Method for finishing a building board and building board

Information

  • Patent Grant
  • 9365028
  • Patent Number
    9,365,028
  • Date Filed
    Wednesday, February 14, 2007
    18 years ago
  • Date Issued
    Tuesday, June 14, 2016
    8 years ago
Abstract
A method for finishing a building board, in particular a wood material or plastic board or a mixture of wood material and plastic. The building board includes a top side and an underside and opposite side edges. The method includes embossing a structure and/or a relief in at least the top side of the building board. A pattern is applied to the embossed side of the building board. The pattern is sealed by the application of an abrasion-resistant layer to the pattern.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. §119 of German Patent Application No. 10 2006 007 976.0, filed on Feb. 21, 2006, the disclosure of which is expressly incorporated by reference herein in its entirety.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to a method for finishing a building board, in particular of a wood material, plastic or a mixture of wood material and plastic with a top side and an underside and opposite side edges, and a building board.


2. Discussion of Background Information


Building boards, e.g., flooring panels or wall and ceiling panels, are provided with a wood, stone or fantasy pattern with a superimposed, three-dimensional surface. The wood material boards have connecting mechanisms (e.g., tongue and groove) and are usually equipped with locking mechanisms for locking adjacent boards in the horizontal and vertical direction. A realistic optical and tactile impression of the imitated material is produced through the superimposition of a pattern and three-dimensional surface.


In particular, flooring panels are coated at least on the top side and have a pattern and a structure adapted to the pattern. A structure of this type is called a pattern-synchronous structure. The pattern is present either as a paper layer laminated to the support board or as a paint coat printed directly onto the support board. Moreover, the pattern is coated in an abrasion-resistant manner. To this end, either abrasion-resistant paper layers, so-called overlays, or varnish coats which are abrasion-resistant after curing are used.


MDF, HDF, chipboard or OSB boards as well as plastic boards are used as support boards. The pattern-synchronous structure is present as a three-dimensional surface structure and is embossed into the board surface by a correspondingly three-dimensionally structured pressing plate. The constituents of the coating that can be activated thermally and under pressure melt and flow and fill up the three-dimensional structural embossing and cure. The structure has a height of up to 500 μm, preferably 100 to 200 μm. The number and the depth of the structures are limited, on the one hand, by the available amount of constituents that can be activated and, on the other hand, by the press force.


In the production of building boards of this type, the patterning always takes place first followed by the application of the pattern-synchronous structure.


U.S. Pat. No. 6,401,415 B1 describes a laminate that is provided on the surface with impregnated cellulose sheets in which a structure is embossed in a mechanical press. The finished pressed boards have an optical and tactile texture that corresponds to the pattern of the surface.


U.S. Pat. No. 6,688,061 B2 describes a laminate material that contains cellulose sheets that have been impregnated with a polymer resin and mechanically pressed and cut. The laminate material has a surface with an external area, an edge contour and an internal area, whereby the external area is sunk so that the edge contour lies below the internal area. A structure is mechanically made in the surface of the edge contour that differs from the optical impression of the surface and imitates a different product.


U.S. Pat. No. 6,638,387 B2 describes a method for embossing a structure into building products. In U.S. Pat. No. 6,638,387 B2, a precured decorative paper with a decorative motif is placed on a board. Reference points are formed on the board before the placement of the decorative paper. The decorative paper is impregnated with melamine resin and the board is then transported into a press that has a three-dimensionally structured press plate. The building board is aligned via the reference points such that the three-dimensional structure of the press plate and the decorative motif coincide so that the pattern and the structure of the press plate correspond to one another. The resin-impregnated paper is cured in the press to embody the laminate material and to produce a product that has a surface texture that exhibits an embossing that corresponds to the respective decorative motif.


However, such techniques have a disadvantage in the use of paper sheets bearing patterns. By way of example, considerable effort in terms of adjustment is necessary in order to compensate for the undefined paper growth through the printing and pressing in order to allow the pattern lines and structure and relief of the embossing to run synchronously with one another. It is a particular disadvantage that the relief and structure are embossed on top in the coating, whereby the optical and tactile impression of a natural product cannot be evoked or can be evoked only very inadequately.


SUMMARY OF THE INVENTION

Based on the above problem, the invention provides an improvement to a generic building board such that the optical and tactile impression of a natural product is imitated in a superior fashion. In the invention, the board can be produced in a simple and cost-effective production method. With the method according to the invention, building boards can be produced that can be used as paneling, in particular as paneling for walls, floors and ceilings as well as furniture fronts.


The method for finishing a building board includes, in embodiments, embossing a structure and/or a relief in at least the top side of the building board. The method further includes an application of a pattern to the embossed side of the building board and sealing of the pattern by the application of an abrasion-resistant layer to the pattern.


An improved optical and tactile impression can be obtained using the invention, so that a natural product, e.g., wood or stone, can be better imitated. This is attainable because a structure and a relief are pressed into the building board and then the pattern is applied. The embossing can have a deep, laminar relief that is designed to imitate, e.g., earlywood/latewood differences and have smaller, less deep structures that are designed to imitate, e.g., pores of the wood. Within the scope of the invention, “relief” refers to laminar depressions and elevations and “structure” refers to fine depressions.


The embossing of the relief and structure can be combined in order, e.g., to imitate a timber floor board that has age structures such as longitudinal joints as a relief, as well as pores of the wood as a structure. Furthermore, the embossing of the relief and structure can be used to imitate a roughly cut stone tile that has laminar chips in the stone surface and joint lines as a relief, as well as fine holes or chips in the stone surface as a structure.


The embossing of a relief is suitable, e.g., for the imitation of a polished stone tile that is surrounded by joint lines or for the imitation of a timber floor board that exhibits age structures such, for example, as longitudinal joints as a relief.


The embossing of a structure is suitable, e.g., for the imitation of a cut timber floor board that has pores of the wood as a structure or for the imitation of a polished stone tile that has fine holes or chips in the stone surface as a structure and with which, e.g., jointless laying can be imitated.


Before the embossing, at least the top side is smoothed or cut preferably by pressing in a press or a roller. The building board is heated to a temperature of about 40° C. to 150° C. before embossing so that it can be embossed more quickly and with a reduced expenditure of force. The building board is preferably cooled to a temperature of about 20° C. to 40° C. after embossing so that structure and relief remain dimensionally accurate, even directly after embossing, and such that the board surface does not spring back. The embossed areas can be prevented in this manner from springing back to their original position again after embossing. The cooling operation can take place in the press or after the pressing operation in a separate cooling zone.


It is advantageous that the lines of the pattern and the structure as well as of the relief coincide so that a natural material can be imitated and the optical and tactile impression of a natural material can be achieved. Alternatively, a fantasy pattern can be printed on the building board. The fantasy pattern can have a structure and a relief.


Within the scope of the invention, fantasy patterns are patterns based on a natural product with adjustments and/or unusual effects. Adjustments can be, e.g., omissions or additions of knotholes in the case of a wood imitation. Unusual effects can be, e.g., coloring deviating from the natural product in the case of a wood or stone imitation.


In particular for building boards that are coated with light papers, e.g., for simple patterns, it can be necessary for a pattern, structure and relief not to correspond to one another and for embossing and the pattern not to be coordinated with one another. Particularly cost-effective and simple building boards can be produced through these embodiments.


Before the embossing at least the top side of the building board can be smoothed by pressing or sanding in order to even out rough surface irregularities in the building board.


It has proven to be advantageous to use MDF or HDF boards that have been produced by use of a 2-glue system as wood material boards, since with these boards a first glue system is suitable for board formation and a further glue system is suitable for postforming. It is advantageous if the MDF or HDF boards are equipped with a softer cover layer 10 so that the embossing can be simplified even further. The use of conventional MDF and HDF boards is also contemplated by the invention. With building boards with a soft cover layer, this does not cure until processing, i.e., until the embossing of the board in the press.


In order to make the surface embossing possible for chipboard, it is advantageous to laminate the chipboard with a light, ashfree paper that can be impregnated. The light, ashfree paper, in embodiments, comprises long-fiber a cellulose with a grammage of 10 to 20 g/m2, preferably 12 g/m2 (so-called “teabag paper”). After lamination, it is advantageous to emboss the structure and the relief into wet-strength paper with minimal paper weight and subsequently to provide it with a pattern. The impregnated “teabag paper” fulfills the function of smoothing the surface of the top side of the boards and of adhering the surface of the top side of the boards to the decorative layer.


Alternatively, it is also contemplated by the invention to use OSB boards that are provided with a smoothed surface that can comprise, e.g., a strongly impregnated paper sheet in which the structure and relief are then embossed. Alternatively, a plastic board can also be used which is composed of recycling plastics and a wood content. The embossing of the relief can be achieved in the pressing device through the partially thermoplastic behavior of the plastic content. It is also contemplated by the invention for the building board to comprise a mixture of wood material and plastic, including recycled plastic.


The embossing can be carried out in a so-called continuous press or feed-through press by a special press belt that has a three-dimensional structure. The speed of the press belt is coordinated with the feed rate of the building board through the feed-through press so that the embossing of the complex pattern lines that run in different directions is rendered possible.


Alternatively, the embossing is also contemplated by at least one three-dimensionally structured pressing plate in a conventional short-cycle press. Moreover, it is also contemplated by the invention to emboss the structure and the relief by a special embossing roller in a calender installation. In particular relatively thin building boards can be produced and/or embossed in a cost-effective manner in these installations.


To decorate the embossed surface, the embossed structure of the pressing plate and the structure of the pattern rollers that apply the pattern are coordinated with one another so that the optical and tactile impression of a natural material can be produced on the finished board.


In order to achieve a pattern-synchronous relief and a pattern-synchronous structure with building boards that have been embossed in a short-cycle press, the alignment of the building board to the pressing plate and/or pattern roller is advantageously made via at least two reference points or reference surfaces that are embodied at or on the building board. In this manner it can be ensured that the relief or structure and pattern are coordinated with one another.


It has proven to be advantageous to achieve a synchronous superimposition of the structure, relief and pattern by direct printing with analogous printing rollers. Advantageously, no paper is used so that the alignment of the decorative paper sheet is omitted and the paper growth does not need to be taken into account. In this manner, a particularly cost-effective method for finishing building boards can be provided.


Alternatively it is also contemplated to embody the pattern by direct printing in digital printing, e.g., with ink-jet printers and to achieve a synchronous superimposition of the structure, relief and pattern. A particularly wide variety of patterns can be realized on the embossed surface of the building board in a simple manner through the use of digital printers, without the use of any special pattern rollers or printing rollers. Advantageously, a decorative paper can be eliminated.


It has proven that the pattern can also be applied by a powder coating. A paper bearing a pattern can be also be used herewith.


In order to ensure that the structure, relief and pattern coincide, the building boards that are embossed in a short-cycle press are aligned with respect to the printing roller or the digital printer or the powder coating via at least two reference points or reference areas.


In order to protect the surface of the building board from mechanical stresses and damage by the effect of moisture, an abrasion-resistant layer of, e.g., a varnish that can be electron-beam cured or a melamine resin coating with and without abrasion-resistant particles, is applied. It is also contemplated to apply a UV-curable varnish, a polyurethane coating or a powder paint as an abrasion-resistant layer.


Through the final coating, the finished building board shows a very homogenous and closed surface. It has been shown that the method of the invention can use relatively low application quantities, despite the high degree of reality that is achieved. This is also a reason why the appearance and the feel of a natural product can be imitated very well, implementing the present invention. This is achieved by the embossing being arranged beneath the pattern and the embossing itself being anchored in the support board. The resistance to abrasion of the abrasion-resistant layer can be further increased if abrasion-resistant particles, e.g., corundum particles, are added to the layer.


The finished building boards are assembled and processed further after the abrasion-resistant coating and after the curing of the same. Within the scope of the further processing, for example, connecting mechanisms corresponding to one another can be milled on opposite side edges of the building board. A tongue and groove embodiment that makes it possible to connect several building boards to one another is in particular suitable for this application. Advantageously, the connecting mechanisms have locking elements so that several building boards can also be connected to one another without glue and can be locked horizontally and vertically, so that a level flooring surface of building boards locked to one another is possible.


A building board comprises at least one of a structure and a relief embossed in a top side of the building board. A pattern is applied over the embossed the top side of the building board and a sealing layer seals the pattern.


The sealing layer is an abrasion-resistant layer. The top side is smooth. The building board is either a MDF or HDF board, or an MDF or at least one of HDF board produced by a 2-glue system and an HDF or MDF board embodied with a soft cover layer that cures during processing. The building board is a chipboard coated with an ashfree paper that can be impregnated and comprises long-fiber a cellulose with a grammage of 10 to 20 g/m2. The building board is an OSB board that has a smoothed surface. The building board is a plastic board of recycling plastics with a wood content. The sealing layer is an abrasion-resistant layer, a varnish that is electron-beam or UV cured, a melamine resin coating with or without abrasion-resistant particles, a polyurethane coating or a powder paint. The building board includes a paper layer on the top side before the embossing. The building board includes light papers to the top side before the embossing. The building board is composed of a wood material, plastic or a mixture of wood material and plastic. The building board is at least one of paneling for walls, floors and ceilings and as a furniture front.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:



FIG. 1 shows a partial cross section of a building board along line I-I according to FIG. 2;



FIG. 2 shows a partial plan view of the top side of the building board;



FIG. 3 shows processes in accordance with the invention; and



FIG. 4 shows locking mechanisms of the building board.





DETAILED DESCRIPTION OF THE PRESENT INVENTION

The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.



FIGS. 1 and 2 show various views of a building board. In one embodiment, the building board 1 comprises an MDF or HDF board that has been produced with a 2-glue system and has a first glue system to form the board and another glue system to improve the postforming capability. As noted above, though, the building board may composed of OSB, wood and/or plastics. Before the embossing at least the top side of the building board 1 can be smoothed by pressing or sanding in order to even out rough surface irregularities in the building board.


After a preheating to a temperature of about 150° C., the building board 1 is embossed in a feed-through press 10 by a rotating press belt 12 that has a three-dimensional structure. In one embodiment, the building board 1 is heated to a temperature of about 40 to 150° C. before embossing so that it can be embossed more quickly and with a reduced expenditure of force. By using the press belt, a relief 5 and structure 8 have been embossed in a top side 2 of the building board 1. The rotational speed of the press belt 12 and the feed rate of the building board 1 through the feed-through press 10 (see, FIG. 3) are coordinated with one another so that an exact embossing of the relief 5 and the structure 8 in the surface 2 of the building board 1 takes place.


It should be understood that the embossing can be carried out in a so-called continuous press or feed-through press by a special press belt that has a three-dimensional structure. The speed of the press belt is coordinated with the feed rate of the building board through the feed-through press so that the embossing of the complex pattern lines that run in different directions is rendered possible. A roller in a calendar installation can also carry out the embossing, or at least one three-dimensionally structured pressing plate in a conventional short-cycle press.


Following the embossing operation (e.g., in the feed-through press), the building board 1 is cooled in a cooling zone to a temperature of about 20° C. in order to prevent the relief 5 and the structure 8 from springing back to the original position. In embodiments, the cooling can be at a temperature of about 20 to 40° C.


Following the embossing, the application of the pattern 3 to the top side 2 of the building plate 1 takes place. The pattern 3 is applied to the embossed surface 2 of the building board 1 by digital printing that is carried out with an ink-jet printer. The relief 5, structure 8 and pattern 3 correspond so that a wood surface is imitated. The pattern can also be applied by a powder coating or printing roller 14.


After the curing of the pattern 3, the application of the abrasion-resistant layer 4 to the decorative layer 3 takes place. The abrasion-resistant layer 4 comprises a varnish capable of being electron-beam cured. The varnish can be provided with abrasion-resistant particles, e.g., corundum particles, to increase the abrasion resistance. Melamine resin coating with and without abrasion-resistant particles can also be applied. It is also contemplated to apply a UV-curable varnish, a polyurethane coating or a powder paint as an abrasion-resistant layer. After the curing of the abrasion-resistant layer 4, further assembly and further processing of the building board 1 takes place, e.g., to form wall, ceiling or flooring panels.


Connection mechanisms 6 and 7 corresponding to one another are embodied on the opposite side edges of the building board 1. In embodiments, the connection mechanisms 6 and 7 are embodied as tongue and groove. To lock several building boards 1 to one another, the connecting mechanism 6 and 7 are provided with locking mechanisms 16 for the mechanical locking of the building boards 1 to one another in the horizontal and vertical direction (see, FIG. 4.


To make the surface embossing possible for chipboard, the invention contemplates laminating the chipboard with a light, ashfree paper that can be impregnated. The light, ashfree paper 18 comprises long-fiber a cellulose with a grammage of 10 to 20 g/m2, preferably 12 g/m2. After lamination, the chipboard can be embossed with the structure and the relief into wet-strength paper with minimal paper weight and subsequently to provide it with a pattern.


It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.

Claims
  • 1. A method for finishing a building board having a top side, an underside and opposite side edges, comprising: embossing at least one of a structure and a relief into the at least top side of the building board;applying a pattern to the embossed at least the top side of the building board; andsealing of the pattern, after curing of the pattern, wherein by applying an abrasion-resistant layer to the pattern, which is a varnish that is electron-beam cured or a melamine resin coating with or without abrasion-resistant particles,the building board is heated to a temperature of about 40-150° C. before the embossing; andthe building board is a chipboard coated with an ashfree paper that is impregnated and comprises long-fiber a cellulose with a grammage of 10 to 20 g/m2, the ashfree paper being applied the top side of the building board prior to the embossing,the embossing takes place by a press belt in a feed-through press.
  • 2. The method according to claim 1, wherein the pattern and the at least one of the structure and the relief coincide so that a natural material is imitated.
  • 3. The method according to claim 1, wherein the pattern is applied by printing rollers.
  • 4. The method according to claim 1, wherein the pattern is applied by digital printing.
  • 5. The method according to claim 1, wherein the building board is at least one of paneling for walls, floors and ceilings and as a furniture front.
  • 6. The method according to claim 1, wherein the pattern is applied by ink printing after the embossing.
  • 7. The method according to claim 1, wherein the building board is chipboard coated with the ashfree paper that is impregnated and comprises long-fiber the cellulose with a grammage of 12 g/m2.
  • 8. The method according to claim 1, wherein the at least one of the structure and the relief are directly embossed into the chipboard with the ashfree paper.
  • 9. A method for finishing a building board having a top side, an underside and opposite side edges, comprising: embossing at least one of a structure and a relief into the at least top side of the building board;applying a pattern to the embossed at least the top side of the building board; andsealing of the pattern, after curing of the pattern, by applying an abrasion-resistant layer to the pattern with or without abrasion-resistant particles, wherein:the building board is heated to a temperature of about 40-150° C. before the embossing; andthe building board is a chipboard coated with an ashfree paper that is impregnated and comprises long-fiber a cellulose with a grammage of 10 to 20 g/m2, the ashfree paper being applied the top side of the building board prior to the embossing,the embossing takes place by a press belt in a feed-through press.
  • 10. The method according to claim 9, wherein the abrasion-resistant layer is a varnish that is electron-beam cured or that is UV cured.
  • 11. The method according to claim 9, wherein the abrasion-resistant layer is a polyurethane coating or a melamine resin coating.
  • 12. The method according to claim 9, wherein the pattern is applied by digital printing.
Priority Claims (1)
Number Date Country Kind
10 2006 007 976 Feb 2006 DE national
US Referenced Citations (318)
Number Name Date Kind
213740 Conner Apr 1879 A
623562 Rider Apr 1899 A
714987 Wolfe Dec 1902 A
753791 Fulghum Mar 1904 A
1407679 Ruthrauff Feb 1922 A
1454250 Parsons May 1923 A
1468288 Een Sep 1923 A
1477813 Daniels Dec 1923 A
1510924 Daniels et al. Oct 1924 A
1540128 Houston Jun 1925 A
1575821 Daniels Mar 1926 A
1602256 Sellin Oct 1926 A
1602267 Karwisch Oct 1926 A
1615096 Meyers Jan 1927 A
1622103 Fulton Mar 1927 A
1622104 Fulton Mar 1927 A
1637634 Carter Aug 1927 A
1644710 Crooks Oct 1927 A
1660480 Daniels Feb 1928 A
1714738 Smith May 1929 A
1718702 Pfiester Jun 1929 A
1734826 Pick Nov 1929 A
1764331 Moratz Jun 1930 A
1776188 Langb'aum Sep 1930 A
1778069 Fetz Oct 1930 A
1779729 Bruce Oct 1930 A
1787027 Wasleff Dec 1930 A
1823039 Guner Sep 1931 A
1859667 Gruner May 1932 A
1898364 Gynn Feb 1933 A
1906411 Potvin May 1933 A
1921164 Lewis Aug 1933 A
1929871 Jones Oct 1933 A
1940377 Storm Dec 1933 A
1946648 Taylor Feb 1934 A
1953306 Moratz Apr 1934 A
1986739 Mitte Jan 1935 A
1988201 Hall Jan 1935 A
2023066 Curtis et al. Dec 1935 A
2044216 Klages Jun 1936 A
2065525 Hamilton Dec 1936 A
2123409 Elmendorf Jul 1938 A
2213296 Zinser Sep 1940 A
2220606 Malarkey et al. Nov 1940 A
2276071 Scull Mar 1942 A
2280071 Hamilton Apr 1942 A
2324628 Kähr Jul 1943 A
2328051 Bull Aug 1943 A
2398632 Frost et al. Apr 1946 A
2430200 Wilson Nov 1947 A
2740167 Rowley Apr 1956 A
2894292 Gramelspacker Jul 1959 A
3045294 Livezey, Jr. Jul 1962 A
3100556 De Ridder Aug 1963 A
3125138 Bolenbach Mar 1964 A
3182769 De Ridder May 1965 A
3203149 Soddy Aug 1965 A
3204380 Smith et al. Sep 1965 A
3267630 Omholt Aug 1966 A
3282010 King, Jr. Nov 1966 A
3310919 Bue et al. Mar 1967 A
3347048 Brown et al. Oct 1967 A
3460304 Braeuninger et al. Aug 1969 A
3481810 Waite Dec 1969 A
3526420 Brancaleone Sep 1970 A
3538665 Gohner Nov 1970 A
3553919 Omholt Jan 1971 A
3555762 Costanzo, Jr. Jan 1971 A
3608258 Spratt Sep 1971 A
3681159 Portnoy et al. Aug 1972 A
3694983 Couquet Oct 1972 A
3714747 Curran Feb 1973 A
3720027 Christensen Mar 1973 A
3731445 Hoffmann et al. May 1973 A
3759007 Thiele Sep 1973 A
3760548 Sauer et al. Sep 1973 A
3768846 Hensley et al. Oct 1973 A
3793125 Kunz Feb 1974 A
3859000 Webster Jan 1975 A
3878030 Cook Apr 1975 A
3902293 Witt et al. Sep 1975 A
3908053 Hettich Sep 1975 A
3936551 Elmendorf et al. Feb 1976 A
3988187 Witt et al. Oct 1976 A
4006048 Cannady, Jr. et al. Feb 1977 A
4090338 Bourgade May 1978 A
4091136 O'Brien et al. May 1978 A
4099358 Compaan Jul 1978 A
4113894 Koch, II Sep 1978 A
4118533 Hipchen et al. Oct 1978 A
4131705 Kubinsky Dec 1978 A
4164832 Van Zandt Aug 1979 A
4169688 Toshio Oct 1979 A
4237087 Jones Dec 1980 A
4242390 Nemeth Dec 1980 A
4243716 Kosaka et al. Jan 1981 A
4245689 Grard et al. Jan 1981 A
4246310 Hunt et al. Jan 1981 A
4290248 Kemerer et al. Sep 1981 A
4299070 Oltmanns et al. Nov 1981 A
4426820 Terbrack et al. Jan 1984 A
4431044 Bruneau Feb 1984 A
4471012 Maxwell Sep 1984 A
4501102 Knowles Feb 1985 A
4561233 Harter et al. Dec 1985 A
4579767 Coggan et al. Apr 1986 A
4585685 Forry et al. Apr 1986 A
4612745 Hovde Sep 1986 A
4641469 Wood Feb 1987 A
4653242 Ezard Mar 1987 A
4654244 Eckert et al. Mar 1987 A
4698257 Goll Oct 1987 A
4703597 Eggemar Nov 1987 A
4715162 Brightwell Dec 1987 A
4738071 Ezard Apr 1988 A
4752497 McConkey et al. Jun 1988 A
4769963 Meyerson Sep 1988 A
4819932 Trotter, Jr. Apr 1989 A
4831806 Niese et al. May 1989 A
4845907 Meek Jul 1989 A
4905442 Daniels Mar 1990 A
4947602 Pollasky Aug 1990 A
5029425 Bogataj Jul 1991 A
5103614 Kawaguchi et al. Apr 1992 A
5113632 Hanson May 1992 A
5117603 Weintraub Jun 1992 A
5136823 Pellegrino Aug 1992 A
5141583 Held Aug 1992 A
5165816 Parasin Nov 1992 A
5179812 Itill Jan 1993 A
5205091 Brown Apr 1993 A
5216861 Meyerson Jun 1993 A
5251996 Hiller et al. Oct 1993 A
5253464 Nilsen Oct 1993 A
5283102 Sweet et al. Feb 1994 A
5295341 Kajiwara Mar 1994 A
5335473 Chase Aug 1994 A
5348778 Knipp et al. Sep 1994 A
5349796 Meyerson Sep 1994 A
5390457 Sjölander Feb 1995 A
5413834 Hunter et al. May 1995 A
5433806 Pasquali et al. Jul 1995 A
5474831 Nystrom Dec 1995 A
5497589 Porter Mar 1996 A
5502939 Zadok et al. Apr 1996 A
5534352 Pittman et al. Jul 1996 A
5540025 Takehara et al. Jul 1996 A
5567497 Zegler et al. Oct 1996 A
5570554 Searer Nov 1996 A
5597024 Bolyard et al. Jan 1997 A
5630304 Austin May 1997 A
5653099 MacKenzie Aug 1997 A
5671575 Wu Sep 1997 A
5694734 Cercone et al. Dec 1997 A
5706621 Pervan Jan 1998 A
5736227 Sweet et al. Apr 1998 A
5768850 Chen Jun 1998 A
5797175 Schneider Aug 1998 A
5797237 Finkell, Jr. Aug 1998 A
5823240 Bolyard et al. Oct 1998 A
5827592 Van Gulik et al. Oct 1998 A
5860267 Pervan Jan 1999 A
5935668 Smith Aug 1999 A
5943239 Shamblin et al. Aug 1999 A
5953878 Johnson Sep 1999 A
5968625 Hudson Oct 1999 A
5985397 Witt et al. Nov 1999 A
5987839 Hamar et al. Nov 1999 A
6006486 Moriau et al. Dec 1999 A
6023907 Pervan Feb 2000 A
6065262 Motta May 2000 A
6094882 Pervan Aug 2000 A
6101778 Martensson Aug 2000 A
6119423 Costantino Sep 2000 A
6134854 Stanchfield Oct 2000 A
6148884 Bolyard et al. Nov 2000 A
6168866 Clark Jan 2001 B1
6182410 Pervan Feb 2001 B1
6186703 Shaw Feb 2001 B1
6205639 Pervan Mar 2001 B1
6209278 Tychsen Apr 2001 B1
6216403 Belbeoc'h Apr 2001 B1
6216409 Roy et al. Apr 2001 B1
D442296 Külik May 2001 S
D442297 Külik May 2001 S
D442298 Külik May 2001 S
D442706 Külik May 2001 S
D442707 Külik May 2001 S
6224698 Endo May 2001 B1
6238798 Kang et al. May 2001 B1
6247285 Moebus Jun 2001 B1
D449119 Külik Oct 2001 S
D449391 Külik Oct 2001 S
D449392 Külik Oct 2001 S
6309492 Seidner Oct 2001 B1
6312632 Graf Nov 2001 B1
6324803 Pervan Dec 2001 B1
6344101 Graf Feb 2002 B1
6345481 Nelson Feb 2002 B1
6363677 Chen et al. Apr 2002 B1
6397547 Martensson Jun 2002 B1
6401415 Garcia Jun 2002 B1
6418683 Martensson et al. Jul 2002 B1
6421970 Martensson et al. Jul 2002 B1
6427408 Krieger Aug 2002 B1
6436159 Safta et al. Aug 2002 B1
6438919 Knauseder Aug 2002 B1
6446405 Pervan Sep 2002 B1
6449913 Shelton Sep 2002 B1
6449918 Nelson Sep 2002 B1
6453632 Huang Sep 2002 B1
6458232 Valentinsson Oct 2002 B1
6460306 Nelson Oct 2002 B1
6461636 Arth et al. Oct 2002 B1
6465046 Hansson et al. Oct 2002 B1
6490836 Moriau et al. Dec 2002 B1
6497961 Kang et al. Dec 2002 B2
6510665 Pervan Jan 2003 B2
6516579 Pervan Feb 2003 B1
6517935 Kornfalt et al. Feb 2003 B1
6519912 Eckmann et al. Feb 2003 B1
6521314 Tychsen Feb 2003 B2
6532709 Pervan Mar 2003 B2
6533855 Gaynor et al. Mar 2003 B1
6536178 Pålsson et al. Mar 2003 B1
6546691 Peopolder Apr 2003 B2
6553724 Bigler Apr 2003 B1
6558754 Velin et al. May 2003 B1
6565919 Hansson et al. May 2003 B1
6569272 Tychsen May 2003 B2
6588166 Martensson et al. Jul 2003 B2
6591568 Palsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6606834 Martensson et al. Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6635174 Berg et al. Oct 2003 B1
6638387 Cruz Oct 2003 B2
6641629 Muselman et al. Nov 2003 B2
6646088 Fan et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6649687 Gheewala et al. Nov 2003 B1
6659097 Houston Dec 2003 B1
6672030 Schulte Jan 2004 B2
6675545 Chen et al. Jan 2004 B2
6681820 Olofsson Jan 2004 B2
6682254 Olofsson et al. Jan 2004 B1
6685993 Hansson et al. Feb 2004 B1
6688061 Garcia Feb 2004 B2
6711864 Erwin Mar 2004 B2
6711869 Tychsen Mar 2004 B2
6715253 Pervan Apr 2004 B2
6723438 Chang et al. Apr 2004 B2
6729091 Martensson May 2004 B1
6745534 Kornfalt Jun 2004 B2
6761008 Chen et al. Jul 2004 B2
6761794 Mott et al. Jul 2004 B2
6763643 Martensson Jul 2004 B1
6766622 Thiers Jul 2004 B1
6769217 Nelson Aug 2004 B2
6769218 Pervan Aug 2004 B2
6769835 Stridsman Aug 2004 B2
6772568 Thiers et al. Aug 2004 B2
6786019 Thiers Sep 2004 B2
6803109 Qiu et al. Oct 2004 B2
6805951 Kornfält et al. Oct 2004 B2
6823638 Stanchfield Nov 2004 B2
6841023 Mott Jan 2005 B2
1124228 Houston Jan 2015 A1
20010029720 Pervan Oct 2001 A1
20010034992 Pletzer et al. Nov 2001 A1
20020007608 Pervan Jan 2002 A1
20020007609 Pervan Jan 2002 A1
20020014047 Thiers Feb 2002 A1
20020020127 Thiers et al. Feb 2002 A1
20020046528 Pervan et al. Apr 2002 A1
20020056245 Thiers May 2002 A1
20020106439 Cappelle Aug 2002 A1
20020160680 Laurence et al. Oct 2002 A1
20030024200 Moriau et al. Feb 2003 A1
20030024201 Moriau et al. Feb 2003 A1
20030029115 Moriau et al. Feb 2003 A1
20030029116 Moriau et al. Feb 2003 A1
20030029117 Moriau et al. Feb 2003 A1
20030033777 Thiers et al. Feb 2003 A1
20030033784 Pervan Feb 2003 A1
20030115812 Pervan Jun 2003 A1
20030115821 Pervan Jun 2003 A1
20030159385 Thiers Aug 2003 A1
20030167717 Garcia Sep 2003 A1
20030196405 Pervan Oct 2003 A1
20030205013 Garcia Nov 2003 A1
20030233809 Pervan Dec 2003 A1
20040016196 Pervan Jan 2004 A1
20040035078 Pervan Feb 2004 A1
20040092006 Lindekens et al. May 2004 A1
20040105994 Lu et al. Jun 2004 A1
20040139678 Pervan Jul 2004 A1
20040159066 Thiers et al. Aug 2004 A1
20040177584 Pervan Sep 2004 A1
20040191547 Oldorff Sep 2004 A1
20040200165 Garcia et al. Oct 2004 A1
20040206036 Pervan Oct 2004 A1
20040228684 Lombardo Nov 2004 A1
20040237447 Thiers et al. Dec 2004 A1
20040237448 Thiers et al. Dec 2004 A1
20040241374 Thiers et al. Dec 2004 A1
20040244322 Thiers et al. Dec 2004 A1
20040250493 Thiers et al. Dec 2004 A1
20040255541 Thiers et al. Dec 2004 A1
20040258907 Kornfalt et al. Dec 2004 A1
20050003149 Kornfalt et al. Jan 2005 A1
20050016099 Thiers Jan 2005 A1
20050166515 Boucke Aug 2005 A1
20060046034 Schober Mar 2006 A1
20060144004 Nollet et al. Jul 2006 A1
20060156672 Laurent et al. Jul 2006 A1
20070020475 Prince et al. Jan 2007 A1
20090101236 Boucke Apr 2009 A1
Foreign Referenced Citations (73)
Number Date Country
200020703 Jan 2000 AU
991373 Jun 1976 CA
2226286 Dec 1997 CA
2252791 May 1999 CA
2289309 Jul 2000 CA
2484852 Nov 2003 CA
7102476 Jun 1971 DE
8226153 Jan 1983 DE
297 08 003 May 1997 DE
19822627 Nov 1999 DE
1 9903912 Aug 2000 DE
0021588 Aug 1984 EP
0248127 Dec 1987 EP
791480 Aug 1997 EP
0849416 Jun 1998 EP
0698162 Sep 1998 EP
0903451 Mar 1999 EP
0855482 Dec 1999 EP
0877130 Jan 2000 EP
0969163 Jan 2000 EP
0969164 Jan 2000 EP
0974713 Jan 2000 EP
0843763 Oct 2000 EP
0958441 Jul 2003 EP
1026341 Aug 2003 EP
1 454 763 Sep 2004 EP
424057 Feb 1935 GB
1237744 Jun 1938 GB
585205 Jan 1947 GB
599793 Mar 1948 GB
636423 Apr 1950 GB
812671 Apr 1959 GB
1033866 Jun 1966 GB
1034117 Jun 1966 GB
1044846 Oct 1966 GB
1127915 Sep 1968 GB
1275511 May 1972 GB
1399402 Jul 1975 GB
1430423 Mar 1976 GB
2117813 Oct 1983 GB
2126106 Mar 1984 GB
2152063 Jul 1985 GB
2238660 Jun 1991 GB
2243381 Oct 1991 GB
2256023 Nov 1992 GB
50034379 Apr 1975 JP
3-169967 Jul 1991 JP
7-76923 Mar 1995 JP
7-300979 Nov 1995 JP
2001246720 Sep 2001 JP
2005211707 Aug 2005 JP
2005305728 Nov 2005 JP
9803875 Jun 1999 SE
8703839 Jul 1987 WO
8908539 Sep 1989 WO
9217657 Oct 1992 WO
9314422 Jul 1993 WO
9319910 Oct 1993 WO
9401628 Jan 1994 WO
9506176 Mar 1995 WO
9627719 Sep 1996 WO
9627721 Sep 1996 WO
9630177 Oct 1996 WO
9747834 Dec 1997 WO
9824495 Jun 1998 WO
9824994 Jun 1998 WO
9838401 Sep 1998 WO
99140273 Aug 1999 WO
9966151 Dec 1999 WO
9966152 Dec 1999 WO
0006854 Feb 2000 WO
0066856 Nov 2000 WO
0166876 Sep 2001 WO
Non-Patent Literature Citations (5)
Entry
JP 48040908 A, Goto (Asignee), Jun. 15, 1973, patent abstract.
Machine translation of Heimes et al., DE 19822627, pp. 1-3, Nov. 25, 1999.
Webster Dictionary, p. 862.
U.S. Court of Appeals for the Federal Circuit, 02-1222-1291 Alloc, Inc. vs. International Trade Commission, pp. 1-32.
U.S. Court of Appeals for the Federal Circuit Decision in Alloc, Inc. et al. vs. International Trade Commission and Pergs, Inc. et al.decided Sep. 10, 2003.
Related Publications (1)
Number Date Country
20070193174 A1 Aug 2007 US