Widespread ownership of high quality printers has dramatically changed the office landscape. One aspect of today's printers that enables so many businesses and individuals to own and operate a high quality printer is the ease of replacing the ink supply or the ink printhead. Even large format printers used by graphics professionals and larger businesses permit the end-user to replace the ink supply or printhead.
Conventional techniques for constructing ink printheads for large format printing are well known. The ink printheads can be formed as a top shooter or a side shooter and are capable of operating in different piezoelectric print modes, such as a push mode or a shear mode. Most conventional printhead manufacturing techniques include forming a silicon core from a silicon wafer polished on both sides and then etching a pattern of nozzles and associated firing chambers onto each side of the silicon core. In one technique, the etching is accomplished via a deep reactive ion etching (DRIE) process, which limits design flexibility along the Z dimension (e.g. height). These conventional processes are quite time consuming and require many iterations of coating, exposing, and developing to achieve the final structure of nozzles and firing chambers on the silicon core. In addition, conventional printheads used for large format printers typically include layers made of dissimilar materials, which causes a mismatch in the coefficient of thermal expansion between the silicon core and the other materials bonded to the silicon core.
Because of the continuing strong demand for printheads, printer manufacturers are driven to achieve faster and better processes for manufacturing printheads.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
Embodiments of the invention are directed to a fluid ejection device and a method of making a fluid ejection device. In one embodiment, a fluid ejection device comprises a pair of outer glass layers and an inner glass layer (e.g., core). Each outer glass layer includes a first side defining a first fluid flow structure, including but not limited to, a first nozzle portion. The inner glass layer is sandwiched between, and bonded to, the respective outer glass layers. The inner glass layer includes two opposite sides with each respective side defining a second fluid flow structure, including but not limited to, a second nozzle portion and a firing chamber. The second nozzle portion of the inner glass layer and the first nozzle portion of the outer glass layer together form a nozzle of the fluid ejection device while the firing chamber on the respective opposite sides of the inner glass layer is in fluid communication with the first nozzle portion of the respective outer glass layers and with the second nozzle portion of the inner glass layer.
In one embodiment, the fluid ejection device comprises a printhead while, in another embodiment, the fluid ejection device comprises a side shooter type of a printhead of a large format printer.
In a method of forming a fluid ejection device, an inner layer is molded or macro-machined from a glass material as single piece defining one or more fluid flow structures protruding from the opposite sides of the inner layer. In one embodiment, the fluid flow structures of the inner glass layer comprise a firing chamber, a nozzle portion, a back-flow restrictor portion, ink feed channel, or a particle tolerant structure. In another embodiment, each outer glass layer is molded or micro-machined from a glass material as single piece defining one or more fluid flow structures protruding from the side of the outer glass layer(s). In one embodiment, the fluid flow structures of the outer glass layers comprise a nozzle portion, a back-flow restrictor portion, or an ink feed channel.
Machining or molding an inner glass layer and the outer glass layers with the desired fluid flow structures to form the fluid ejection device avoids the conventional painstaking, repetitious and iterative process of etching the structures onto the sides of a silicon wafer. In addition, with embodiments of the invention, a nozzle portion of the fluid ejection device (as well as other fluid flow structures) is formed as part of the outer glass layers rather than formed entirely on an inner layer (as conventionally occurs with silicon core printheads). This arrangement allows the inner layer to be formed with relatively looser tolerances, thereby reducing the cost of production, while the outer layers are formed separately with more exacting tolerances.
These embodiments, and additional embodiments, are described more fully in association with
When assembled as illustrated in
In another embodiment, a piezoelectric driver 80A is mounted onto first side 24 of first outer layer 12 while a piezoelectric driver 80B is mounted on to first side 24 of first outer layer 14. Accordingly, in use, ink flows from an ink feed channel (shown in
In one aspect, this fluid ejection device is a drop-on-demand side-shooter piezoelectric printhead.
As illustrated in
In one aspect, fluid ejection device 10 comprises an array 31 of nozzles 30 arranged in series on second side 26 of outer layer 12 and laterally spaced apart from each other in the second direction (as represented by directional arrow x) in a side-by-side relationship. The nozzles 30 are spaced apart by a distance generally corresponding the lateral spacing between respective firing chambers 60A, 60B of inner layer 16 to align each respective nozzle 30 with a respective firing chamber 60A of the first side 44A of the inner layer 16 or with a respective firing chamber 60B of the second side 44B of the inner layer 16.
Each pair of a respective nozzle 30 and a respective firing chamber 60A (or firing chamber 60B) defines a fluid ejection unit of the fluid ejection device 10.
As further illustrated in
As further illustrated in
In one embodiment, fluid ejection device 10 of
In another aspect, as illustrated in
In one embodiment, as illustrated in
In another embodiment, as illustrated in
In one aspect, the outer layer 152 including nozzle structure 176 and/or walls 174A, 174B, 174C, is formed via micro-machining or molding to produce the outer layer as a single piece of glass material. The ability to form nozzle structure 176 on outer layer 152, instead of on inner layer 154, enables nozzle portions 162A, 162B of inner layer 154 to be formed with a generally simpler construction than a nozzle portion of an inner layer of a conventional printhead having a silicon-based inner layer. These features and attributes related to forming an outer glass layer and an inner glass layer of a fluid ejection device, according to embodiments of the invention, are described further in association with
As illustrated in
In one aspect, back-flow restrictor 262 is defined by: (1) a protrusion 230 extending upward along the third direction (as represented by directional arrow z) from a generally flat portion 227 on first side 228 of inner layer 210; and (2) a protrusion 250 extending downward along the third direction (as represented by directional arrow z) from the generally flat portion 249 on second side 248 of outer layer 212. In one aspect, back-flow restrictor 262 defines a gap having a cross-sectional area generally narrower than a cross-sectional area of the ink feed channel 260 and generally narrower than a cross-sectional area of the firing chamber 264.
In one aspect, the relatively smaller gap defined by back-flow restrictor 262 limits ink from blowing back into ink feed channel 260 from firing chamber 264 upon actuation fluid ejection device 10 to eject ink from nozzle 241.
In one aspect, outer glass layer 212 (including fluid flow structures such as back-flow protrusion 250 and nozzle protrusion 252) is formed via micro-machining, to produce the outer glass layer as a single piece of glass material. This single piece formation of fluid ejection unit 200 simplifies construction of inner layer 210 by locating at least a portion of the structure of nozzle 241 on the outer layer 212 instead of substantially entirely on a silicon core layer as occurs in the formation of conventional printheads.
In one embodiment, as illustrated in
In another aspect, restrictor portion 274 of barriers 270A, 270B is relatively wide to cause back-flow restrictor 262 of inner layer 210 to be generally narrow to prevent blow back of ink from firing chamber 264 of inner layer 210. As illustrated in
In one aspect, as illustrated in
In one aspect, particle filter 320 comprises a particle tolerant architecture (PTA) to prevent unwanted particles from entering the firing chamber or nozzle portion of a fluid ejection device.
In another aspect, particle filter 320 is located in the region corresponding to ink feed channel 260 (
In embodiment, inner layer 310 is formed (via macro-machining or double sided molding) in which the entire inner layer 310, including columns 322 and other structures of the inner layer 310, are formed as a single piece of glass material. Accordingly, columns 322 of particle filter are formed simultaneously with the other portions of inner layer 310 during formation of inner layer 310. In one aspect, columns 322 have a height (represented by H1 in
In one embodiment, the glass layers described in association with
In another aspect, outer glass layers (e.g., outer glass layer 12, 212, 312, respectively) are molded as one piece via a glass molding technique available, for example, through Berliner Glas GMBH of Germany. Accordingly, the fluid flow structures of the outer glass layers are formed in one molding step rather than conventional techniques of attaching surface structures to a flat base layer or a conventional technique of using a completely flat glass cap. In this way, a fluid flow structure such as a nozzle protrusion 252 of an outer glass layer (in
In one embodiment, the molded inner layer and the molded outer layers are bonded to one another via plasma bonding, anodic bonding, silicate bonding or another suitable bonding technique. In one example, to perform anodic bonding of the all glass inner layer and outer layers, a preparatory bonding material, such as a thin poly or amorphous silicon layer is blanket deposited onto the bonding side of the inner layer and of the respective outer layers to enable the anodic bonding to take place. In another example, to perform the plasma bonding technique, a preparatory bonding material such as a thin, planarized tetraethyl orthosilicate (TEOS) layer is deposited on each respective outer layer and the inner layer to enable the plasma bonding to take place.
In another embodiment, the inner layer is formed via macro-machining using wet etching, dry etching (plasma based), plunge-cut sawing, ultra-sonic milling, powder-blasting, or other macro-machining processes. In another embodiment, the outer layer is formed via micro-machining to attain a precision, repeatable nozzle (or bore) using wet etching, dry etching (plasma based), or by a Novolay™ process available from Schott (Schott Electronics GmbH, Berlin & Dresden, Germany).
In one aspect, machining of the first glass layer and the second glass layer is greatly simplified because both the first layer and the second layer are formed of the same material. Accordingly, in one embodiment, the same saw blade is used to saw or machine both the first glass layers and the second glass layer. In another embodiment, the same computer-based saw control program is used to direct the saw in machining both the first glass layers and the second glass layers. This arrangement avoids the more complex and expensive conventional method of using different saw blades and/or using different saw control programs (e.g., different blade-rotation parameters, different feed-rates, etc.) that are used when an outer cap or layer is made of a glass material and the core (or inner layer) is made of a silicon material because the different types of materials (i.e., glass v. silicon) require different machining techniques.
In another embodiment, the first fluid flow structures (e.g., nozzle portion 29 in
In another aspect of embodiments of the invention, because the respective first outer layers and the second inner layer are made of the same material, i.e., glass, a more uniform nozzle of the respective fluid ejection units is formed, which results in a more uniform “drop” formation by the nozzles. This arrangement is in contrast to the conventional situation in which the nozzle of a fluid ejection unit is composed of two different materials (i.e., silicon and glass), which sometimes have different “chip” behavior when machined and therefore which can lead to drop mis-formation by the nozzle of the fluid ejection unit.
In another aspect of embodiments of the invention, because the first outer layers and the second inner layers are made of the same material (i.e., glass), the respective first outer layers and second inner layer exhibit more symmetric wetting behavior because the surface chemical nature of the glass of the outer layers and inner layers is substantially the same. This arrangement is in contrast to the conventional arrangement of the dissimilar materials of glass and silicon, which sometimes leads to asymmetric fluidic wetting around a nozzle of a fluid ejection unit, and which negatively affects the reliability of the nozzle (e.g., plugging and surface junk contamination). Ultimately, these phenomena negatively affect a drop trajectory of the nozzle of the fluid ejection unit, which results in lower quality printing.
In another aspect, a target is placed on each of the outer layers and on the inner layers for alignment of the respective layers, as previously described in association with
Moreover, because the outer glass layers are formed separately from the inner glass layer, the fluid flow structures (e.g., a nozzle protrusion 252 or back-flow restrictor portion 250) of the outer glass layer are formed without having to simultaneously control tolerances of the fluid flow structures of the firing chamber of the inner glass layer. This arrangement is in contrast to conventional silicon-based printhead manufacturing techniques in which both a nozzle and a firing chamber (each having dimensions that are orders of magnitude difference) must be etched on the same silicon wafer core.
In another aspect, by forming both the inner layer and the respective outer layers of a glass material, embodiments of the invention provide a match between the coefficients of thermal expansion among the various layers. This arrangement limits warping and other distortions typically introduced at elevated bonding temperatures.
Embodiments of the invention enable high precision formation of ink printheads via forming an outer glass layer including its own first fluid flow structure separately from the formation of an inner glass layer with a second fluid flow structure. These embodiments also improve the matching of materials of adjacent layers to reduce undesirable effects from the adjacent layers having different coefficient thermal expansion.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5940099 | Karlinski | Aug 1999 | A |
6481074 | Karlinski | Nov 2002 | B1 |
6494566 | Kishino et al. | Dec 2002 | B1 |
6766567 | Karlinski | Jul 2004 | B2 |
6848181 | Silverbrook | Feb 2005 | B1 |
7052117 | Bibl et al. | May 2006 | B2 |
7155823 | Silverbrook | Jan 2007 | B2 |
20030131475 | Conta | Jul 2003 | A1 |
20050109730 | Silverbrook | May 2005 | A1 |
20050144781 | Silverbrook | Jul 2005 | A1 |
20060012649 | Sakaida | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
1693206 | Aug 2006 | EP |
08001941 | Jan 1996 | JP |
11028822 | Feb 1999 | JP |
2005244090 | Sep 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080199981 A1 | Aug 2008 | US |