereinafter, with references being made to the accompanying drawings which form a part hereof and wherein like numerals refer to like parts throughout.





A BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically illustrates a decomposition perspective view of a prior art PDP having straight separator walls;
FIG. 2 is a plan view to schematically illustrate an electrode configuration of FIG. 1 prior art;
FIG. 3 schematically illustrates a decomposition perspective view of a representative portion of a PDP as a first preferred embodiment of the present invention;
FIGS. 4A and 4B are planar views to schematically illustrate the matrix structure constituted of separator walls of the first preferred embodiment;
FIGS. 5A and 5B are planar views to schematically illustrate the layout relation of the separator walls and the electrodes;
FIG. 6 is a planar view to schematically illustrate the second preferred embodiment having two primary color elements;
FIG. 7A is a planar view to schematically illustrate the separator walls of the third preferred embodiment;
FIG. 7B is a cross-sectional view cut along the arrow of FIG. 7A;
FIG. 8A is a cross-sectional view to schematically illustrate the step where a resist pattern is formed on a glass paste layer in fabricating the first preferred embodiment of the present invention;
FIG. 8B is a cross-sectional view to schematically illustrate the step where sand-blasting is performed after the step shown in FIG. 8A;
FIG. 8C is a cross-sectional view to schematically illustrate the step where sand-blasting is further performed after the step shown in FIG. 8B;
FIG. 8D is a cross-sectional view to schematically illustrate the step where the resist pattern is removed after the step shown in FIG. 8C;
FIG. 8E is a cross-sectional view to schematically illustrate the step where a heating process is performed after the step shown in FIG. 8D;
FIG. 8E' is a cross-sectional view to schematically illustrate the case where the separator walls are deformed after a heating process is performed;
FIG. 9A is a cross-sectional view to schematically illustrate the step where a resist pattern is formed on a glass paste layer in fabricating the third preferred embodiment of the present invention;
FIG. 9B is a cross-sectional views to schematically illustrate the step where sand-blasting is performed after the step shown in FIG. 9A;
FIG. 9C is a cross-sectional view to schematically illustrate the step where sand-blasting is further performed after the step shown in FIG. 9B;
FIG. 9D is a cross-sectional view to schematically illustrate the step where the resist pattern is removed after the step shown in FIG. 9C; and
FIG. 9E is a cross-sectional view to schematically illustrate the step where heating process is performed after the step shown in FIG. 9D.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A first preferred embodiment of the present invention is hereinafter described referring to FIG. 3 which schematically illustrates an exploded perspective view of a representative portion of a PDP to FIGS. 4A and 4B which show a planar view of the matrix structure and to FIGS. 5A and 5B which show a planar view of the layout relationship of the separator walls and the electrodes.
Similar to prior art PDP 80 shown in FIG. 1, PDP 1 of the present invention is a surface discharge, AC drive type PDP having a three-electrode structure, where the first and second display electrodes Xn & Yn and an address electrode A define a unit display element EU, i.e. a sub-pixel, of the display matrix. That is, there are provided a plurality of display electrodes Xn & Yn, dielectric layer 17 and protection film 18 on front glass substrate 11, and a plurality of address electrodes A, a plurality of separator walls 29 and plural sets of fluorescent layers 28R, 28G, & 28B.
PDP 1 has two structural features. The first feature resides in that, in a planar view perpendicular to the substrate and protection film 1, the shape of the separator walls 29 for dividing discharge space 30 into spaced rows is that of banks snaking regularly--i.e., a zig-zag, or undulating, wall structure of a constant, or fixed, periodicity. The second feature resides in that display electrodes Xn & Yn are alternately arranged while being, separated by a predetermined equal clearance g comprising a surface discharge gap.
Hereinafter are explained these features more in detail. As shown in FIG. 4A, separator walls 29, typically approximately 100 .mu.m high and 50 .mu.m wide, are arranged such that the separator walls, or ribs, 29 are snaking, or undulating, as seen in the planar, view with a constant period and a constant amplitude so that the width of channels between the adjacent separator walls 29 becomes smaller than a predetermined value periodically along the direction of each row r, so as to provide a channel between the adjacent two separator walls. Consequently, the alternating wide and narrow portions are aligned along the channel direction and along the line direction.
The predetermined value of the width is a threshold value at which discharges thereon are inhibited and is determined by other discharge conditions, such as the gas-pressure, in addition to the width, etc. It has been widely known that an electrical discharge in a cylinder having a discharge gas therein, i.e. a positive column, is such that the discharging voltage between two electrodes separated in the axial direction of the positive column at a certain gas pressure becomes higher when the cylinder diameter is relatively smaller compared to the case where the cylinder diameter is relatively larger, resulting from the difference of the respective mean free paths of the electrons at the certain gas pressure.
It can be further explained that the electric field generated by the voltage applied to and thus between the adjacent display electrodes Xn & Yn at each wide portion 31a can normally generate the surface discharge is conventional; however, at each narrow portion 31b, the electric field is absorbed by the bulky separator walls which are too near to the portion of the gap g to generate the discharge; accordingly, the electric field for the surface discharge cannot be adequate to cause the discharge. That is, the width of the narrow portion is chosen such that no surface discharge is generated; however, the width of the wide portion is chosen such that the same voltages applied across the electrodes an produce the surface discharge therebetween.
In fabricating separator walls 29, it is a preferable method that a uniform layer of the material of the separator wall, such as a paste of low melting point glass, is formed upon the glass substrate, a resist pattern is provided thereon by a photo lithography technique, and the separator walls are formed by means of sand-blasting. This fabrication method will be described later in detail together with that of the third preferred embodiment.
Channel portions 31a & 31b, i.e. the row space r, between adjacent separator walls 29 extends consecutively over all the lines 1 of the display screen because each separator wall 29 is spaced apart from another adjacent separator wall 29 by a respective channel therebetween. Therefore, the fluorescent material can be coated uniformly in the channel by the use of conventional screen printing method.
The fluorescent color of each channel r is identical, throughout the length of the channel. In PDP 1, the respective fluorescent materials for the three colors is coated in the corresponding channels r, in the order of fluorescent layers, for example, 28G, for G (Green) 28B for B (Blue) and 28R for R (Red).
As described above, in the channels r, the surface discharge does not take place at a portion 31b narrow width, measured in the direction of line 1, but takes place at a portion 31a of a wide, or large, width so as to effectively contribute to the light emission. Therefore, when two adjacent lines 1 are observed, two lines having respective sub-pixels EU are altered in every two line. In other words, sub-pixels EU queue up along zig-zag paths respectively in both the rows direction and the lines direction.
Thus, in PDP 1, a single pixel EG is composed of three directly adjacent sub-pixels R, G & B. That is, the three colors are arranged of a triangular configuration, i.e. in a delta form.
Display electrodes Xn & Yn are located such that the surface discharge gap therebetween extends to below the wide portion 31a of certain channels, as shown in FIG. 5A. However, as for a channel next thereto, the same surface discharge gap g extends to narrow portions 31b.
The quantity (i.e., number) of display electrodes is double the line quantity (i.e., number) plus 1, and is actually several hundreds in total, where the line quantity is almost doubled that of the FIG. 1 prior art straight wall configuration.
The PDP driving function, or operation, is hereinafter described. An address discharge cell C2 is defined on second display electrode Yn in the vicinity of an intersection of a side of second display electrode Yn and an address electrode A, in the above-mentioned wide portion 31a of each channel, as shown in FIG. 5B.
In a certain channel r there is also defined surface discharge cell C1, at a gap g at a first side of the second display electrode Yn, resultant from the above-described address discharge cell C1. In the adjacent channel there is defined another surface discharge cell C1, in the same way and at the second side, opposite from the first side, of the same second display electrode Yn.
Each of the display electrodes Xn & Yn includes a bus electrode 42, for decreasing Its electrical resistance, laminated on the central zone of the transparent electrode 41 as shown in FIG. 3, because the surface discharge thus takes place at both of the opposite sides of each of the display electrodes Xn & Yn.
In operating the PDP 1, the display period of a single screen is divided into an address period and a sustain period, as is conventional.
In the address period, wall charges are selectively generated on cell C2 of a specific sub-pixel EU to be lit in accordance with the data of the display by the sequential screen scanning of the lines where the second display electrode Y functions as a scanning electrode, and by a selective voltage application on the address electrode A.
Next, in the subsequent sustain period, sustain pulses are alternately applied to, and thus between, all the first display electrodes X and all the second display electrodes Y, so that the previously addressed sub-pixel, i.e. the sub-pixel to be lit, is kept discharging and thus lighting. As described already, no discharge takes place at the narrow portions 31b of the channel r.
Owing to no discharge occurring at narrow portions 31b, no interference of the surface discharge is caused between adjacent sub-pixels EU in the channel direction.
Hereinafter is described the advantage of the triangular sub-pixel configuration. In the case where the sub-pixel pitch ph in the line direction is the same as that of the prior art in-line configuration, that is 390 .mu.m, the width w, 160 .mu.m, of sub-pixel EU measured in the line direction is larger than one third of pixel width ph, compared with the in-line configuration where the sub-pixel width w, 130 .mu.m is one third of pixel pitch ph. Moreover, the line quantity is doubled by deleting the idle gap d between the second electrode Yn and the next first electrode Xn+1, as described earlier. In other words, the discharge space in each sub-pixel is larger while the pixel pitch is smaller compared with the prior art in-line configuration. Thus, the triangular arrangement is more advantageous in accomplishing a high resolution as well as high brightness of the display than the prior art in-line arrangement.
The application of the present inventions is not limited to only a full color display composed of three elementary colors as described above, but instead can also be applied to a so-called multi-color display.
The second preferred embodiment of the present invention is hereinafter described with reference to FIG. 6, including two elementary colors.
As seen in the planar view of FIG. 6, the snaking, or undulating, state of separator walls 29b is arranged such that the respective lengths, along the channel direction, of the sub-pixels of the two elementary colors are different from each other. For example, the row-wise length is 170 .mu.m for R sub-pixel, and 220 .mu.m for G pixel, while the line-wise widths w of the wide portion are equal for the two kinds of the pixels R & G. The light emitting characteristics of the green fluorescent material is compensated by the thus increased sub-pixel area so that the color balance can be accomplished, while the same advantages as the first preferred embodiment are enjoyed.
A clear display having a sharp outline of each pixel EG can be achieved in the above preferred embodiments, owing to the narrow portions 31b at each border line, separating the adjacent sub-pixels in the channel direction.
Owing to the sub-pixels EU being not divided into individual sections, in other words, the discharge spaces are continuous throughout other sub-pixels in the same channel, the priming function for initiating the discharge is effective commonly in each channel, whereby the discharge certainly takes place in any cell; moreover, the printing of the fluorescent material layer can be uniform, and the exhausting process can be easy.
A third preferred embodiment of the present invention is hereinafter described with reference to FIGS. 7A and 7B. The structure of the third preferred embodiment is featured in that the narrow portion 31b of the first preferred embodiment is provided with a connecting wall 29-1 for connecting the adjacent separator walls 29' forming the narrow portion 31b. Connecting, wall 29-1 is 10 to 60 .mu.m high, preferably 30 .mu.m high.
Hereinafter described are fabrication processes of the separator walls of the first and second preferred embodiments with reference to FIGS. 8A to 8E, and the separator walls plus the connecting wall of third preferred embodiments with reference to FIGS. 9A to 9E.
Step 1. Low melting point glass powder paste 40 is coated to a thickness of approximately 120 .mu.m upon back glass substrate 21, and dried.
Step 2: Upon layer 40 there is formed a resist pattern 41 with a dry film, which has been well-known and is rubber-like so as to be resistant to a sand-blasting process, by the use of a conventional photolithographic technique, as shown in FIGS. 8A & 9A.
Step 3: Sand-blasting is performed onto the glass paste layer 40 and resist pattern 41 thereon so that the glass paste layer, having no resist pattern thereon, is removed while the glass paste layer, having resist pattern 41 thereon, is not removed. The glass paste layer at the wide portion 31a is removed faster than that at the narrow portion 31b as shown in FIGS. 8B & 9B. This is because the blasting air has a greater speed in the wide portion 31a than in the narrow portion 31b.
Step 4: The sand-blasting is further continued on until the glass removal reaches the glass substrate in the first preferred embodiment as shown in FIG. 8C. In the third preferred embodiment, the sand-blasting is terminated while the glass paste still remains at a target height, typically 30 .mu.m, in the narrow portion 31b as shown in FIG. 9C. The removal speed of the glass layer is controlled by the blasting air speed and size of the grains of sand;
Step 5: The resist film 41 is removed by being immersed in an alkaline solution, as is well-known and as is shown in FIGS. 8D & 9D; and
Step 6: The glass paste on the substrate is melted by being baked at a temperature sufficient to melt the glass paste, typically 540.degree. C., as shown in FIGS. 8E & 9E.
During the baking process, the glass paste shrinks to about 100 .mu.m high, whereby the separator walls may be somewhat swayed (i.e., distorted or curved) depending on the paste material, the shape of the snaking, the height and the width, as shown in FIG. 8E'.
In the third preferred embodiment having the connecting walls 29-1, the degree of the sway is much decreased.
After the separator walls are thus fabricated, fluorescent material of each color is coated into the respective wide portion 31a by the use of a conventional printing method. At this coating process, the fluorescent material may cross over the connecting wall 29-1 because the fluorescent material to be deposited on both sides of the connecting wall is of the same color. This fact allows an easy coating process compared with the prior art mesh structure. The fluorescent material crossing over the connection wall is rather preferable in providing higher brightness.
Though reflection type PDPs have been referred to in the above preferred embodiments wherein the fluorescent material is coated upon the inner surface of the back glass substrate 21, the present inventions can be applied to a penetration type PDP as well, wherein the fluorescent material is coated upon the inner surface of glass substrate 11 carrying the display electrodes thereon.
Though, in the above preferred embodiments, address electrodes A are on the substrate opposite to the display electrodes, the address electrodes A may be arranged on the glass substrate 11 having the display electrodes thereon.
Moreover, the present invention is applicable to PDPs of not only a three-electrode structure for the surface discharge but also to a so-called simple matrix structure, wherein display electrodes Xn & Yn intersect mutually.
There are two types of the simple matrix structure. The first type is such that first display electrodes Xn and second display electrodes Yn are opposed via discharge space 30. The second type is such that first display electrodes Xn and second display electrodes Yn are placed on a common substrate, and are opposed via an insulating layer.
Hereinafter described is the summary of the invention:
(1) In comparison with the prior art structure having the straight separator walls:
1.1, Brightness is improved, because the opening ratio, that is, the ratio of the light emitting area having the fluorescent material therein to the total area including the nonluminous separator walls, is improved by, for example, 27%, as well as because of the line quantity being doubled by utilizing the idle gap d.
1.2. Owing to the triangle arrangement of the sub-pixels, resolution in the line direction is improved, for example, from 390 .mu.m to 260 .mu.m.
1.3. Sub-pixels are sharp at the borders of each relative to the adjacent one in the channel direction, owing to no discharge interference being caused at the borders.
1.4. The clearance of the gap g between the display electrodes is increased, for example, from 40 .mu.m to 90 .mu.m, without substantially increasing the applied voltage thereto. This increased gap clearance is achieved owing to the increased pixel width w in the line direction and the spatial continuity through each channel, whereby the priming effect to certainly (i.e., reliably) initiate and to sustain the discharge is adequately secured.
1.5. Thus increased gap clearance decreases the electrical field concentration onto the insulator surface so that the deterioration of the MgO layer by the positive ion bombardment generated in the surface discharge is decreased, whereby a long life operation is accomplished.
(2) In comparison with the cited prior art mesh structure of Japanese Provisional Patent Publication Hei 1-848"1
2.1. The fabrication of the separator walls and the coating of the fluorescent material are easier.
2.2. The gas discharge can reliably take place owing to the priming effect through the channel space continuous to all the cells in each channel In the prior art mesh structure, the priming does not always effect to the other spaces prevented by the mesh walls.
(3) In comparison of the third preferred embodiment structure of the present invention with the first preferred embodiment:
The sway of the separator walls is much more improved from the sway of the first preferred embodiment. Accordingly, the snaking walls is kept in the correct shape to provide bright and precise sub-pixels, the coating process of the fluorescent material is also kept easy; and the priming effect is still kept to allow reliable gas discharges. Furthermore, the yield in fabricating the panel is increased, and the mechanical strength of the panel after being sealed is improved as well.
The many features and advantages of the invention are apparent from the detailed specification and thus, it is intended by the appended claims to cover all such features and advantages of the methods which fall within the true spirit and scope of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not intended to limit the invention and accordingly, all suitable modifications are equivalents may be resorted to, falling within the scope of the invention.
Claims
  • 1. A method of fabricating a substrate of a plasma display panel, comprising the steps of:
  • providing a layer of a material for forming separator walls on a main surface of the substrate, the separator walls to extend in a first direction and to be spaced apart in a second direction, generally perpendicular to the first direction, by corresponding channels, the separator walls further to have a zig-zag configuration such that each channel, between adjacent separator walls, varies periodically in width in the second direction between channel portions of a first width smaller than, and of a second width at least as large as, a width required for a discharge space in the channel to support discharges, adjacent discharge spaces in a common channel to be separated by respective channel portions of the first width;
  • forming a resist pattern on the layer of material, the resist pattern covering portions of the layer of material corresponding to the separator walls and remaining portions of the layer of material being exposed;
  • sand blasting the layer so as to remove the material of the layer in the exposed portions thereof;
  • terminating the sand blasting step when the material of the exposed portions of the layer corresponding to channel portions of the first width is removed in an amount sufficient to produce corresponding discharge spaces, a relatively reduced amount of the material of the exposed portions of the layer corresponding to channel portions of the first width being removed;
  • removing said resist pattern; and
  • heating the substrate and the remaining patterned portions of said layer at a temperature sufficient to affix the separator walls to the surface of the substrate.
  • 2. A method of fabricating a substrate as recited in claim 1, wherein the material of the layer is a paste of a low melting point glass powder.
  • 3. A method of fabricating a substrate as recited in claim 1, further comprising:
  • terminating the sand blasting step when the material of the layer at each discharge space of each channel is substantially fully removed.
  • 4. A method of fabricating a substrate as recited in claim 1 wherein the separator walls are of a first height relative to the surface of the substrate, further comprising:
  • terminating the sand blasting step when remaining material in each exposed portion of the layer, corresponding to a channel portion of the first width, provides a corresponding connecting wall of a second height, less than the first height of the separator walls, extending between and interconnecting the respective, adjacent separator walls and separating the respective, adjacent discharge spaces of the common channel.
  • 5. A method of fabricating a substrate as recited in claim 4, wherein the second height of each connecting wall is sufficient to isolate selective discharges in the adjacent discharge cells while maintaining a priming effect for the plural discharge spaces in each channel which is continuous throughout the channel.
  • 6. A method of fabricating a substrate as recited in claim 1, further comprising forming the resist pattern on the layer of material in accordance with forming separator walls defining respective channels therebetween wherein successive discharge spaces are of alternating, first and second different lengths in the first direction of each channel, the discharge spaces of the first lengths and the discharge spaces of the second lengths, of respective, adjacent columns, being aligned in the second direction.
  • 7. A method of fabricating a substrate as recited in claim 1, further comprising depositing a respective, selected fluorescent material in each of the channels, the fluorescent material in a given channel emitting a common color from the respective discharge cells of the channel.
  • 8. A method of fabricating a substrate as recited in claim 7, further comprising depositing first, second and third fluorescent materials of respective and different first, second and third primary colors in the respective discharge spaces of respective, first, second and third adjacent channels.
  • 9. A method of fabricating a substrate as recited in claim 7, further comprising depositing each fluorescent material in a substantially continuous flow into the plural discharge spaces of the respective channel.
  • 10. A method of fabricating a substrate of a plasma display panel, comprising the steps of:
  • providing a layer of a material for forming separator walls on a main surface of the substrate, the separator walls to extend along a first direction so as to provide a plurality of channels therebetween, said separator walls to be in a zig-zag shape and a width of each channel to vary periodically so as to provide alternating narrow and wide portions along each of the channels, the wide portions comprising discharge spaces and the narrow portions not supporting discharges and isolating respective, adjacent discharge spaces of a common channel while maintaining the common channel spatially continuous as to a priming effect throughout a length thereof;
  • forming a resist pattern on the layer of material, the resist pattern covering portions of the layer of material corresponding to the separator walls and remaining portions of the layer of material being exposed;
  • sand blasting the layer so as to remove the material of the layer in the exposed portions thereof;
  • terminating the sand blasting step when the material of the exposed portions of the layer corresponding to wide channel portions is removed in an amount sufficient to produce corresponding discharge spaces, a relatively reduced amount of the material of the exposed portions of the layer corresponding to narrow channel portions being removed;
  • removing said resist pattern; and
  • heating the substrate and the remaining patterned portions of said layer at a temperature sufficient to affix the separator walls to the surface of the substrate.
  • 11. A method of fabricating a substrate as recited in claim 10, wherein the material of the layer is a paste of a low melting point glass powder.
  • 12. A method of fabricating a substrate as recited in claim 10, further comprising:
  • terminating the sand blasting step when the material of the layer at each discharge space of each channel is substantially fully removed.
  • 13. A method of fabricating a substrate as recited in claim 10 wherein the separator walls are of a first height relative to the surface of the substrate, further comprising:
  • terminating the sand blasting step when remaining material in each exposed portion of the layer, corresponding to a channel portion of the wide portion provides a corresponding connecting wall of a second height, less than the first height of the separator walls, extending between and interconnecting the respective, adjacent separator walls and separating the respective, adjacent discharge spaces of the common channel.
  • 14. A method of fabricating a substrate as recited in claim 13, wherein the second height of each connecting wall is sufficient to isolate selective discharges in the adjacent discharge cells while maintaining a priming effect for the plural discharge spaces in each channel which is continuous throughout the channel.
  • 15. A method of fabricating a substrate as recited in claim 10, further comprising forming the resist pattern on the layer of material in accordance with forming separator walls defining respective channels therebetween wherein successive discharge spaces are of alternating, first and second different lengths in the first direction of each channel, the discharge spaces of the first lengths and the discharge spaces of the second lengths, of respective, adjacent columns, being aligned in the second direction.
  • 16. A method of fabricating a substrate as recited in claim 10, further comprising depositing a respective, selected fluorescent material in each of the channels, the fluorescent material in a given channel emitting a common color from the respective discharge cells of the channel.
  • 17. A method of fabricating a substrate as recited in claim 16, further comprising depositing first, second and third fluorescent materials of respective and different first, second and third primary colors in the respective discharge spaces of respective, first, second and third adjacent channels.
  • 18. A method of fabricating a substrate as recited in claim 16, further comprising depositing each fluorescent material in a substantially continuous flow into the plural discharge spaces of the respective channel.
  • 19. A method of fabricating a substrate of a plasma display panel, comprising the steps of:
  • providing a layer of a material for forming separator walls on a main surface of the substrate, the separator walls to extend along a first direction and to be spaced from each other in a second direction generally perpendicular to the first direction, adjacent separator walls having a respective channel therebetween and said separator walls having a zig-zag configuration in the second direction, each channel periodically varying in width so as to provide alternating narrow and wide portions aligned along each of said channels, said narrow and wide portions of a given channel being spatially continuous throughout a length of each channel, the wide portions comprising discharge spaces and adjacent discharge spaces being separated by a respective narrow portion therebetween;
  • forming a resist pattern on the layer of material, the resist pattern covering portions of the layer of material corresponding to the separator walls and remaining portions of the layer of material being exposed;
  • sand blasting the layer so as to remove the material of the layer in the exposed portions thereof;
  • terminating the sand blasting step when the material of the exposed portions of the layer corresponding to channel portions of the wide portion is removed in an amount sufficient to produce corresponding discharge spaces, a relatively reduced amount of the material of the exposed portions of the layer corresponding to channel portions of the wide portion being removed;
  • removing said resist pattern; and
  • heating the substrate and the remaining patterned portions of said layer at a temperature sufficient to affix the separator walls to the surface of the substrate.
  • 20. A method of fabricating a substrate as recited in claim 19, wherein the material of the layer is a paste of a low melting point glass powder.
  • 21. A method of fabricating a substrate as recited in claim 19, further comprising:
  • terminating the sand blasting step when the material of the layer at each discharge space of each channel is substantially fully removed.
  • 22. A method of fabricating a substrate as recited in claim 19 wherein the separator walls are of a first height relative to the surface of the substrate, further comprising:
  • terminating the sand blasting step when remaining material in each exposed portion of the layer, corresponding to a channel portion of the wide portion provides a corresponding connecting wall of a second height, less than the first height of the separator walls, extending between and interconnecting the respective, adjacent separator walls and separating the respective, adjacent discharge spaces of the common channel.
  • 23. A method of fabricating a substrate as recited in claim 22, wherein the second height of each connecting wall is sufficient to isolate selective discharges in the adjacent discharge cells while maintaining a priming effect for the plural discharge spaces in each channel which is continuous throughout the channel.
  • 24. A method of fabricating a substrate as recited in claim 19, further comprising forming the resist pattern on the layer of material in accordance with forming separator walls defining respective channels therebetween wherein successive discharge spaces are of alternating, first and second different lengths in the first direction of each channel, the discharge spaces of the first lengths and the discharge spaces of the second lengths, of respective, adjacent columns, being aligned in the second direction.
  • 25. A method of fabricating a substrate as recited in claim 19, further comprising depositing a respective, selected fluorescent material in each of the channels, the fluorescent material in a given channel emitting a common color from the respective discharge cells of the channel.
  • 26. A method of fabricating a substrate as recited in claim 25, further comprising depositing first, second and third fluorescent materials of respective and different first, second and third primary colors in the respective discharge spaces of respective, first, second and third adjacent channels.
  • 27. A method of fabricating a substrate as recited in claim 25, further comprising depositing each fluorescent material in a substantially continuous flow into the plural discharge spaces of the respective channel.
Priority Claims (1)
Number Date Country Kind
7-202977 Aug 1995 JPX
Parent Case Info

This application is a division of application Ser No. 08/694,760, filed Aug. 9, 1996, now U.S. Pat. No. 5,825,128.

US Referenced Citations (6)
Number Name Date Kind
3873870 Fukushima et al. Mar 1975
4185229 Yoshikawa et al. Jan 1980
4780644 Sakai et al. Oct 1988
5107182 Sano et al. Apr 1992
5800231 De Haas et al. Sep 1998
5860843 Kasahara Jan 1999
Foreign Referenced Citations (1)
Number Date Country
3-084831 Apr 1991 JPX
Divisions (1)
Number Date Country
Parent 694760 Aug 1996