1. Field of the Invention
The invention relates to surgical fasteners, endoscopic surgical instruments, and procedures. More particularly, the invention relates to surgical fasteners, endoscopic instruments, and procedures for the transoral plication and fastening together of portions of the stomach for the treatment of GERD.
2. State of the Art
Gastroesophageal reflux disease (GERD) or persistent heartburn is caused by an improper relaxation of the lower esophageal sphincter (LES) that allows the frequent regurgitation of acidic stomach contents into the esophagus. If left untreated, chronic reflux may cause esophageal stricture, bleeding ulcers, perforation, and scarring. Continued reflux may lead to Barrett's esophagus, which involves changes in the cells that make up the esophagus and may lead to cancer.
The current mode of treatment is primarily pharmacological starting with antacids and progressing to proton pump inhibitors (PPIs). The progression of the disease is noted by the development of a hiatal hernia caused by the stomach being forced into the thoracic cavity. The pharmacological treatment ends with double and triple dosing of PPIs. At the point that the patient is not responding to the PPIs, surgical intervention is often recommended.
The current standard for surgery is the Nissen fundoplication. The fundoplication procedure involves wrapping the fundus of the stomach around the lower end of the esophagus and fastening it in place to make the lower esophageal sphincter less compliable. Traditionally, this procedure is accomplished through open surgery with the use of sutures to secure the plicated fundus of the stomach around the esophagus without penetrating (incising) the stomach. However, with the advent of laparoscopic surgery came the development of a corresponding laparoscopic Nissen procedure.
In an effort to further reduce the invasiveness of treatment for GERD, endoscopic techniques are being explored. Techniques that are currently under trials include the implantation of bulking agents, cautery techniques to produce scarring, and suturing or otherwise fastening internal tissue.
For example, U.S. Pat. No. 5,403,326 to Harrison et al. (hereinafter referred to as “Harrison”) discloses a method of performing endoscopic fundoplication using surgical staples or two-part surgical fasteners. The procedure disclosed by Harrison involves performing two percutaneous endoscopic gastrotomies (incisions through the skin into the stomach) and the installation of two ports through which a stapler, an endoscope, and an esophageal manipulator (invagination device) are inserted. Under view of the endoscope, the esophageal manipulator is used to pull the interior of the esophagus into the stomach. When the esophagus is in position, with the fundus of the stomach plicated, the stapler is moved into position around the lower end of the esophagus and the plicated fundus is stapled to the esophagus. The process is repeated at different axial and rotary positions until the desired fundoplication is achieved. While, the procedure disclosed by Harrison is a vast improvement over open surgery, it is still relatively invasive, requiring two incisions through the stomach.
U.S. Pat. No. 5,571,116 to Bolanos et al. (hereinafter referred to as “Bolanos”) discloses a non-invasive treatment of gastroesophageal reflux disease that utilizes a remotely operable invagination device and a remotely operable surgical stapler, both of which are inserted transorally through the esophagus. According to the methods disclosed by Bolanos, the invagination device is inserted first and is used to clamp the gastroesophageal junction. The device is, then, moved distally, pulling the clamped gastroesophageal junction into the stomach, thereby invaginating the junction and involuting the surrounding fundic wall. The stapler is, then, inserted transorally and delivered to the invaginated junction where it is used to staple the fundic wall.
Bolanos discloses several different invagination devices and several different staplers. Generally, each of the staplers disclosed by Bolanos has an elongate body and a spring biased anvil that is rotatable approximately 15 degrees away from the body in order to locate the invaginated gastroesophageal junction between the body and the anvil. The body contains a staple cartridge holding a plurality of staples, and a staple-firing knife. Each of the invagination devices disclosed by Bolanos has a jaw member that is rotatable by at least 45 degrees and, in some cases, more than 90 degrees to an open position for grasping the gastroesophageal junction. One of the chief disadvantages of the methods and apparatus disclosed by Bolanos is that the stapler and the invagination device are separately inserted but must both be present in the esophagus at the same time. With some of the embodiments disclosed, the presence of both instruments is significantly challenged by the size of the esophagus. Moreover, the esophagus cannot form a seal about both the instruments and, thus, it is difficult to insufflate the stomach to facilitate the procedure. In addition, the actuating mechanism of the device disclosed by Bolanos is awkward. In particular, the stapler anvil is biased to the open position, and it is not clear whether or not the stapler anvil can be locked in a closed position without continuously holding down a lever. In addition, it appears that the staple-firing trigger can be operated inadvertently before the anvil is in the closed position, which would result in inadvertent ejection of staples into the stomach or the esophagus of the patient.
U.S. Pat. No. 6,086,600 to Kortenbach discloses an endoscopic surgical instrument adapted to perform fundoplication between the stomach wall and the esophagus. The instrument includes a flexible tube, a grasping and fastening end effector coupled to the distal end of the tube, and a manual actuator coupled to the proximal end of the tube. The manual actuator is coupled to the end effector by a plurality of flexible cables that extend through the tube. The tube contains a lumen for receiving a manipulatable endoscope and the end effector includes a passage for the distal end of the endoscope. The end effector has a store for a plurality of male fastener parts, a store for a plurality of female fastener parts, a rotatable grasper, a rotatable fastener head for aligning a female fastener part and a male fastener part with tissues therebetween, and a firing member for pressing a male fastener part through tissues grasped by the grasper and into a female fastener part. According to a stated preferred embodiment, the overall diameters of the flexible tube and the end effector (when rotated to the open position) do not exceed approximately 20 mm so that the instrument may be delivered transorally to the fundus of the stomach.
While transoral fundoplication devices and methods hold promise, it is still difficult to deliver and manipulate the necessary apparatus transorally. One reason for the difficulty is that the overall diameter, or more accurately the cross-sectional area, of the equipment is too large. Moreover, even if the Kortenbach device could be reduced to 20 mm in diameter (314 mm2 cross sectional area), it would still be difficult to manipulate. Those skilled in the art will appreciate that larger instruments are less pliable and the plication and fastening procedure requires that the instruments be retroflexed nearly 180 degrees. Moreover, it will be appreciated that large instruments obscure the endoscopic view of the surgical site.
Recently, PCT WO 00/78227 (NDO Surgical Inc.) has disclosed a device sized to receive an endoscope and that is purportedly capable of plicating and damaging portions of the stomach wall to effect serosa-to-serosa contact that results in stomach wall tissue adhesion. As a result, compliance of the tissue about the esophagus would be reduced and a flap (i.e., valve) would be formed about the LES. For such a purpose, the plication and adhesion should, preferably, be created at the horseshoe-shaped tissue in the stomach surrounding the LES. The distance from the Z-line (esophageal/stomach borderline) to the horseshoe-shaped target tissue is approximately 1 to 3 cm into the stomach and plication at this location permits the greatest stress to be placed on the tissue about the LES. To approach plication at this location, the device has a particularly complicated and unwieldy multi-component end effector adapted to grab tissue, plicate the tissue, and fasten the tissue together. That is, while the above referenced device appears to offer a solution, it may not be practical to implement mechanically or operate during the procedure. Further, the above referenced device, while respectfully having a relatively smaller diameter than other prior art (approximately 18 mm in diameter and 254 mm2 in cross-sectional area), maintains that cross-sectional area over its entire length. In addition to limited flexibility, the size of the device renders it difficult to traverse the Cricopharyngeal Junction. Moreover, while it is desirable to plicate the stomach wall in a direction parallel to the esophagus in order to satisfactorily reduce compliance of the tissue, it is noted that the end effector of the above referenced device is unable to approach the target tissue from the desired direction.
It is also preferable that any fastener used for the apposition of tissue in the stomach cavity be removable in the event of tissue ischemia, vagus nerve irritation, or continued reflux, and be relatively non-injurious to the patient should the fastener inadvertently become loose from the device or dislodged from the tissue. In addition, current fasteners are difficult to locate within the stomach through an endoscope if it becomes necessary to find the fastener for removal.
It is, therefore, a feature of the invention to provide methods and apparatus for transoral plication and fastening of tissue of the stomach wall.
It is another feature of the invention to provide an apparatus for transoral plication and fastening of tissue that is adapted to form a plication at a location substantially adjacent the lower esophageal sphincter.
It is also a feature of the invention to provide an apparatus for transoral plication and fastening of tissue that is adapted to approach the stomach tissue in a direction substantially parallel to the esophagus.
It is an additional feature of the invention to provide an apparatus that has a relatively small cross-sectional area and is adapted for transoral plication and fastening of tissue.
It is a further feature of the invention to provide an endoscopic apparatus for transoral plication and fastening of tissue that can be detached from the endoscope while the endoscope is located within the stomach.
It is a further feature of the invention to provide methods and an apparatus for transoral plication and fastening of tissue that damages tissue such that adhesion occurs during healing.
It is still another feature of the invention to provide a tissue fastener that will not cause ischemia and that, if necessary, is relatively easily endoscopically removable from the stomach.
It is yet another feature of the invention to provide a fastener that can easily be identified in the stomach with an endoscope.
It is yet a further feature of the invention to provide measures for easily identifying with an endoscope a correct clip installation position of the effector while the effector is in the stomach.
It is still a further feature of the invention to provide a fastener that, if inadvertently released into the stomach, will not cause harm to the gastrointestinal tract.
It is yet an additional feature of the invention to provide a two-part fastener that minimizes the possibility of injury to the patient should any part of the fastener become separated inadvertently from the implantation device prior to coupling, become separated after coupling, become loose and fall away from the implantation site, and/or fall away from the implantation site after the fastener is removed therefrom. For example, a male part with relatively sharp posts can have a collapsible base that orients the sharp points of the post toward one another. Alternatively, or additionally, the posts can be collapsible.
It is yet again another feature of the invention to provide a retrieval device that unlocks an implanted and locked two-part fastener and securely grasps at least one of the fastener parts to prevent inadvertent release of the part into a patient. The two-part fastener has an unlocking device cooperating with the retrieval device such that a user can easily capture the unlocking device with the retrieval device and, when captured, easily actuate the unlocking device to unlock the fastener's two parts.
It is still again a further feature of the invention to provide a method for plicating substantially larger target tissue.
In accord with these features, which will be discussed in detail below, a two-part fastener and an instrument for aligning application of the fastener to the stomach wall in a manner that effectively treats Gastroesophageal Reflux Disease are provided.
The fastener includes male and female parts that can be adjustably coupled together to define various spaces therebetween such that, depending on the amount of tissue between the components, a desired amount of force can be applied to the tissue therebetween by the fastener, i.e., such that the tissue does not necrose. The male part includes a plurality of tissue-piercing posts that are spring-biased to collapse into a base of the male part to prevent injury to the patient should the male part inadvertently become separated from its respective jaw prior to coupling with the female part or separated from the female part after coupling therewith. Other tissue-piercing post configurations are provided as well to prevent any injury if the male part inadvertently enters the patient. In addition, the female part is provided with a cover that shields the piercing tips of the posts after the male and female parts are coupled together. Covering the pins with the female part also avoids potential hazards as the device is inserted into a patient's mouth. Covering the pins limits the pins' exposure to bacteria present in the mouth and substantially prevents the possibility of piercing a fastening location (i.e., stomach wall) with a contaminated fastener. The fastener, when in a fastened configuration, may be unfastened by moving portions of the cover relative to each other. Unfastening can be performed, e.g., using a snare device to lasso the device and move portions of the female part relative to each other.
The instrument includes a relatively short distal end effector that may be coupled over a portion of the endoscope, a proximal actuation handle, and a relatively small diameter control shaft extending between the handle and the end effector. As only the control shaft extends from the handle of the instrument to the end effector, during use, the cross-sectional area of the system within the esophagus at all locations other than the distal end of the instrument, is substantially small (the sum of the areas of the endoscope and the control shaft); i.e., less than half that of other proposed systems. In addition, at the distal end of the instrument, the system cross-sectional area is also smaller than that of prior art systems.
More particularly, the distal end effector may be provided with a sleeve that can be slidably positioned over the end of the endoscope and, likewise, slidably removed therefrom. Alternatively, the end effector may be coupled at the distal end of the endoscope and inserted along with the endoscope. Preferably, the end effector is inserted into the patient separately from the endoscope by being guided over a pre-inserted guidewire. The sleeve is, preferably, proximally and distally tapered to ease insertion into and removal from the esophagus. The distal end effector also includes a clevis about which a pair of rotatable jaws is coupled. The jaws are laterally displaced relative to the control shaft. The jaws are each adapted to each hold one part of the two-part fastener. When the jaws are in a closed position with the parts of the fastener located therebetween, the jaws extend substantially parallel to the longitudinal axis of the control shaft. That is, the jaw assembly is fixed in a retroflexed or “looking back” configuration, directed 180° from the distal end of the control shaft. In addition, the jaws and fastener parts together define posts adapted to grab the stomach tissue, pierce and damage the serosa of the stomach tissue, and plicate the stomach tissue when the jaws are moved from an open position to a closed position.
The distal end effector may be provided with alignment measures to indicate visually to a user that the jaws are in the proper aligned position substantially parallel to one another for fastener implantation.
The instrument includes a first control element that moves the jaws between open and closed positions and a second control element that couples the fastener parts together and releases the fastener parts from the jaws. In another embodiment, the instrument second control element is two separate control elements that couple each of the male and female fastener parts together and release the fastener parts from the jaws when coupled.
One embodiment of using the system includes sliding the sleeve of the instrument over the distal end of the endoscope and moving the sleeve to a central location on the scope. The endoscope is, next, inserted through the esophagus and into the stomach. The distal end of the instrument, with the jaws in a closed low profile configuration, is, then, slid over the endoscope, past the Cricopharyngeal Junction, through the esophagus, into the stomach, and off the distal end of the endoscope. The endoscope may be retroflexed during a portion of the insertion of the distal end of the instrument such that the instrument insertion is performed under view of the endoscope. The instrument can be inserted on or off the endoscope.
The jaws of the instrument are, then, opened by actuation of the handle, and the handle and/or control shaft are pulled back to cause the open jaws to forcibly contact the stomach tissue surrounding the lower esophageal sphincter, i.e., the target tissue 1 cm to 3 cm into the stomach. As the jaws contact the tissue, a post on the female jaw and the posts of the male part of the fastener pierce the mucosa, deep muscle, and/or serosa of the tissue. An endoscopic grasping instrument extending through the endoscope may be used in conjunction with the end effector to aid in pulling the target tissue between the jaws. The combination of the grasping instrument and a separate, independent end effector according to the present invention gives an endoscopist the ability to employ techniques that, to date, were only available to surgeons. To illustrate this point, a brief history of Endoscopy is set forth in the following text.
The tools of Endoscopy have evolved over the last three decades. The major change has been the natural transition from rigid scopes to flexible scopes. In some areas of Endoscopy such as Urology and Gynecology, rigid scopes are in use today and are considered to be ideal for observation and numerous treatments of ailments. In every instance, the endoscopist has been confined to working in a two dimensional field, which has been due to the limited depth of field that can be operated on using an endoscope. The depth-of-field limitation is due to limitations of lighting and set focal lengths. For this reason, the tools that have been developed for Endoscopy work in line with the endoscope and work primarily within a short distance in front of the endoscope's optics. The tools also required an operating channel within the endoscope to access the area of interest.
The advances of fiber optics primarily drove the change from rigid to flexible scopes. This allowed the rigid glass rods to be replaced by flexible fibers that could carry light down to the targeted area and transmit an image back to an external camera. The fiber bundles and the channels' cross-sectional area were sufficiently large to limit the possibilities of complex tools usable by endoscopists. As a result, the kinds of devices that an endoscopist could use were limited primarily to loops, snares, biopsy forceps, needles, baskets, laser fibers, and diathermy probes. Further advancements in the field have eliminated the fiber bundle used for the optics of an endoscope and replaced it with a CCD camera disposed at the distal end of the endoscope. Operating channels have increased in diameter even though the outer diameter of the endoscope has been decreased to improve passability into a patient.
Nonetheless, some limitations remain. Devices used in endoscopy were sent to the treatment site over a pre-installed guidewire or, in some instances, blind. Other measures for visualization have been used, such as fluoroscopy, to verify placement. But, in every instance, the devices have been used in line with the endoscope, such as the dilators that are used to open strictures. Other examples include the CURON® STRETTA® probe and the NDO Surgical plicator. The CURON® device is rotated and used in various positions with respect to the endoscope, while the NDO Surgical device has a corkscrew and plicator working inline.
Optical advancements will continue with the advent of super-bright LED's and, possibly, transmitted optical signals, which can further reduce the cross-section of components that are needed to transmit light and optics back and forth to the treatment area. What has been missing is the ability of the endoscopist to operate in the third dimension, a dimension typically present in the world of surgery.
For centuries, surgeons have used two separate and independent axes to functionally impart a change to the anatomy. These axes were defined by the physicians' hands but, more recently, are defined by the placement of trocars in current laparoscopic procedures. The treatment site is, then, typically held from one coordinate axis while it is probed, cut, or cauterized from another. This technique, which is common to surgery, is novel in Endoscopy, and is so novel that the physicians need to be reminded not to lose sight of the independent device. The procedure according to the present invention was created initially for GERD, but also serves as a stepping-stone giving the endoscopist freedom and control typically reserved only for surgeons. The procedure of the present invention allows the manipulation of tissue through a working channel of an endoscope (a first coordinate axis) while the end effector, independent from the endoscope, is imparting change to the tissue (a second coordinate axis). This two-handed approach allows the greatest reduction of compliance to the gastroesophageal junction, while giving the physician the ability to verify the work prior to committing to the change made to the tissue.
With this new freedom of movement will come the ability to impart larger anatomical changes endoscopically than seen to date. The new treatment method allows improvements to current treatments of ulcers, gastric cancer, obesity, etc. With this in mind, the present invention protects the use of an independent device working in conjunction with a device that passes through the endoscope's working channel. More specifically, after the end effector and the grasping instrument are employed to place the target tissue between the jaws, the handle is actuated to cause the jaws to move into a closed position, pulling into apposition two portions of the tissue to form a plication. As the jaws are closed and the fastener is clamped about the tissue, but not locked, with the posts of the male part of the fastener extending through both layers of tissue at the ends of the plication and entering into corresponding openings in the female part. If desired, the physician can open the jaws to apply a different clamping pressure to the tissue or to entirely relocate the implanted fastener. Once the fastener is in a desired location and with a desired pressure on the tissue, and the jaws are aligned in the implantation position, the handle is actuated to lock the fastener and release the fastener from the jaws. The instrument may, then, be recoupled to the endoscope, and the endoscope and the instrument may be withdrawn from the patient.
Other instruments and methodologies that provide other couplings between the instrument and the endoscope and that do not require any coupling of the instrument to the endoscope are also provided and are set forth in the appended claims.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a method for fastening a surgical fastener to bodily tissue. First and second piercing posts of the fastener are inserted through at least one layer of tissue. Each of the first and second piercing posts has a fixed end and a coupling end. The first piercing post is fixedly-attached to a first base portion at the fixed end. The second piercing post is fixedly-attached to a second base portion at the fixed end. The first and second base portions are foldably coupled to one another by a hinge. A bias device imparts a bias force on at least one of the first base portion and the second base portion in a direction toward the other of the first and second base portions and substantially perpendicular to a longitudinal axis of the hinge. A receiving portion is attached to the coupling ends of the first and second piercing posts.
In accordance with another mode of the invention, the receiving portion is operable to receive and selectively couple the coupling ends of the first and second piercing posts such that the first and second piercing posts are substantially parallel to each other and the receiving portion is a fixed non-zero distance from the first and second base portions.
In accordance with a further mode of the invention, prior to the inserting step, the first and second base portions are placed into a piercing position for coupling with the receiving portion whereby the first piercing post is substantially parallel to the second piercing post.
In accordance with an added mode of the invention, receiving portion is removed from the first and second piercing posts and the first and second base portions are placed into a folded position where a distance between the coupling end of the first piercing post and the coupling end of the second piercing post is less than a distance between the fixed end of the first piercing post and the fixed end of the second piercing post.
In accordance with an additional mode of the invention, there is provided a surgical fastener that has a fixed cover portion fixedly attached to the receiving portion and a slide cover portion slidably attached to the receiving portion. The slide cover portion includes a first position operable to engage the receiving portion with at least one of the first piercing post and the second piercing post and a second position operable to disengage the receiving portion from the at least one of the first piercing post and the second piercing post.
In accordance with yet another mode of the invention, the surgical fastener has an unlocking member with a first end physically coupled to the slide cover portion and is operable to move the slide cover portion in an unlocking direction to decouple the receiving portion from the at least one of the first piercing post and the second piercing post when tension is placed on the unlocking member.
In accordance with yet a further mode of the invention, the unlocking member has a second end physically coupled to the fixed cover portion.
In accordance with yet an added mode of the invention, the receiving portion is released by applying a force to the unlocking member sufficient to move the slide cover portion in the unlocking direction.
In accordance with yet an additional mode of the invention, the force is applied with a retrieval tool. The retrieval tool includes a shaft having a grapple at a distal end. The retrieval tool also includes a cowling surrounding a portion of the shaft. The cowling is shaped to house the grapple, and is movable in relation to the grapple. The shaft is slidable inside and in relation to the cowling, thereby causing a distal edge of the cowling to place a first force on the unlocking member as the grapple places a second force, opposite the first force, on the unlocking member.
In accordance with again another mode of the invention, the inserting step further includes overcoming the bias force.
In accordance with again a further mode of the invention, the attaching step further includes engaging a slot in one of the first piercing post with the receiving portion. The slot is substantially perpendicular to a longitudinal axis of the first piercing post and spaced a sufficient distance from the fixed end to not cause tissue necrosis when the surgical fastener is fastened to the tissue.
In accordance with again an added mode of the invention, the first base portion has a first tissue compression surface, the second base portion has a second tissue compression surface, the first piercing post is fixed to the first base portion substantially perpendicular to the first tissue compression surface, and the second piercing post is fixed to the second base portion substantially perpendicular to the second tissue compression surface.
With the objects of the invention in view, there is also provided a method for fastening a surgical fastener to bodily tissue. First and second piercing posts of the fastener are inserted through at least one layer of tissue. The first piercing post is coupled to and extending from a first tissue-compression surface of a first base portion. The second piercing post is coupled to and extending from a second tissue-compression surface of a second base portion. The second base portion is foldably coupled to the first base portion by a hinge. A bias device imparts a bias force on at least one of the first base portion and the second base portion in a direction toward the other of the first and second base portions and substantially perpendicular to a longitudinal axis of the hinge. A receiving portion is attached to the first and second piercing posts. The receiving portion has a first aperture for accepting and engaging a distal end of the first piercing post and a second aperture for accepting a distal end of the second piercing post.
In accordance with another mode of the invention, the second aperture is operable to accept the distal end of the second piercing post such that the first piercing post and the second piercing post are substantially parallel with each other.
In accordance with a further mode of the invention, the first piercing post has a first piercing end and a first base-attachment end and the second piercing post has a second piercing end and a second base-attachment end.
In accordance with an added mode of the invention, prior to the inserting step, the first and second base portions are placed into a piercing position for coupling with the receiving portion whereby the first piercing post is substantially parallel to the second piercing post.
In accordance with an additional mode of the invention, the receiving portion is removed from the first and second piercing posts and the first and second base portions are placed into a folded position where a distance between the first piercing end and the second piercing end is less than a distance between the first base-attachment end and the second base-attachment end.
In accordance with yet another mode of the invention, the surgical fastener has a fixed cover portion fixedly attached to the receiving portion and a slide cover portion slidably attached to the receiving portion. The slide cover portion includes: a first position operable to engage the receiving portion with at least one of the first piercing post and the second piercing post; and a second position operable to disengage the receiving portion from the least one of the first piercing post and the second piercing post.
In accordance with yet a further mode of the invention, the surgical fastener includes an unlocking member with a first end physically coupled to the slide cover portion and operable to move the slide cover portion in an unlocking direction to decouple the receiving portion from the at least one of the first piercing post and the second piercing post when tension is placed on the unlocking member.
In accordance with yet an added mode of the invention, the unlocking member has a second end physically coupled to the fixed cover portion.
In accordance with yet an additional mode of the invention, the receiving portion is released by applying a force to the unlocking member sufficient to move the slide cover portion in the unlocking direction.
In accordance with again another mode of the invention, the inserting step further includes overcoming the bias force.
With the objects of the invention in view, there is further provided a method for fastening a two-piece surgical fastener to bodily tissue. A piercing piece of the fastener is inserted through at least one layer of tissue. The piercing piece has: a piercing base having a first portion with a first tissue-compression surface and a second portion with a second tissue-compression surface; a first piercing post having a first end attached to the first portion and projecting from the first tissue-compression surface and a second end opposite the first end and defining a slot at a predefined distance from the first tissue-compression surface; a second piercing post having a third end attached to the second portion and projecting from the second tissue-compression surface and a fourth end opposite the third end; a hinge having a hinge axis and pivotally coupling the first portion of the piercing base to the second portion of the piercing base; and a bias device imparting a bias force on at least one of the first and second base portions in a direction toward the other of the first and second base portions and substantially perpendicular to the hinge axis. A coupling portion is attached to the piercing piece. The coupling portion has: a coupling body with a third tissue-compression surface, the coupling body defining a first aperture dimensioned to receive the second end and the slot and a second aperture dimensioned to receive the fourth end; and a coupling assembly at the coupling body operable to selectively engage the slot to retain the piercing thereat and position the first tissue-compression surface substantially at a second predefined distance from the third tissue-compression surface.
In accordance with a concomitant feature of the invention, the fourth end defines a second slot at the predefined distance from the second tissue-compression surface, the second aperture is dimensioned to receive the fourth end and the second slot, and the coupling assembly is operable to selectively engage the second slot to retain the piercing piece thereat and position the second tissue-compression surface substantially at the second predefined distance from the third tissue-compression surface.
Although the invention is illustrated and described herein as embodied in a surgical instrument with alignment indicators, particularly for the transoral plication and fastening together of portions of the stomach for the treatment of Gastroesophageal Reflux Disease, it is, nevertheless, not intended to be limited to the details shown because various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Other features that are considered as characteristic for the invention are set forth in the appended claims.
Advantages of embodiments of the present invention will be apparent from the following detailed description of the preferred embodiments thereof, which description should be considered in conjunction with the accompanying drawings in which:
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application with color drawings will be provided by the Office upon request and payment of the necessary fee.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention. While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. The figures of the drawings are not drawn to scale.
Before the present invention is disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. The terms “a” or “an,” as used herein, are defined as one or more than one. The term “plurality,” as used herein, is defined as two or more than two. The term “another,” as used herein, is defined as at least a second or more. The terms “including” and/or “having,” as used herein, are defined as comprising (i.e., open language). The term “coupled,” as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically.
Relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
As used herein, the term “about” or “approximately” applies to all numeric values, whether or not explicitly indicated. These terms generally refer to a range of numbers that one of skill in the art would consider equivalent to the recited values (i.e., having the same function or result). In many instances these terms may include numbers that are rounded to the nearest significant figure.
Referring now to the figures of the drawings in detail and first, particularly to
Referring to
The sliding assembly 52 includes a latch slide 70, a latch lock 72, and a slide cover (or shield) 74. Referring particularly to
By way of example only, preferred dimensions for one exemplary fastener sized for being passed through the esophagus and coupling portions of the stomach tissue together are as follows. The male part 12 has a length of approximately 15 to 20 mm, a width of approximately 5 to 9 mm (in particular, 6.25 mm), and a height of approximately 1 to 3 mm (preferably, 2 mm) excluding the posts. The female part 14 has a length of approximately 12 to 18 mm (preferably, 15 mm), a width of approximately 5 to 9 mm (preferably, 6.25 mm), and a height of approximately 3 to 6 mm (preferably, 4 mm). A preferred configuration of the coupled fastener 10 has overall dimensions of a length of 18 mm, a width of 7.5 mm, and a height of 17 mm including the thickness of the tissue between the male and female parts.
The parts 12, 14 are, preferably, constructed of titanium or titanium alloy and, then, anodized according to processes known in the art of metallurgy. In an alternative process, the anodizing imparts a color distinct from the natural tissue of the stomach cavity, e.g., purple, blue, and black.
As discussed in more detail below, when the male and female parts 12, 14 of the fastener 10 are brought into apposition on opposite sides of tissue located therebetween by the below described instrument 200 (see
Referring now to
An alternative embodiment of the posts 32, 34, as illustrated in
One such feature relates to the preferred configuration of the upper surface of the cover portion 56. The first embodiment of the cover portion 56 shown in
It is recognized that various other configurations for locking the latch lock 72 of the female part 14 relative to the posts 32, 34 of the male part 12 can be used. For example, referring to
It is also noted that the movement of the sliding assembly 52 relative to the latch body 50 causes the slide cover 74 to be spaced apart from the latch body cover 56. This opens a space 108 between the slide cover 74 and the latch body cover 56. (Compare
The male and female parts 12, 14 may be unlocked from each other even after the male and female parts 12, 14 have been locked together. Moving the sliding assembly 52 in an opposite direction relative to latch body 54, such that the slide cover 74 and cover portion 56 are moved relatively closer together, operates to unlock the male and female parts 12, 14 so that they may, then, be separated from each other. That is, such a mechanism facilitates decoupling of a fastener and, thereby, permits atraumatic retrieval of an implanted fastener.
One manner of effecting the decoupling can be performed with a standard endoscopic snare device found in any endoscopy suite. A loop of such a snare device (not illustrated herein) is provided over and about the cover portion 56 and the slide cover 74 and the two parts 56, 74 are pulled toward each other by decreasing the size of the snare loop. A portion of the snare loop may be positioned through recess 68 to prevent the loop from slipping off the fastener 10. It is noted that the unnatural color of the fastener 10 relative to the tissue of the stomach cavity facilitates endoscopically locating an implanted fastener for such retrieval. However, a standard snare device typically does not have the ability to generate the force necessary to reverse the sliding lock of the fastener 10 and ensure a reliable unlocking procedure.
In-vitro and in-vivo testing revealed that, although the fastener 10 could be removed using a snare system, the level of expertise required to lasso the fastener 10 was moderate to high. Further, while removal of the fastener with a snare device is possible, the time for such removal can be unacceptable. Moreover, reversing a plication formed endoscopically is not straightforward. For these reasons, along with the level of anxiety expected once a decision has been made to remove an implanted fastener 10, ease of removal becomes an advantageous and important feature. Also, the direction in which a standard loop snare applies force is not optimal. Specifically, force is applied at the proximal actuating device to withdraw the loop into the tube connecting the snare loop to the proximal actuating device. The force imparted is, however, substantially absorbed by the approx. 90° bend that the snare makes as it exits the tube and surrounds the two parts 56, 74. Accordingly, a substantial amount of force is required to close the snare, which force increases as the loop tightens.
The preferred way to effect a decoupling of the fastener 10 includes a removal assembly 930 on the female part 14 of the fastener 10, shown in
As set forth above, the latch body 50 of the female part 14 has a base portion 54 and a cover portion 56 that are fixed to one another or are integral. The latch body 50 also includes a latch slide 70 and a slide cover 74 fixed to the latch slide 70. The latch slide 70 is mounted in a movable manner to slide upon the base portion 54 and next to the cover portion 56. The sliding relationship is illustrated, for example, in
The difference between removal with the preferred embodiment of the removal assembly 930 of
The band 931 is fixedly attached to either side of locking mechanism, in particular, to either one or both of the base portion 54 and the cover portion 56 and to either one or both of the slide 70 and the slide cover 74.
In the preferred embodiment, the band 931 is J-shaped in cross-section, has an upper portion 932, a middle portion 933 (see
One method for attaching the band 931 to the female part 14 includes first hooking the lower portion 934 onto the lower catch 681. Preferably, the connection of the lower portion 934 to the lower catch 681 is not permanent (but it can be). The upper portion 932 is, then, hooked to the upper catch 742. Preferably, the upper catch 742 is malleable and can be stamped or otherwise compressed, for example, in the manner of a rivet head, to deform out and over the upper end portion 936 of the upper portion 932 of the band 931 and fixedly (and, therefore, permanently) fasten the band 931 to the female part 14. Other connection possibilities for the upper and lower catches 742, 681 are also possible. One reason why the band 931 is configured to wrap around the cover portion 56 is to eliminate and/or reduce edge effects and stress concentrations and to carry most of the load imparted upon the band 931 along the length of the band 931 in its longitudinal direction, a feature discussed in greater detail below with respect to use of the retrieval device 1100.
The band 931 is shaped and sized to a length corresponding at least to the distance at which the slide 70, 74 is furthest away from the cover portion 56. Therefore, as shown in
It is noted that the closed top surface 561 of the cover portion 56 provides a smooth and substantially non-frictional surface upon which the upper portion 932 of the band 931 may rest and be supported. Preferably, the band 931 rests loosely with no tension on top of the top surfaces 561, 741 of the cover portion 56 and slide cover 74.
The illustrated and described band removal device 930 and the illustrated and described embodiment for attaching the band 931 to the fixed and moving portions of the female part 14 are only exemplary. The band removal device 930 can take any form that moves the cover portion 56 and the slide portion 74 with respect to one another and the band 931 can be attached in any manner to the female part 14. For example, loop eyelets can be positioned entirely around a circumference of the cover portion 56 and the slide portion 74 in a plane that is parallel to a plane defined by the slide 70. A wire, which can be of any material similar to that described for the band 931, can be strung through all of the eyelets, thus forming a wire railing surrounding the cover portion 56 and the slide portion 74. When pulled, the loop defined by the wire will close, similar to a common snare, and move the cover portion 56 and the slide portion 74 closer to one another. In such a configuration, the grapple 1110 can grasp anywhere around the cover portion 56 and the slide portion 74.
When the lower bore 935 of the J-shaped band 931 is hooked upon the lower catch 681, longitudinal and/or vertical forces acting upon the upper portion 932 or the middle portion 933 do not remove the lower portion 934 from the catch 681. And, fastening of the upper portion 932 to the ceiling 741 of the slide cover 74, in particular, permanent fastening, substantially prevents any longitudinal, horizontal, and/or vertical force acting upon the upper portion 932 or the middle portion 933 from removing the lower portion 934 from the catch 681.
The removal assembly 930 is configured to unlock the female part 14 as the two components including the cover portion 56 and the slide cover 74 are moved towards one another. The illustrated and described embodiment can be expanded to include other embodiments that could be made to attach and unlock the fastener parts 12, 14 to one another. The flexible member 931 could be made to wrap around one component and be affixed to two points on the other component, for example. To easily unlock the female part 19, the unlocking mechanism should be easily accessible on the fastener 10 and easily actuatable.
To cause the flexible member 931 to impart a load sufficient to unlock the fastener requires the use of the retrieval device 1100.
The retrieval device 1100 is able to access the removal assembly 930 because the cover portion 56 and the slide cover 74 are separated to define a cavity 562 therebetween, into which the grapple 1110 of the retrieval device 1100 may be inserted. As shown, for example, in
A preferred shape of the grapple 1110 is a J-shaped hook having a catch bottom (shown touching the bottom surface of the upper portion 932 of the band 931 in
The actuation device can be in the form of a spool and thumb ring, for example. The actuation device is affixed to the actuation wire 1112 so that rotation of the actuation wire 1112 (and, therefore, the grapple 1110) is possible by rotating the actuation device or a portion thereof. A flexible shaft 1106 connects the distal and proximal ends of the retrieval device 1100. The shaft 1106 is configured to be inserted in an operating channel of an endoscope.
One feature of the device biasing the actuation wire 1112 in the proximal direction 1102 imparts a force that only captures the band 931. Alternatively, another feature of the biasing device imparts a force that not only captures the band 931, but also pulls or retracts the band 931 a distance into the hollow interior of the cowling 1104.
To allow the band 931 to be pulled into the hollow interior of the cowling 1104, the hollow has an inner diameter dimensioned to be larger than the greatest width of the grapple 1110 (radially away from an axis of the wire 1112). Thus, the grapple 1110 can enter the cowling 1104 entirely. The hollow of the cowling 1104 further has a depth (from a distal end thereof and extending proximally thereto) that is greater than the height of the grapple 1110 (in a longitudinal direction of the wire 1112). Thus, when the band 931 is to be pulled inside the cowling 1104, the catch bottom of the grapple 1110 travels in a proximal direction within the cowling 1104 to a given distance (defined below) from the distal-most end of the cowling 1104.
If the device biasing the actuation wire 1112 in the proximal direction 1102 only imparts a capturing force upon band 931, the actuation device also includes a secondary actuator that pulls the retrieval device 1100 further within the cowling 1104 such that the grapple 1110 enters the cowling 1104 to the given distance. A multi-force actuator gives the user more control over the unfastening procedure because the user has the opportunity to decide whether or not the band 931 will or will not be pulled and, thereby, unlock the locked fastener 10. Of course, the embodiment of the biasing device imparting both a capture force and an unlock force can exist in a single actuator that has, for example, a tooth, pawl, or catch preventing proximal movement of the actuation wire 1112 past the capture position. Such a feature can be moved out of the way of the actuation wire 1112, for example, by pressing an unlocking safety coupled thereto when removal is desired. Accordingly, the biasing device can be configured to always impart a force sufficient to unlock the fastener, but to not enable a full unlocking movement of the actuation wire 1112 unless and until the safety is actuated.
To impart the needed forces and assure the removal of the implant, the flexible shaft 1106 is, preferably, a longitudinally stiff sheath.
The relative positions of the cover portion 56 and the slide cover 74 define the distance along which the slide cover 74 needs to move in order to unlock the fastener 10. Accordingly, the band 931 needs to be shortened at least enough to move the slide cover 74 to the unlocking position. When the band 931 is pulled into the cowling 1104, it is folded upon itself. Such folding occurs because the catch bottom of the grapple 1110 is moved proximally in relation to the two opposing distal end portions of the cowling 1104 in contact with the band 931. Therefore, if the slide cover 74 needs to move, for example, 4 mm, to unlock the fastener 10, the catch bottom needs to enter at least approximately 2 mm into the hollow interior of the cowling 1104. Accordingly, the given distance that the catch bottom of the grapple 1110 enters the cowling 1104 is equal to approximately one-half the distance along which the slide cover 74 needs to move in order to unlock the fastener 10.
In contrast to a conventional snare, the direction in which the retrieval device 1100 of the present invention applies a force is optimal. Specifically, an actuating force is applied at the proximal actuating device to withdraw the grapple 1110 into the cowling 1104. Because the actuation wire 1112 is directly attached to the band 931, the force imparted on the band 931 is entirely transferred to the band 931. Simply put, the longitudinal force in the proximal direction 1102 of the retrieval device 1100 is directly translated into a force moving the slide 74 and the cover portion 56 towards one another in a direction orthogonal to the proximal direction 1102 and is directly proportional to the longitudinal force, with minor losses because of friction where the deforming band enters the cowling 1104.
The fastener 10 shown in
An important feature of the fastener 10 of the present invention is the ability to reverse the plications formed by implanting the fastener 10 in a patient according to the system of the present invention. The reversibility is advantageous because it mitigates risks associated with treatment, in particular, treatment of GERD. In addition, the reversibility gives the user the ability to remove and redo the implant if the original anatomical change (plication) is considered inadequate. Once the female side is unlocked, the removal device can be used to pull the female side off the tissue and the implant can be removed orally. Then, the male side can be removed as originally planned using a foreign body extractor or can be allowed to pass naturally through the digestive system of the patient.
As discussed above, the posts 32, 34 are spring-biased to collapse into a base of the male component when not retained against the bias. This operates to prevent injury to the patient should the male part 12 inadvertently become separated from the applicator instrument 200 or from the female part 14 after coupling therewith. Given the size of the parts and the protection of sharps from exposure to the body, the parts may be safely passed through the gastrointestinal system.
Folding the posts 32, 34 into the elongate channels 24, 26 as shown in
The halves 181, 182 are connected to one another at a hinge 183. The hinge 183 has a hinge axis substantially orthogonal to a non-illustrated longitudinal line extending from a central axis of the first post 32 to a central axis the second post 34. The base halves 181, 182 of the second fastener embodiment are rotatably coupled to one another so that, when rotated, the tips or ends 323, 343 of the posts 32, 34 approach one another until they touch or are sufficiently close to one another to present a profile that is less likely to cause harm to a patient should the male part 12 become loose and inadvertently fall away inside a patient from a fastening location. An example of this safety orientation is shown in
The base halves 181, 182 can be configured to exactly touch the tips 323, 343 to one another. However, in the preferred configuration shown in
To offset the two tips 323, 343 in the preferred configuration, instead of providing a hinge 183 connecting the two halves 181, 182 with a hinge axis substantially parallel to the longitudinal line extending from a central axis of the first post 32 to a central axis the second post 34, the hinge 183 is skewed at an angle α to the longitudinal line. See
To bias each of the halves 181, 182 to a position where the ends 323, 343 are closer to one another, each half 181, 182 has a recess portion 187, 188 in which is disposed a respective portion of a bias device 189. A preferred embodiment for the bias device 189 is a torsion spring having two free ends 190, 191 respectively imparting a bias force against surfaces 192, 193 within the recesses 187, 188.
Like the second post groove embodiment of
A third exemplary embodiment of the base 18 is shown in
A fourth exemplary embodiment of the base 18 is shown in
A post release wire 171 is fastened to a portion of each post 32, 34 close to the base 18 (the wire 171 can be a band or a braided cable, for example). The wire 171 can be merely wrapped or tied around each post 32, 34 or can be welded, glued, or otherwise attached to each post 32, 34. The wire can be threaded through the two openings 20, 22 or, preferably, as shown in
An example of a removable connection of the posts 32, 34 to the base 18 is shown in
As further discussed below, and clearly shown in the figures relating thereto, the parts 12, 14 of the fastener 10 are delivered through the esophagus in a lengthwise orientation.
Turning now to
In a preferred embodiment, the control shaft 206 is a stainless-steel flat-wire wound coil covered in a lubricious sheath and is substantially smaller in diameter than a conventional endoscope. The flat wire limits elongation of the control shaft 206 when the control shaft 206 is under tension due one or the other of the control elements 208, 210 being under compression. Another way to limit longitudinal extension is to attach a jacket, preferably, of TEFLON®, at either end of the shaft 206 The jacket may be fixedly attached at its proximal and distal ends to the actuating handle 204 and the distal end effector 202, respectively, by barb fittings on projections over which the jacket is stretched; the attachments of the jacket may be further strengthened by crimp bands or shrink bands of metal or shrink tubing over the area where the jacket engages the barb fittings. Alternatively, a rounded wire coil can be used, which allows the control shaft 206 to be bent into a tighter radius than the flat-wire wound coil. This ability to bend more sharply is important because when the end effector 202 is being inserted through the mouth towards the esophagus, it must pass the Cricopharyngeal Junction. The route through the Cricopharyngeal Junction includes an approximately ninety-degree turn. Thus, it is important for the end effector 202 to be able to bend at an angle to the substantial longitudinal extent of the control shaft 206, and the distal portion of the shaft 206 is required to be sufficiently flexible to facilitate easy passage of the effector 202. When guided along the guide wire 924, the stiffness of the guide wire 924 assists (along with user pressure) in bending the end effector orientation accordingly, but the control shaft 206 needs to bend as well.
In addition, the control shaft 206 has a relatively small diameter than the distal end effector 202, preferably not exceeding approximately 5 mm and, in particular, not exceeding approximately 4 mm.
The distal end effector 202 is adapted to plicate tissue and apply the two-part fastener 10 to opposed sections of the plicated tissue, and, according to several embodiments, is optionally adapted to be coupled to an endoscope or separate therefrom, as described in detail below. The actuation handle 204 operates the control elements 208, 210 to effect clamping and opening of the jaw assembly 218 and locking and release of the fastener 10, as also described in detail below.
Referring now to
The first arm 220 of the jaw assembly 218 includes a male jaw 226 (adapted to receive the male part 12 of the fastener 10), and an opposite tang 230 having a coupling hole 232 adapted to receive a control element. The second arm 222 includes a female jaw 228 (adapted to receive the female part 14 of the fastener 10), and an opposite tang 234 having a coupling hole 236 adapted to receive a control element.
More particularly, the inside of the male jaw 226 includes a rectangular recess 240 adapted to receive the back of the male part 12 of the fastener 10, two stepped throughbores 242, 244, and two threaded holes 248, 250 (see
In the first embodiment, the first release element 259 extends within the track 258 of the first arm 220 from a housing 290 of the clevis 224 and through the exit opening 252. The first release element 259 includes an actuation end 255 that is split to define two U-shaped portions 261, 263 which are respectively inserted into the bores 46, 48 (
Referring to
Referring now to
Referring now to
In the first embodiment of the mechanical assembly 292, the assembly 292 includes a first bell crank 294 rotatably coupled about a pivot 296 that is, preferably, integrally formed with the housing 290. A distal end 298 of control element 208 is coupled to the first bell crank 294 at an input side of the bell crank 294, and a V-shaped wire 300 is attached to the bell crank 294 at an output side thereof. The V-shaped wire 300 extends to and is coupled within the coupling holes 232, 236 (
Referring still to
Referring now to
First, when the end of release element 272 is pushed against the sliding assembly 52, the sliding assembly 52 is forced to move relative to the latch body 50. This movement locks the catches 96, 98 of the latch lock 72 relative to the posts 32, 34 and, thereby, locks the male and female parts 12, 14 of the fastener together. Second, movement of the latch slide cover 74, opens a space 108 between the slide cover 74 and the latch body cover 56, frees the head 76 of the latch slide 70 from the ledge 275 and frees the catches 262, 264 of the female jaw 228 from the setback 112 (see the aligning space 108 in
The push bar 310 is decoupled from the release elements 259, 272 because the contact portions 312, 314 of the release elements 259, 272 will be differently located relative to the push bar 310 based upon whether large or small amounts of tissue are located between the closed jaws 226, 228 and to what degree the jaws 226, 228 are closed. This decoupled adjustable mechanism operates to effect the appropriate amount of movement to the release elements 259, 272 regardless of the exact closed jaw configuration.
Alternatively, rather than use a bell crank system in which control element 208 is placed under tension to close the jaws and control element 210 is placed under compression to operate the lock the fastener parts and release the fastener from the jaws, another system may be used to couple the control elements 208, 210 to the jaws 226, 228 and release elements 259, 272, respectively. For example, each of the control elements may include an end provided with a U-shape in which the end of the control element defines a return extending non-coaxial with but parallel to the remainder of the control element. For example, the U-shaped end of the control element 208 can be coupled to the jaws such that, when the control element 208 is placed under compression, the return portion of the U-shape pulls the jaws closed. Similarly, the U-shaped end of the control element 210 can be configured to act on release elements 259, 272 such that control element is placed under tension to the U-shaped portion pushed on the release elements 259, 272. Other mechanisms may, likewise, be used.
The first embodiment of the two bell crank system can also be replaced with a second, preferred, embodiment of a single bell crank and two-pulley system. Such a system is illustrated in
To apply a single cable system for actuating both the male and female release assemblies, the male and female jaws 226, 228 are formed differently than in the first embodiment. The second embodiment of the female jaw 228′ is illustrated in
The female jaw 228′ includes a relatively large generally rectangular opening 260′ sized to receive the latch body cover 56 and latch slide cover 74 of the female part 14 of the fastener 10. The jaw 228′ also defines a ledge 275′ (
The female release assembly includes the stirrup 282′, a cable 209′ (mentioned above and illustrated only as dashed lines in
The stirrup 282′ is shaped to correspond to an exterior of the slide cover 74, as shown in
A tissue piercing post 256′ is provided approximately at the terminus of the female jaw 228 (which post has a preferred conical shape ending with a relatively sharp point).
The female part 14 is inserted into the jaw 228′ in its locked position—the latch slide 70 is in the position shown in
Such movement causes the female part 14 to be locked in the female jaw 228′ in two ways. First, the extension of the latch slide 70 over the ledge 275′ creates a connection that prevents the female part 14 from moving in a direction towards the male jaw 226′ (in a direction from the inside of the female jaw 228′ along the protruding extent of the tissue piercing post 256′, as shown in
As shown in
Like the first embodiment, the inside surface of the male jaw 226′ includes a recess 240′ adapted to receive the rear or back of the male part 12 of the fastener 10. The recess 240′ also includes two throughbores 242′, 244′ that pass entirely through to the outside surface of the male jaw 226′. See
The terminal end of the male jaw 226 also defines a groove 254′. Referring to
While placement of the lower portions 43, 45 of the posts 32, 34 into the throughbores 242′, 244′ holds the male part 12 in the male jaw 226′, it does not securely attach the male part 12 in the male jaw 226′ such that the male part 12 is locked to the male jaw 226′. The second embodiment of the male jaw 226′, therefore, includes a post release slide 259′ for releasably locking the male part 12 in the male jaw 226′. The recess 246′ in the outside of the male jaw 226′ has a fastening post 2461′, which is best shown in
To fasten the slide 259′ to the male jaw 226′, the shaft of the post 2461′ is inserted through a bore 2592′ in the slide 259′ and is, then, secured to the male jaw 226′, preferably, in the third throughbore. Such a connection does not clamp the central portion of the slide 259′ to the surface of the recess 246′. Instead, there is a substantial amount of play between the top and bottom surfaces of the slide 259′ surrounding the bore 2592′ and the corresponding holding surfaces formed by the bottom surface of the recess 246′ and the underside of the mushroom shaped formed by the head of the post 2461′. This loose connection allows the slide 259′ to travel parallel to the longitudinal axis of the male jaw 226′ between a distal-most position shown in
Sliding of the post release slide 259′ between the distal-most and proximal-most positions occurs by attaching the cable 209′ to a bore 2594′ formed in the proximal end of the slide 259′. The cable connection to the slide 259′ is similar to the cable connection to the stirrup 272′. The cable 209′ is threaded through the crimp 211′, then through the bore 2594′, and, then, back through the crimp 211′. A crushing force on the exterior of the crimp 211′ fixedly clamps the cable 209′ to and in the crimp 211′, thereby fastening the slide 259′ to the cable 209′. Accordingly, a proximally directed movement of the cable 209′ will pull the slide 259′ proximally. Such movement will effect the unlocking of the male part 12 of the fastener 10.
As set forth above, placement of the lower portions 43, 45 of the posts 32, 34 into the throughbores 242′, 244′ merely holds the male part 12 in the male jaw 226′, it does not securely attach the male part 12 in the male jaw 226′. Locking of the male part 12 is performed by providing two keyholes 2596′ in the slide 259′. These keyholes 2596′ are placed such that a larger opening 25961′ of each keyhole 2596′ has a central axis that is aligned substantially with a central axis of the throughbores 242′, 244′ when the slide 259′ is in a proximal-most position (shown in
The diameter of the larger opening 25961′ is at least as large as the greatest diameter of the head 431′ of the end portion 43, 45 of the posts 32, 34 so that the lower portions 43, 45 are not restricted in movement in the throughbores 242′, 244′ when the slide 259′ is in a proximal-most position. In contrast, the diameter of the smaller opening 25962′ is smaller than the smallest diameter of the head 431′ of the end portion 43, 45 of the posts 32, 34 and is at least as large (no smaller than) as the greatest diameter of the shaft 432′ connecting the head 431′ of the end portion 43, 45 to the post 32, 34 so that the end portions 43, 45 are captured by the slide 259′ when the slide 259′ is in any position that is distal of the proximal-most position.
Simply put, when the slide 259′ is in the proximal-most position (
Based upon the above-described second embodiment of the male and female jaws 226′, 228′, to actuate an unlocking of the fastener 10 therefrom, the cable 209′ only needs to be pulled slightly in a proximal direction with respect to each of the male and female jaws 226′, 228′, which pulling effects a corresponding proximal (unlocking) movement of both the stirrup 272′ and the slide 259′.
To understand how a single cable 209′ can effect a simultaneous movement of both the stirrup 272′ and the slide 259′, the control elements 208, 210, 294, 302, 300, 312 are modified in the second embodiment. In comparison with the two bell crank system having two control elements 208, 210 through the control shaft 206, the second embodiment has three control elements running through the control shaft 206: a single control rod 208 and two extents of the looped cable 209′. The route of the single male and female release cable 209′ is as follows: the cable 209′ has one end attached to the post release slide 259′ in the male jaw 226′ and extends into the end effector housing. The cable 209′ travels around a first pulley 297 in a counter-clockwise manner with respect to
As set forth above, to actuate an unlocking of the fastener 10 from the jaws 226′, 228′, the cable 209′ only needs to be pulled slightly in a proximal direction with respect to the jaws 226′, 228′. A proximally directed force upon the loop of the cable 209′, therefore, effects the needed proximal (unlocking) movement of both the stirrup 272′ and the slide 259′.
Because there is a loop of cable 209′ at the proximal end of the control shaft 206, the proximal actuation handle 204 can be provided with a fastener actuator (e.g., slide lever 364, 365 in
In contrast to the fastener-actuating push system of
Throughout the detailed description, the jaw assembly 218 is referred to as being in a “closed” position, as shown, for example, in
To provide the user with such a measure of confidence, a first embodiment of markers is illustrated in
In comparison with
In the first marker embodiment described above, the alignment markers 214, 215 are disposed on the tangs 230, 234 of the arms 220, 222. During an endoscopic procedure, however, it is possible for the endoscope to be positioned such that the portions of the arms 220, 222 on which the markers 214, 215 are placed are not visible or are not clearly visible to the user. Accordingly, second and third marker embodiments are proposed and are illustrated, respectively, in
In the second marker embodiment, most clearly shown in
In the configuration shown in
The tang 234 of the female jaw 228 is formed with a dial 227 to allow a user to see clearly any displacement of the flag 216, which displacement indicates that the jaws 226, 228 moved from a non-aligned orientation to an aligned orientation in which the fastener can be implanted safely. Preferably, the flag 216 and the dial 227 have visual contrast, i.e., one is dark and one is light or they have different, easy-to-see and differentiate colors. To effect a clearly visible movement of the indicator section 219 along the dial 227, it is, therefore, desirable to have the flag 216 move along the dial 227 as quickly as possible when the jaw alignment position has been reached. In other words, as the post 231 travels along the post guide surface formed by (1) the follower section 223, (2) the pivot section 221, and (3) the indicator section 219, respectively, it is preferred to have the flag 216 move over a substantial distance on the dial exactly when the jaws 226, 228 move from the non-aligned orientation (see
In the third embodiment, most clearly shown in
Some of the alignment marking features have been indicated as being connected to one of the male or female jaws 226, 228. Such orientations, however, can be reversed. However, the orientation described provides advantages with respect to applying torque to tissue that are not found in the prior art. Also, all three embodiments of the markers can be combined in any configuration, as shown, for example, in the combination of the second and third embodiments in
Further, a marker system can be incorporated at the proximal actuation handle 204 if there is little play between the marker at the proximal actuation handle 204 and the actual position of the two jaws 226, 228. (See the description below with respect to
Referring back to
Because the proximal-most end of the end effector 202 presents a surface that will contact the Cricopharyngeal Junction when the end effector 202 is being removed from a patient, it is important for that surface to smoothly open the Cricopharyngeal Junction and not snag therein. Accordingly, the preferred end effector embodiment shown in
In addition, the sleeve 320 and other portions of the housing 290 are constructed of a preferably soft, low friction, lubricious material such as polytetrafluoroethylene (PTFE), nylon, or silicone to aid in movement over the endoscope and prevent injury to the human body. The sleeve 320 is coupled over or is integral with the housing 290 to enclose the mechanical assembly 292 (
Referring now to
Where the second control element 210 is a cable 209′ in the two-pulley system of the second embodiment of the jaws 226′, 228′, the cross bar 364 can be an axle for the third pulley mentioned above and about which the third pulley rotates. In such a configuration, proximal movement of the slide lever 364, 365 and, therefore, the third pulley 3428 (see
The lever 342 is biased into an open position with a first spring 350 that is coupled between a lever mount 352 on the lever and a first mount 354 within the housing 344. The lever 342 is also provided with a locking system 366 that operates to lock the position of the lever relative to the handle 340. The locking system 366 includes a plurality of teeth 368 on the lever, a pawl 370 mounted on a pivot 372 and biased with a second spring 374 toward the teeth 368, and a cam 376 that can be manually rotated with an external knob 378 (
In operation, when the handle lever 342 is rotated toward the stationary handle 340, the control shaft 206 is moved distally relative to the first control element 208 (held stationary by the second mount 360) to effect a closing of the jaws 226, 228. With the jaws in a closed position, the cross bar 364 can be moved distally relative to the stationary handle 340 in order to operate the second bell crank 302 (through control element 210) to cause lock and release of the fastener 10. After a fastener 10 is released, the cam 376 can be operated to release the handle locking system 366 and permit the handle lever 342 to rotate relative to the stationary handle 340, thereby allowing the jaws to reopen.
While a pistol-grip embodiment of the handle 340 has been shown for operation of the instrument 200, as such a handle includes significant mechanical advantage, it may be preferred to use an inline-type handle or other handle configured to also provide the desired mechanical advantage.
Such a preferred handle is described below with respect to
The first operation, movement of the arms 220, 222, is controlled by rotation of a proximal knob 3650. Clockwise rotation of the knob 3650 closes the arms 220, 222 and counter-clockwise rotation of the knob 3650 opens the arms 220, 222, or vice-versa if desired.
Depressing an actuating lever 3420 towards a handle body or housing 3440 controls the second operation, locking of the fastener 10. As set forth above, locking of the fastener 10 is only desired when the arms 220, 222 (and, therefore, the jaws 226, 226′, 228, 228′, 726, 728) are aligned for optimal implantation. Therefore, the second operation should be restricted at least until the arms 220, 222 are approximately aligned in the optimal implantation position (see, e.g.,
To accomplish such restriction, two features are provided at the housing 3440. First, a blocking part 2010 is disposed in the housing 3440 (a two-part clamshell shown in
Operation of the blocking part 2010 and the safety 2020 is illustrated successively in
A portion of the proximal knob 3650 is shown to the left in
The blocking part 2010 is disposed in the housing 3440 and the housing 3440 defines a cavity 3442 in which the blocking part 2010 moves. Movement of the blocking part 2010 is defined to completely prevent depression of the actuating lever 3420 when the blocking part 2010 is disposed in the blocking position (see
The blocking part 2010 has a blocking surface 2014 that is operatively coupled with the actuating lever 3420 when the blocking part 2010 is in the blocking position and is operatively disconnected from the actuating lever 3420 when the blocking part 2010 in the unblocked position. In particular, the blocking surface 2014 is an upper surface 2014 defining a notch 2016. The blocking position places the upper surface 2014 directly in the path of movement of the safety 2020 to entirely prevent movement of the safety 2020 and, thereby, entirely prevent depression of the actuating lever 3420. See
The housing 3440 defines a bore in which is inserted a pivot rod 2034 that, when inserted in the bore, projects from an interior wall of the housing 3440. The actuating lever 3420 is rotatably secured to the housing 3440 by sliding a hollow pivot 3422 of the lever 3420 over and about the rod 2034. The external shape of the rod 2034 corresponds to the internal shape of the pivot 3422 to permit rotation of the actuating lever 3420 about the rod 2034. The housing 3440 defines a second bore in which is inserted a second pivot rod 2036 that, when inserted in the second bore, projects from an interior wall of the housing 3440. The safety 2020 is rotatably secured to the housing 3440 by sliding a hollow pivot 2022 of the safety 2020 over and about the second rod 2036. The external shape of the second rod 2036 corresponds to the internal shape of the pivot 2022 to permit rotation of the safety 2020 about the rod 2036. These rods 2034, 2036 can take any form that allows both the actuating lever 3420 and the safety 2020 to rotate freely through a specified arc with respect to the housing 3440. Preferably, the actuating lever 3420 is biased in its open position with a bias device 3424, in particular, in the form of a torsional or mousetrap spring shown in
As shown in
As shown in
To connect the knob 3650 to the control element 208, a proximal end of the control element 208 is fastened securely to the blocking part 2010, preferably, at a connection point 2011 on a distal end of the blocking part 2010 (see
For the handles of
To effect the connection between the lever 3420 and the looped cable 209′, the lever 3420 has an integral load arm 3426. The load arm 3426 is configured to transfer a depressing movement of the lever 3420 into a proximally directed force in a direction somewhat or substantially aligned with the shaft 206. Therefore, when the load arm 3426 is connected to the proximal end of the control cable 209′, depression of the lever 3420 moves the cable 209′ in a proximal direction.
The load arm 3426 has an assembly operatively connected to the control cable 209′. As set forth above, the cable is in the form of a loop at the proximal end inside the handle 2002. Therefore, a loop control device is disposed at the load arm 3426, a preferred configuration of which is illustrated in
It is desirable for the blocking part 2010 to be fixed in all respects except for longitudinal movement along the extent of the threads 3658 (in the direction of the rotational axis of the shaft 3652). To fix the blocking part 2010 in all directions orthogonal to the longitudinal axis of the shaft, the blocking part 2010 defines a groove 2018. See
It is desirable to have markers indicating to a user that the jaws are in the proper aligned position substantially parallel to one another for fastener implantation. See, e.g.,
As set forth above, the connection between the knob 3650 and the control element 208 is one that has substantially no play. Therefore, the configuration of the jaw assembly control system (3650, 3652, 3658, 2010, 208, 292, 300) of the present invention substantially eliminates any possibility of the jaw assembly 218 being improperly aligned when the proximal handle markers are aligned.
Alternatively, or additionally, alignment marks can be placed on the knob 3650 and on a proximal-most surface of the housing 3440 near the knob 3650. Alignment of these marks would indicate that the jaw assembly 218 is in the optimal position for locking the fastener. Such an embodiment, however, must clearly prevent the knob 3650 from rotating more than 360 degrees because the alignment marks align in every 360° rotation of the knob 3650.
The preferred embodiment of the knob 3650 is shown in
To provide this advantageous feature, the actuating handle 2002 has a tuned compensation assembly 3660. A substantial portion of the compensation assembly 3660 is disposed within a central main cavity 3651 of the knob 3650. The compensation assembly 3660 includes a bias device 3662, 3663—disposed between the knob 3650 and the housing 3440 in the main cavity 3651—and a knob-limiting assembly 3664, 3666—disposed between the knob 3650 and the housing 3440.
In a preferred embodiment shown in
The preferred knob-limiting assembly includes a protrusion 3664 disposed at the proximal-most outer surface of the housing 3440 and an adjustable rotation stop 3666 connected to the distal-most surface of the knob 3650. So long as the spring(s) 3662 is not compressed, the knob 3650 is free to rotate such that the stop 3666 does not contact the protrusion 3664, thereby preventing further rotation of the knob 3650 (preferably, in a clockwise direction for jaw 226, 226′, 228, 228′ closure). To adjust a distance between a distal-most surface of the stop 3666 with respect to a distal-most surface of the knob 3650, a female threaded bore 3667 (shown in
The spring(s) 3662 and the thread frequency of the distal threads 3658 of the shaft 3652 are tuned so that a single rotation of the knob 3650 brings the stop 366 from a completely non-contacting position with respect to the protrusion to a substantially contacting position with the protrusion, the contact being sufficient to prevent further rotation of the knob 3650 (preferably, further clockwise rotation thereof). The non-contacting and contacting positions of the stop 366 and protrusion 3664 are shown in a comparison of
According to one embodiment of the method of the invention, the instrument 200 may be operated as follows with respect to the treatment of GERD. Turning to
Referring to
In contrast, the prior art diagrammatically illustrated in
If the endoscope is retroflexed during insertion of the distal end effector 202, the passage of the distal end effector into the stomach is performed under view of the endoscope 400. Once the distal end effector is located in the stomach, the endoscope is, preferably, straightened, if it was retroflexed, and the end effector is moved distally off the endoscope such that the endoscope 400 and instrument 200 are completely separated. Referring to
Referring to
The proximal actuation handle 204 is, then, operated to cause the jaws 226, 228 to close, as shown in
The location and size of the plication as well as the relative positions of the fastener parts are observed through the endoscope. Moreover, more or less clamping pressure can be applied to the plicated tissue by control of the proximal actuation handle 204.
At this point, it is noted that various natural complications exist when the posts 32, 34 first contact the tissue 410 and when the posts 32, 34 are passing through the tissue 410 on the way to the holes 58, 60 in the female part 14 of the fastener 10. When the posts 32, 34 are held in the male part 12 with any lateral play, slight misalignment can occur when there is no obstacle between the tip 323, 343 of the post 32, 34 and the holes 58, 60, for example, due to gravity acting upon the male part 12 when it is not exactly level with ground. When the posts 32, 34 are required to pass through tissue on the way to the holes 58, 60, substantially increased forces act upon the posts 32, 34. These forces are created in various ways.
One kind of force is generated because the tissue 410 is not homogeneous in density. Thus, as the posts 32, 34 pass through the tissue 410 (the inner post 34 passing through the tissue 410 before the outer post 32 due to its tighter arc of travel), more dense areas in the tissue 410 can cause deflection of a post 32, 34 out of its intended direction of travel.
More significantly, however, is the fact that the tissue 410 is being compressed between the jaws 226, 228 as the jaws 226, 228 close. Such compression is not uniform. The tissue 410 between the post 34 closest to the clevis 224 (referred to herein as the inner post 34) is compressed more than the tissue 410 that, ultimately, will be in between the inner post 34 and the other post 32 (referred to herein as the outer post 32). The tissue 410 near the outer post 32 further away from the clevis 224 will be compressed even less. Therefore, the most compressed tissue 410 near the clevis 224 will impart a different and more substantial lateral load on the inner post 34 than the lateral load imposed on the outer post 32, in particular, a load directing the inner post 34 toward the outer post 32 and away from the hole 60.
To account for these forces, as mentioned above, the chamfered openings of the holes 58, 60 (see
A preferred adaptation of the post 32, 34 lies in creating a tip 323, 343 that guides the post 32, 34 in an optimal direction for mating with the holes 58, 60. Such a tip 323, 343 is illustrated, for example, in
With regard to the inner post 34, the force imparted by the folded tissue 410 (see
Referring to
After the fastener is applied, the jaws are, then, closed to the overtouch position, the endoscope is straightened, and the end effector is re-docked over the distal end of the endoscope. The instrument and endoscope are together withdrawn through the esophagus and out of the patient. Alternatively, the endoscope may be withdrawn first, followed by the withdrawal of the instrument, preferably, under visualization with the endoscope.
As discussed above, if, at any time, the fastener or either of the parts thereof becomes loose during the implantation procedure or any time after the procedure, the sharps on the fastener elements are adapted to assume a safe configuration or are covered permanently. As such, the fastener or its parts may be safely passed through the gastrointestinal system of the patient.
While it is preferable to decouple the instrument from the endoscope during the procedure, it is appreciated that the instrument may be operated while coupled to the endoscope. That is, referring to
Turning now to
In use, the end effector is docked with the distal end of the endoscope using the peg 620, and the control shaft 206 is held taught relative to the endoscope to maintain the coupling. The cross-sectional area for the system at the end effector (end effector and endoscope coupled together) is approximately 150 mm2. It is noted that the cross-sectional area of such a system is smaller than the area defined by a system utilizing a sleeve, as the endoscope is close fitting with the end effector and the sleeve dimensions are eliminated. The endoscope, with end effector 502 attached at its distal end, is, then, inserted into the patient's stomach. The proximal handle 204 and/or control shaft 206 is, then, manipulated in gross to disengage the end effector. Thereafter, the procedure continues, preferably as discussed above, until plication and fastener application is achieved. Then, prior to removal of the instrument and endoscope, the end effector 502 is re-docked with the endoscope, and the instrument and endoscope are withdrawn from the patient. Alternatively, the endoscope and instrument are separately removed.
While the instrument has been shown adapted to be coupled to an endoscope, it is recognized that the instrument may be modified for use in a manner in which it is always decoupled from an endoscope. Referring now to
According to a preferred method of use, referring to
Referring now to
It is noted that this embodiment provides the smallest cross-sectional area for the system in the esophagus because the area is limited to either (1) the end effector or (2) the endoscope and control shaft, but not both (1) and (2) at the same time. Referring to
The instrument 200, 2000 is highly torqueable with great ability to direct the end effector 202, 702, 802 through manipulation of the handle 204, 2002 in gross. That is, the instrument 200, 2000 has a torsionally rigid flexible shaft, particularly for its length of at least approximately 25 to 30 cm, and more likely approximately between 30 and 50 cm length. This torqueability permits the end effector assembly 202, 702, 802 to be rotated through 180° (for any approach toward target tissue) through rotation of the handle 204, 2002, preferably, by no more than approximately 180°. This is facilitated, in part, by rotationally fixing the control element 208 to the handle 340. The control element 208 is relatively large in diameter, and is, most preferably, an approximately 0.035 inch (0.0889 cm) stainless steel wire. A wire of similar construct having a diameter, preferably, between approximately 0.020 inch (0.0508 cm) and approximately 0.062 inch (0.1575 cm) is also suitable.
It is generally understood that twisting of endoscopic instruments to impart a torque to tissue is to be avoided and is an action that is not desirable. However, use of the instrument according to the present invention has revealed a surprising discovery that substantially improves stomach tissue plication and, therefore, provides significantly better results for treatment of GERD. The improvement arises from the instrument's (200, 2000) ability to rotate the end effector 202, 702, 802 in an almost 1:1 ratio, thus providing a very high degree of rotational controllability. Combined with a specific orientation of the male and female jaws 226, 228 as explained below, the present invention is the first that allows execution of the preferred plication method.
In the first embodiment of the plication method according to the present invention (described above), the retractor 920 pulls the target tissue 910 between the jaws 226, 228 as shown in
Because the male jaw 226 is on a particular side of the end effector 202, 702, 802 (as shown, for example, in
In the alternative preferred plication method, before the jaws 226, 228 are fully closed but after the posts 32, 34 have pierced the target tissue on the anterior side of the GEJ as clearly shown in
Specifically, the posts 32, 34 anchor into anterior tissue at the GEJ and drag the anchored anterior tissue over towards an area where the female jaw 228 was originally placed (towards posterior) and about the tent/plication/bulge created between the jaws 226, 228 by the tissue retractor 920. The dragging is carried out by torqueing the instrument 200, 2000 in the appropriate direction (counter-clockwise with respect to
This second embodiment is now described with reference to
The second plication method is further illustrated in
In the first plication method, the male and female parts 12, 14 of the fastener 10 grasp tissue at the GEJ, for example, at a location shown in
In comparison, before plication occurs, the second plication method has the posts 32, 34 of the male part 12 enter the GEJ tissue in the anterior (front) of the esophagus 414. Then, the instrument 200, 2000 is torqued counter-clockwise with respect to
There have been described and illustrated herein several embodiments of fasteners, instruments, systems, and methods for the endoluminal treatment of gastroesophageal reflux disease (GERD). While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. For example, while particular preferred dimensions have been provided for both elements of the instrument and fastener, as well as cross-sectional areas of the system, it is appreciated that the system and its elements may have different relative sizes. For example, the cross-sectional areas can be decreased further if a pediatric endoscope (4 to 6 mm) is used. Also, while a “looking back” instrument has been disclosed particularly for fastener application designed to treat GERD, it is appreciated that a “forward looking” straight instrument with similar jaw assembly can be used to apply the fastener for treatments of other conditions, e.g., obesity, ulceration, stomach cancer, implantation of pH measurement or monitoring devices, feeding tubes, etc. Moreover, a straight device can be smaller in diameter and be operated through a working channel of an endoscope. Furthermore, the visualization apparatus of an endoscope may be incorporated directly into the device, thus eliminating or augmenting the use of a traditional endoscope. It will, therefore, be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.
This application is: a divisional of U.S. patent application Ser. No. 11/931,351, now U.S. Pat. No. 7,985,241 filed on Oct. 31, 2007, which application is:a divisional of co-pending U.S. patent application Ser. No. 10/846,898, filed on May 13, 2004, which claims the benefit of U.S. Provisional Patent Application Ser. Nos. 60/496,061, filed on Aug. 18, 2003, 60/505,008, filed on Sep. 22, 2003, and 60/517,724, filed on Nov. 6, 2003; anda continuation-in-part of U.S. patent application Ser. No. 10/252,069, now U.S. Pat. No. 6,966,919, filed on Sep. 20, 2002, Ser. No. 10/252,078, now U.S. Pat. No. 7,678,122, filed on Sep. 20, 2002, and Ser. No. 10/252,079, now U.S. Pat. No. 7,033,378, filed on Sep. 20, 2003, the complete disclosures of which are hereby incorporated by reference herein in their Not Applicable
Number | Name | Date | Kind |
---|---|---|---|
65407 | Lusk, Jr. | Jun 1867 | A |
2108206 | Meeker | Feb 1938 | A |
3551987 | Wilkinson | Jan 1971 | A |
3814104 | Irnich | Jun 1974 | A |
4060089 | Noiles | Nov 1977 | A |
4060897 | Greenstein | Dec 1977 | A |
4416267 | Garren | Nov 1983 | A |
4935027 | Yoon | Jun 1990 | A |
5009827 | Abu-Isa et al. | Apr 1991 | A |
5037433 | Wilk | Aug 1991 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5254126 | Filipi et al. | Oct 1993 | A |
5346504 | Ortiz | Sep 1994 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5433721 | Hooven | Jul 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5558665 | Kieturakis | Sep 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5573496 | McPherson et al. | Nov 1996 | A |
5584856 | Jameel | Dec 1996 | A |
5649937 | Bito et al. | Jul 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5787897 | Kieturakis | Aug 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5865724 | Palmer | Feb 1999 | A |
5868141 | Ellias | Feb 1999 | A |
5887594 | LoCicero | Mar 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5980538 | Fuchs | Nov 1999 | A |
5984932 | Yoon | Nov 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6067990 | Kieturakis | May 2000 | A |
6074401 | Gardiner | Jun 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6113609 | Adams | Sep 2000 | A |
6139563 | Cosgrove et al. | Oct 2000 | A |
6206897 | Jamiolkowski et al. | Mar 2001 | B1 |
6210419 | Mayenberger | Apr 2001 | B1 |
6273903 | Wilk | Aug 2001 | B1 |
6312437 | Kortenbach | Nov 2001 | B1 |
6325503 | McCue, Jr. et al. | Dec 2001 | B1 |
6361540 | Gauderer | Mar 2002 | B1 |
6387104 | Pugsley, Jr. | May 2002 | B1 |
6394995 | Solar et al. | May 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6574497 | Pacetti | Jun 2003 | B1 |
6616626 | Crank et al. | Sep 2003 | B2 |
6669713 | Adams | Dec 2003 | B2 |
6673100 | Diaz et al. | Jan 2004 | B2 |
6736828 | Adams | May 2004 | B1 |
6790214 | Kraemer | Sep 2004 | B2 |
6835200 | Laufer | Dec 2004 | B2 |
6921361 | Suzuki | Jul 2005 | B2 |
7985241 | Smith et al. | Jul 2011 | B2 |
20010049469 | Kortenbach | Dec 2001 | A1 |
20020035370 | Kortenbach | Mar 2002 | A1 |
20020040226 | Laufer | Apr 2002 | A1 |
20020111534 | Suzuki | Aug 2002 | A1 |
20020193816 | Laufer et al. | Dec 2002 | A1 |
20030055442 | Laufer | Mar 2003 | A1 |
20030065340 | Geitz | Apr 2003 | A1 |
20030120285 | Kortenbach | Jun 2003 | A1 |
20030236536 | Grigoryants et al. | Dec 2003 | A1 |
20040010271 | Kortenbach | Jan 2004 | A1 |
20040087976 | DeVries | May 2004 | A1 |
20040097986 | Adams | May 2004 | A1 |
20040158264 | Adams | Aug 2004 | A1 |
20040162568 | Saadat | Aug 2004 | A1 |
20040193117 | Laufer | Sep 2004 | A1 |
20040193184 | Laufer | Sep 2004 | A1 |
20040193193 | Laufer | Sep 2004 | A1 |
20040193194 | Laufer | Sep 2004 | A1 |
20040194790 | Laufer | Oct 2004 | A1 |
20040225305 | Ewers | Nov 2004 | A1 |
20120143247 | Smith et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
100 13 927 | Sep 2001 | DE |
0 095 249 | Nov 1983 | EP |
0 480 428 | Apr 1992 | EP |
0 576 265 | Dec 1993 | EP |
0 646 356 | Apr 1995 | EP |
1 277 442 | Jan 2003 | EP |
1 447 052 | Aug 2004 | EP |
1 452 125 | Sep 2004 | EP |
2 128 478 | May 1984 | GB |
99 22649 | May 1999 | WO |
01 85034 | Nov 2001 | WO |
02 24080 | Mar 2002 | WO |
02 094105 | Nov 2002 | WO |
03 090633 | Nov 2003 | WO |
2004 019787 | Mar 2004 | WO |
2004 019788 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20120143247 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
60496061 | Aug 2003 | US | |
60505008 | Sep 2003 | US | |
60517724 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11931351 | Oct 2007 | US |
Child | 13158771 | US | |
Parent | 10846898 | May 2004 | US |
Child | 11931351 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10252069 | Sep 2002 | US |
Child | 10846898 | US | |
Parent | 10252078 | Sep 2002 | US |
Child | 10252069 | US | |
Parent | 10252079 | Sep 2002 | US |
Child | 10252078 | US |