Claims
- 1. A method for fast data acquisition for image reconstruction using computerized tomography comprising:
arranging on an image-confining contour a probing radiation source that emits a fan beam and a set of real detectors, said image-confining contour not necessarily selected for convenience or ease in image reconstruction by known used fan beam projection image reconstructions; collecting amplitude scaled signals of said set of real detectors, said scaled signals comprising the projection data set associated with the set of real detectors; and mapping the projection data of the set of real detectors onto a contour so that the resulting data set refers to a set of imaginary detectors, and said contour has been selected so that the geometry is a known configuration for image reconstruction by known fan beam projection image reconstructions; performing an interpolation of the data set associated with said set of imaginary detectors to obtain an interpolated imaginary detector data set that corresponds to a set of equi-angular or equi-spaced imaginary detectors; and performing image reconstruction using known or fan beam image reconstruction algorithms on said interpolated imaginary detector data set.
- 2. The method of claim 1 wherein said radiation source and detectors are situated on a contour comprising a circle, a rectangle, or a square that is immediately outside of the boundary or perimeter of a subject image.
- 3. The method of claim 1 wherein said radiation source and detectors are situated on a circle; wherein said step of performing image reconstruction is performed using an equi-angular fan beam back projection approach; and wherein the step angle of neighboring detectors against said source remains a constant, which constant is equal to one-half of the step angle of neighboring detectors against the center of the circle.
- 4. The method of claim 1 wherein said radiation source and detectors are situated on a square; and wherein said step of performing image reconstruction is performed using an equi-spaced fan beam back projection approach; said radiation source and detectors are deployed along the square equally spaced, and further, the signals received on the physical detectors are mapped to an imaginary detector bank disposed on a straight line perpendicular to the line from said radiation source to the center of the square.
- 5. The method of claim 4, wherein said mapped signals on the imaginary detector bank can be interpolated with either a linear interpolation or a Lagrange interpolation into equally spaced values; and wherein said step of performing image reconstruction is performed using an equi-spaced fan beam back projection.
- 6. The method of claim 1, wherein said contour is an arbitrary shape with a sufficient number of detectors and sources so that mapping onto an imaginary detector set that is situated on a straight line, which is perpendicular to the line that passes through the radiation source and the center of the subject image, leads to a sufficient spatial or angular density of imaginary detectors so that the resulting interpolated imaginary detector data set leads to the desired resolution of details or features in the reconstructed image.
- 7. The method of claim 1 further comprising a second radiation source that emits on a different wavelength from said radiation source simultaneously and detectors that can receive on said different wavelengths are positioned at the several positions on the real detector contour, and further comprising N radiation sources emitting signals at the same time at different wavelengths, with N equal to the number of wavelengths used at different sources.
- 8. The method of claim 7, further comprising reducing the processing time by the additional step of predetermining and pre-calculating the interpolation scheme for each different radiation source.
- 9. The method of claim 8, wherein said source and detector contour is an irregular shape.
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. application No. 60/473,518.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60473518 |
May 2003 |
US |