The present invention relates to method for self-adjusting (autonomously adjusting) the flow of a fluid through a valve or flow control device, and a self adjusting valve or flow control device, in particular useful in a production pipe for producing oil and/or gas from a well in an oil and/or gas reservoir, which production pipe includes a lower drainage pipe preferably being divided into at least two sections each including one or more inflow control devices which communicates the geological production formation with the flow space of the drainage pipe.
Devices for recovering of oil and gas from long, horizontal and vertical wells are known from U.S. Pat. Nos. 4,821,801, 4,858,691, 4,577,691 and GB patent publication No. 2169018.
These known devices comprise a perforated drainage pipe with, for example, a filter for control of sand around the pipe. A considerable disadvantage with the known devices for oil/and or gas production in highly permeable geological formations is that the pressure in the drainage pipe increases exponentially in the upstream direction as a result of the flow friction in the pipe. Because the differential pressure between the reservoir and the drainage pipe will decrease upstream as a result, the quantity of oil and/or gas flowing from the reservoir into the drainage pipe will decrease correspondingly. The total oil and/or gas produced by this means will therefore be low. With thin oil zones and highly permeable geological formations, there is further a high risk that of coning, i. e. flow of unwanted water or gas into the drainage pipe downstream, where the velocity of the oil flow from the reservoir to the pipe is the greatest.
From World Oil, vol. 212, N. 11 (11/91), pages 73-80, is previously known to divide a drainage pipe into sections with one or more inflow restriction devices such as sliding sleeves or throttling devices. However, this reference is mainly dealing with the use of inflow control to limit the inflow rate for up hole zones and thereby avoid or reduce coning of water and or gas.
WO-A-9208875 describes a horizontal production pipe comprising a plurality of production sections connected by mixing chambers having a larger internal diameter than the production sections. The production sections comprise an external slotted liner which can be considered as performing a filtering action. However, the sequence of sections of different diameter creates flow turbulence and prevent the running of work-over tools.
When extracting oil and or gas from geological production formations, fluids of different qualities, i.e. oil, gas, water (and sand) is produced in different amounts and mixtures depending on the property or quality of the formation. None of the above-mentioned, known devices are able to distinguish between and control the inflow of oil, gas or water on the basis of their relative composition and/or quality.
With the present invention is provided an inflow control device which is self adjusting or autonomous and can easily be fitted in the wall of a production pipe and which therefore provide for the use of work-over tools. The device is designed to “distinguish” between the oil and/or gas and/or water and is able to control the flow or inflow of oil or gas, depending on which of these fluids such flow control is required.
The device is robust, can withstand large forces and high temperatures, prevents draw dawns (differential pressure) needs no energy supply, can withstand sand production, is reliable, but is still simple and very cheap.
The method according to invention is characterized in that the fluid flows through an inlet or aperture thereby forming a flow path through the control device passing by a movable disc or body which is designed to move freely relative to the opening of the inlet and thereby reduce or increase the flow-through area by exploiting the Bernoulli effect and any stagnation pressure created over the disc, whereby the control device, depending on the composition of the fluid and its properties, autonomously adjusts the flow of the fluid based on a pre-estimated flow design, as defined in the characterizing portion of claim 1.
The self-adjusting valve or control device of the invention is characterized in that the control device is a separate or integral part of the fluid flow control arrangement, including a disc or freely movable controlling body being provided in a recess of the pipe wall or being provided in a separate housing body in the wall, the disc or controlling body facing the outlet of an aperture or hole in the centre of the recess or housing body and being held in place in the recess or housing body by means of a holder device or arrangement, thereby forming a flow path where the fluid enters the control device through the central aperture or inlet flowing towards and along the disc or body and out of the recess or housing, as defined in the characterizing portion of the independent claim 4.
Dependent claims 2-3 and 5-8 define preferred embodiments of the invention.
The present invention will be further described in the following by means of examples and with reference to the drawings, where:
The present invention exploits the effect of Bernoulli teaching that the sum of static pressure, dynamic pressure and friction is constant along a flow line:
When subjecting the disc 9 to a fluid flow, which is the case with the present invention, the pressure difference over the disc 9 can be expressed as follows:
Due to lower viscosity, a fluid such as gas will “make the turn later” and follow further along the disc towards its outer end (indicated by reference number 14). This makes a higher stagnation pressure in the area 16 at the end of the disc 9, which in turn makes a higher pressure over the disc. And the disc 9, which is freely movable within the space between the disc-shaped bodies 4, 7, will move downwards and thereby narrow the flow path between the disc 9 and inner cylindrical segment 6. Thus, the disc 9 moves down-wards or up-wards depending on the viscosity of the fluid flowing through, whereby this principle can be used to control (close/open) the flow of fluid through of the device.
Further, the pressure drop through a traditional inflow control device (ICD) with fixed geometry will be proportional to the dynamic pressure:
where the constant, K is mainly a function of the geometry and less dependent on the Reynolds number. In the control device according to the present invention the flow area will decrease when the differential pressure increases, such that the volume flow through the control device will not, or nearly not, increase when the pressure drop increases. A comparison between a control device according to the present invention with movable disc and a control device with fixed flow-through opening is shown in
This represents a major advantage with the present invention as it can be used to ensure the same volume flowing through each section for the entire horizontal well, which is not possible with fixed inflow control devices.
When producing oil and gas the control device according to the invention may have two different applications: Using it as inflow control device to reduce inflow of water, or using it to reduce inflow of gas at gas break through situations. When designing the control device according to the invention for the different application such as water or gas, as mentioned above, the different areas and pressure zones, as shown in
A1, P1 is the inflow area and pressure respectively. The force (P1·1) generated by this pressure will strive to open the control device (move the disc 9 upwards).
A2, P2 is the area and pressure in the zone where the velocity will be largest and hence represents a dynamic pressure source. The resulting force of the dynamic pressure will strive to close the control device (move the disc downwards as the flow velocity increases).
A3, P3 is the area and pressure at the outlet. This should be the same as the well pressure (inlet pressure).
A4, P4 is the area and pressure (stagnation pressure) behind the disc. The stagnation pressure, at position 16 (
Fluids with different viscosities will provide different forces in each zone depending on the design of these zones. In order to optimize the efficiency and flow through properties of the control device, the design of the areas will be different for different applications, e.g. gas/oil or oil/water flow. Hence, for each application the areas needs to be carefully balanced and optimally designed taking into account the properties and physical conditions (viscosity, temperature, pressure etc.) for each design situation.
The spring element 18 is used to balance and control the inflow area between the disc 9 and the inlet 10, or rather the surrounding edge or seat 19 of the inlet 10. Thus, depending on the spring constant and thereby the spring force, the opening between the disc 9 and edge 19 will be larger or smaller, and with a suitable selected spring constant, depending on the inflow and pressure conditions at the selected place where the control device is provided, constant mass flow through the device may be obtained.
The above examples of a control device according to the invention as shown in
The present invention as defined in the claims is not restricted to the application related to inflow of oil and/or gas from a well as described above or when injecting gas (natural gas, air or CO2), steam or water into an oil and/or gas producing well. Thus, the invention may be used in any processes or process related application where the flow of fluids with different gas and/or liquid compositions need to be controlled.
Number | Date | Country | Kind |
---|---|---|---|
20063181 | Jul 2006 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2007/000204 | 6/13/2007 | WO | 00 | 1/28/2009 |