The present invention relates to drip edges for building roofs and the like, and in particular, to a pre-notched drip edge assembly and related method which is easy to install and improves alignment between the adjacent drip edge sections.
Drip rails or edges are well known in the building industry, and typically comprise L-shaped sheet metal strips which are installed along the bottom edge of a roof to prevent rainwater and/or snow melt from leaking under the shingles or other roofing media. Without such protection around the perimeter of the building roof, capillary action between the roofing material and the roof structure, as well as high winds and other environmental conditions, will result in moisture collecting on the building structure, which ultimately results in leaks and degradation of the integrity of the roof.
Most prior drip edge strips have a flat folded over nose which interconnects the top and bottom flanges, and protrudes outwardly to direct rainwater away from the associated building. An elongate strip of sheet metal or the like is first roll formed to shape, and then cut off into a plurality of individual drip edge sections. During the cut off process, the nose portions of the drip edge sections are completely closed, which makes it difficult to quickly assemble and align the same along the edge of the building roof. Heretofore, the ends of the drip edge sections are nested within one another at each joint so as to ensure a continuous barrier along the building roof edge. This nesting assembly is relatively difficult when the noses of the drip edge sections are completely closed, and can lead to bending the drip edge sections out of shape, which can also cause misalignment between the adjacent drip edge sections. Accordingly, there exists the need for an improved drip edge assembly, which addresses these concerns in a cost effective manner.
One aspect of the present invention is a pre-notched drip edge assembly for building roofs, comprising a plurality of elongate drip edge sections having opposite ends interconnected in an end-to-end relationship to form a continuous rainwater barrier along an associated building roof edge. Each of the drip edge sections has a formed one-piece construction which includes a top flange portion normally oriented generally horizontally and having a forward edge area. Each drip edge section also has a front flange portion having an inverted generally L-shaped configuration with a lower leg normally oriented generally vertically and having an upper edge area, and an upper leg oriented generally horizontally and having a forward edge area. The forward edge area of the top flange portion and the forward edge area of the upper leg are integrally interconnected along a folded-over nose portion having a generally wedge-shape side elevational configuration which projects outwardly from the lower leg and extends longitudinally along the drip edge section to deflect rainwater away from the building. Each of the drip edge sections also has a pair of notches formed in opposite ends thereof, which extend a preselected distance through the upper edge area of the lower leg, the forward edge area of the upper leg and the forward edge area of the top flange portion, thereby defining generally flat end tab areas on the top flange portion that are inserted into the folded-over nose portion of the next adjacent one of the drip edge sections to horizontally and vertically locate the same for end-to-end interconnection of the drip edge sections along the building roof.
Another aspect of the present invention is a method for making a pre-notched drip edge assembly for building roofs of the type having a plurality of elongate drip edge sections with opposite ends interconnected in an end-to-end relationship to form a continuous rainwater barrier along an associated building roof edge. The method comprises selecting an elongate strip of formable material having a length sufficient to construct a plurality of the drip edge sections therefrom. The method also includes forming a plurality of substantially identical through windows in the strip in a longitudinally aligned and longitudinally spaced apart relationship. After the window forming step, the method also includes forming a top flange in the strip that is normally oriented generally horizontally and has a forward edge area, and also forming a front flange in the strip having an inverted generally L-shaped configuration with a lower leg normally oriented generally vertically and having an upper edge area, and an upper leg normally oriented generally horizontally and having a forward edge area. Furthermore, after the window forming step, the method includes bending the forward edge area of the top flange portion relative to the forward edge area of the upper leg to define a folded-over nose portion having a generally wedge-shaped side elevational configuration which projects outwardly from the lower leg and extends longitudinally along the drip edge section to deflect rainwater away from the building. Furthermore, after the window forming step, the top flange forming step and the front flange forming step, the method includes cutting laterally through the formed strip at locations generally coincident with the center portions of the windows to form a plurality of completed drip edge sections, each with a pair of the notches in the opposite ends thereof which extend a predetermined distance through the upper edge area of the lower leg, the forward edge area of the upper leg and the forward edge area of the top flange portion, and define generally flat end tab areas of the top flange that are shaped for insertion into the folded-over nose portion of the next adjacent one of the drip edge sections. The method also includes inserting one of the flat end tab areas of one of the completed drip edge sections into the folded-over nose portion on the next adjacent one of the completed drip edge sections thereby horizontally and vertically aligning and locating the two completed drip edge sections in a continuous, and in relationship along the building roof. Finally, the method includes operably connecting each of the two completed and assembled drip edge sections to the building, thereby creating a rainwater barrier along the associated building roof edge.
Yet another aspect of the present invention is a method for making a pre-notched drip edge assembly for building roofs of the type having a plurality of elongate drip edge sections with opposite ends interconnected in an end-to-end relationship to form a continuous rainwater barrier along an associated building roof edge. The method includes selecting an elongate strip of formable material having a length sufficient to construct a plurality of the drip edge sections therefrom. The method also includes forming a plurality of substantially identical through windows in the strip in a longitudinally aligned and longitudinally spaced apart relationship. After the window forming step, the method also includes forming a top flange in the strip that is normally oriented generally horizontally and has a front forward edge, and also forming a front flange in the strip having an inverted generally L-shaped configuration with a lower leg normally oriented generally vertically and having an upper edge area, and an upper leg normally oriented generally horizontally and having a forward edge area. After the window forming step, the method also includes bending the forward edge area of the top flange portion relative to the forward edge area of the upper leg to define a folded-over nose portion having a slightly open, generally wedge-shape tapered side elevational configuration which projects outwardly from the lower leg and extends longitudinally along the drip edge section to deflect rainwater away from the building. After the window forming step, the top flange forming step and the front flange forming step, the method also includes cutting laterally through the formed strip at locations generally coincident with the center portions of the windows to form a plurality of completed drip edge sections, each with a pair of notches in the opposite ends thereof which extend a predetermined distance through the upper edge area of the lower leg, the forward edge area of the upper leg and the forward edge area of the top flange portion, and define generally flat end tab areas of the top flange that are shaped for insertion into the folded-over nose portion of the next adjacent one of the drip edge sections. The method also includes interconnecting a plurality of the completed drip edge sections in a continuous end-to-end relationship along the building roof using at least one of first and second interconnecting steps, wherein the first interconnecting step comprises inserting one of the flat end tab areas of one of the completed drip edge sections into the folded-over nose portion of the next adjacent one of the completed drip edge sections thereby horizontally and vertically aligning and locating the two completed drip edge sections in a continuous, end-to-end relationship along the building roof with the end edges of adjacent nose portions of the drip edge sections abutting to define a partially overlapped, abutting assembly condition, and wherein the second interconnecting step comprises inserting the nose portion of one of the completed drip edge sections closely into the slightly open, tapered nose portion of the next adjacent completed drip edge section with a snap lock to define a fully overlapped assembly condition. Finally, the method includes operably connecting each of the completed and assembled drip edge sections to the building thereby creating a rainwater barrier along the associated building roof edge.
The drip edge assembly and related method are efficient in use, economical to manufacture and install, capable of a long operating life, and particularly well adapted for the proposed use.
These and other advantages of the invention will be further understood and appreciated by those skilled in the art by reference to the following written specification, claims, and appended drawings.
For purposes of description herein the terms “upper”, “lower”, “right”, “left”, “rear”, “front”, “vertical”, “horizontal”, and derivatives throughout as shall relate to the invention as oriented in
The reference numeral 1 (
Pre-notched drip edge assembly 1 includes a plurality of elongate drip edge sections 10 having opposite ends 11 and 12 which are interconnected in an end-to-end relationship to form a continuous rainwater barrier along the bottom edge 5 of roof 2. Each of the drip edge sections 10 has a formed, one-piece construction, which includes a top flange portion 13 which is normally oriented generally horizontally, and has a forward edge area 14. Each pre-notched drip edge section 10 also includes a front flange portion 16 having an inverted, generally L-shaped configuration with a lower leg 17 which is normally oriented generally vertically, and has an upper edge area 18. Front flange portion 16 also has an upper leg 19 which is normally oriented generally horizontally, and has a forward edge area 20. The forward edge area 14 of the top flange portion 13 and the forward edge area 20 of the upper leg 19 are integrally interconnected along a folded-over nose portion 21, which has a generally wedge-shaped side elevational configuration which projects outwardly from the lower leg 17 and extends longitudinally along the drip edge section 10 to deflect rainwater away from the building. Each of the pre-notched drip edge sections 10 has a pair of notches 24 formed in the opposite ends 11 and 12 of the drip edge section 10, which extend a preselected distance through the upper edge area 18 of the lower leg 17, the forward edge area 20 of the upper leg 19 and a forward edge area 14 of the top flange portion 13, and define two generally flat end tab areas 25 and 26 on the top flange portion, which during installation, are inserted into the folded-over nose portion 21 of the next adjacent ones of the drip edge sections 10 to horizontally and vertically locate the same for quick and accurate end-to-end interconnection of the drip edge sections 10 along the building roof 2.
In the illustrated example, each drip edge section 10 of the pre-notched drip edge assembly 1 has a substantially identical configuration, and is preferably constructed from a strip of relatively thin sheet metal, such as aluminum having a baked-on paint surface or the like on the exterior side thereof. Notches 24 and 25 similarly have a substantially identical shape, size and location on the opposite ends 11 and 12 of each drip edge section 10. As best illustrated in
In the illustrated example, the top flange portion 13 of each drip edge section 10 has a plurality of raised, longitudinally extending reinforcing channels or ribs 31 which add rigidity to the structure. Also, the lower legs 17 of the illustrated drip edge sections 10 have an angled, forwardly protruding bottom lip portion 32, which serves to direct rainwater away from the associated building. The illustrated notches 24 and 25 open longitudinally, and are defined by end edges 28 and 29, lower edges 34 and 35, and upper edges 35 and 36.
With reference to
In operation, a plurality of drip edge sections 10 can be installed along the bottom edge 5 of an associated building roof 10 in a partially overlapped, abutting assembly condition, as shown in FIGS. 2 and 13-15A, in the following fashion. A first drip edge section 10 is positioned over the outer edge of roof 2 and the fascia 4 in the manner illustrated in
Alternatively, a plurality of drip edge sections 10 can be installed along the bottom edge 5 of an associated building roof 2 with a more conventional, nested snap-lock in a fully overlapped assembly condition, as shown in
In the foregoing description, it will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed herein. Such modifications are to be considered as included in the following claims, unless these claims by their language expressly state otherwise.
The present application is a division of commonly assigned, U.S. patent application Ser. No. 13/050,436 filed Mar. 17, 2011, now U.S. Pat. No. 8,281,521 which is incorporated herein by reference, and claims priority thereto under 35 U.S.C. §120.
Number | Name | Date | Kind |
---|---|---|---|
1327770 | Norton | Jan 1920 | A |
3137970 | Tiernan | Jun 1964 | A |
3187464 | Sharp | Jun 1965 | A |
3192670 | Jones, III | Jul 1965 | A |
4648218 | Butzen | Mar 1987 | A |
4980997 | Tawzer | Jan 1991 | A |
4981060 | Knudson | Jan 1991 | A |
5328406 | Morris et al. | Jul 1994 | A |
5414965 | Kelley et al. | May 1995 | A |
5551272 | Knudson | Sep 1996 | A |
5740687 | Meyer et al. | Apr 1998 | A |
6035587 | Dressler | Mar 2000 | A |
6237293 | Gembala | May 2001 | B1 |
6421971 | Gembala | Jul 2002 | B1 |
6948349 | Gorski et al. | Sep 2005 | B2 |
7104013 | Gates et al. | Sep 2006 | B1 |
7743561 | Frederick | Jun 2010 | B1 |
20050005551 | Graham et al. | Jan 2005 | A1 |
20050086873 | Mares | Apr 2005 | A1 |
20070074466 | Rasmussen | Apr 2007 | A1 |
20070214738 | Koessler | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20120279168 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13050436 | Mar 2011 | US |
Child | 13553252 | US |