The present application claims the benefit of priority of International Patent Application No. PCT/EP2008/000792 filed on Jan. 31, 2008, which application claims priority of European Patent Application No. 07006716.0 filed Mar. 30, 2007. The entire text of the priority application is incorporated herein by reference in its entirety.
The present disclosure relates to a method for filtering beer, where the beer to be produced is guided into a filter as nonfiltrate.
In the production of beer, yeast cells and other solids or ingredients are separated off by filtration to guarantee a given durability of the beer and to not cause any subsequent turbidity. Up to now, the beer has been mainly filtered by means of precoat filters, e.g. by means of filter cartridges. With such precoat filters, kieselguhr (diatomite) has been mainly used as filter aid up to now. Due to the toxicity of diatomite as well as the problems of disposing of the same, one is trying to minimize the employment of diatomite or to find alternatives to this technology. For example, membrane filters offer one alternative, however, they only have a smaller filter capacity and moreover get clogged very quickly.
Starting from this, an object underlying the present disclosure is to provide an improved method for filtering beer that prevents quick clogging of a filter and can reduce the required amount of filter aids in precoat filters.
By subjecting the beer to be produced to the shaking process before it is introduced into the filter, for example the portion of polysaccharoses and proteins, such as beta glucan, is reduced, having an advantageous effect on filtration. By the shaking process, in particular the pressure increase between the filter inlet and filter outlet is reduced thereby, meaning that the filter does not get clogged so quickly and thus does not have to be cleaned and precoated with filter aids so often. In precoat filters, the amount of required filter aids can be essentially reduced. In this application, the “beer to be produced” is intended to mean the already fermented beer, or else beer precursors, such as the wort.
The method according to the disclosure moreover permits a high volume flow rate or a higher total filtration amount through the filter.
According to a preferred embodiment, during the shaking process, the beer to be produced is introduced into a container where vibrations can be generated by means of a vibration element. In the process, the vibration element can be, for example, mechanically moved to and fro while it is shaking, or it can be deformed electromechanically, so that vibrations are formed in the liquid.
Preferably, the vibration frequency f(t) of the vibration element is modulated within a range between a lower frequency fmin and an upper frequency fmax.
It showed that, if the frequency is modulated between a lower and an upper frequency value, the method can be carried out especially effectively and the filtering output is particularly high. Preferably, the vibration frequency f(t) is modulated sinusoidally.
The vibration frequency f(t) can be modulated with a phase duration within a range of 0.1 to 5 minutes, and preferably 1 to 3 minutes. Such an excitation of the beer to be produced proved to be particularly advantageous.
The frequency range is in this case preferably within a total range of between 30 and 220 Hz. Just in this low frequency range, improved filtration surprisingly showed. According to a preferred embodiment, the lower frequency is 90 Hz, and the upper frequency is 120 Hz. The difference between the upper and the lower frequency is in this case preferably 10 to 50 Hz.
According to a preferred embodiment, the nonfiltrate is filtered through a precoat filter, preferably a filter cartridge or a membrane filter. Such filters are in particular suited for the filtration of beer for beer clarification and permit to filter out particles within a range of 10-1 to 10-2 μm, so that even yeasts having a particle size of about 5 to 10 μm can be reliably filtered out.
According to a preferred embodiment, beer as nonfiltrate is filtered after the fermentation and storage processes for beer clarification.
Preferably, the unfiltered beer is subjected to the shaking process already during the brewing house process, i.e. during the production of the wort before the fermentation process, or else after the brewing house process, i.e. after or possibly during the fermentation and storage processes.
The beer to be produced is preferably excited via at least two, preferably three or four vibration elements, which proved to be particularly advantageous.
The present disclosure will be illustrated below in greater detail with reference to the following figures.
As can be taken from
According to the present disclosure, a container 2 is provided upstream of the filter 1, in which waves can be generated mechanically by means of a vibration element 3. In this example, the vibration element 3 is now embodied as vibration rod arranged at the lower end within the container 2. Naturally, several vibration elements can also be provided. These can also be arranged at other points within the container. It is only essential for the beer to be produced, i.e. the later nonfiltrate, to be vibrated via the vibration element. In the process, the vibration element 3 can be e.g. move to and fro while it is shaking (for example like in a concrete mixer). The vibration element 3, however, can also be electromechanically deformable. Due to the vibration element 3, vibrations are propagated in the container 2. It is also possible for the vibration element to push against the container from outside. The vibration element 3 can be activated by means of a control unit 12 that controls the rating of the vibration element as well as the frequency response curve.
Below, the method according to the disclosure will be illustrated more in detail with reference to
The beer to be produced is first guided into the container 2 before the filtration, the container comprising the above-mentioned vibration element 3. The container 2 has, for example, a capacity of 50 hl to 1000 hl. In the container 2, the beer to be produced is subjected to a shaking process. The shaking process can be performed, for example, during the brewing house process for producing the wort, i.e. still before fermentation. In the process, the beer to be produced or the wort, respectively, is vibrated by means of the vibration element 3. The shaking process lasts about 5 to 60 minutes. The rating of the vibration element 3 is within a range of 0.1 to 3 KW.
It showed that the frequency f(t) should be within a low-frequency range, for example within a range of between 30 and 220 Hz, as can be taken from
The excitation can be either performed continuously or else intermittently.
After the shaking process, the beer to be produced is guided out of the container 2 and then possibly to subsequent devices for the production of wort, after which the beer to be produced, that means the wort, is fermented.
After the fermentation process, the beer to be produced, that means the nonfiltrate U, is then pumped into the filter 1 via the pump 8, where the nonfiltrate U, that means the beer to be produced, is filtered in a known manner while filter aids, e.g. kieselguhr (diatomite), are being added. However, the shaking process could also take place directly before filtration, i.e. after fermentation and storage, or during the same.
By having subjected the nonfiltrate, i.e. the beer to be produced, to a shaking process before filtration, essential advantages result for the filtration. For example, the pressure between the filtrate and the nonfiltrate sides, ΔP=P1−P2, does not increase as much as in prior art, so that a better filtering output, that means a longer filtration time, can be realized. The filter altogether does not get clogged so quickly, so that the frequency of filter cleaning can be reduced. Furthermore, less diatomite, i.e. filter aid, must be added. This is especially advantageous in particular with respect to the toxicity and the problems of disposing of the diatomite. Even if a different microfilter, such as, for example, a membrane filter, is used instead of the filter cartridge 1, where no metered addition of filter aids is required, there is the advantage of the membrane filter not getting clogged so quickly. The transmembrane pressure difference can thus be essentially reduced.
In connection with
The comparison filter tests were carried out with beers from one malt batch. A fermentation tank was filled with a standard brew that had not been subjected to a shaking process. Another fermentation tank was filled with a brew that had been shaken and vibrated during the brewing house process. The frequency modulated sinusoidally between 90 and 120 Hz within a phase duration of 2 minutes, as was illustrated in connection with
For the filtration, a standard Twinflow type filter cartridge of the company Steinecker was used. For examining the influence of the vibration on the filtration process, identical prerequisites were provided at the filter in each case. The filter was freshly deposited with the same diatomite mixture for the standard brew and for the brew that had been subjected to a shaking process in accordance with the disclosure. As main value, the process control system 11 controlled the flow of the filtrate at the filter outlet. The amount of diatomite to the dosage was stored in the process control system as set value and is variable.
The filterability of the beer considerably improved by the employment of the vibration element 3.
In the following table, the diatomite consumption is shown for a normal filtration process and for a filtration process according to the disclosure.
As can be taken from the table, the diatomite consumption could be reduced in this test from 430 to 350 kg by the method according to the disclosure with approx. the same filtered quantity, corresponding to a saving of about 20% of diatomite. That means that the diatomite consumption per hl of filtrate can be reduced from 146 g/hl to 118 g/hl.
Number | Date | Country | Kind |
---|---|---|---|
07006716 | Mar 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/000792 | 1/31/2008 | WO | 00 | 11/12/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/119408 | 10/9/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2316241 | Heimann et al. | Apr 1943 | A |
2992110 | Haas | Jul 1961 | A |
4324810 | Goldstein et al. | Apr 1982 | A |
4636394 | Hsu | Jan 1987 | A |
5586492 | Graef | Dec 1996 | A |
5801051 | Kiefer et al. | Sep 1998 | A |
6309685 | Kozari et al. | Oct 2001 | B1 |
6605252 | Omasa | Aug 2003 | B2 |
Number | Date | Country |
---|---|---|
682788 | Oct 1939 | DE |
1160812 | Jan 1964 | DE |
4327678 | Feb 1995 | DE |
10026723 | Dec 2001 | DE |
102005058458 | Feb 2007 | DE |
586996 | Apr 1947 | GB |
2001-504705 | Apr 2001 | JP |
2005151818 | Jun 2005 | JP |
2008206446 | Sep 2008 | JP |
1995111271 | Dec 1998 | RU |
2143486 | Dec 1999 | RU |
WO9119780 | Dec 1991 | WO |
WO-9119780 | Dec 1991 | WO |
WO 9823724 | Jun 1998 | WO |
Entry |
---|
International Search for International Patent Application No. PCT/EP2008/000792. |
Japanese Office Action for P 2010-500090 mailed Aug. 9, 2011. |
Number | Date | Country | |
---|---|---|---|
20100062104 A1 | Mar 2010 | US |