Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained

Information

  • Patent Grant
  • 10682215
  • Patent Number
    10,682,215
  • Date Filed
    Wednesday, September 27, 2017
    6 years ago
  • Date Issued
    Tuesday, June 16, 2020
    4 years ago
Abstract
The invention relates to a method for forming a mesh having a barbed suture attached thereto, comprising the following steps: a) producing a knitted structure on a knitting machine comprising at least one needle-bed with three guide bars, on a length corresponding to N stitches ranging from 1 to N, wherein i) a first knit portion is produced along stitches ranging from 1 to x, where 1
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of and priority to European Patent Application No. 16306383.7 filed Oct. 21, 2016, the disclosure of the above-identified application is hereby incorporated by reference in its entirety.


BACKGROUND OF THE INVENTION

The present invention relates to a method for forming a prosthetic mesh having one or more barbed suture(s) attached thereto, such a prosthetic mesh being useful in the surgical field. The method of the invention allows producing a prosthetic mesh having one or more barbed suture(s) attached thereto in a reduced time and in a very cost-effective way.


The abdominal wall in humans is composed of fat and muscles interconnected by fascias. It sometimes happens that a break in continuity occurs in the fascias, allowing part of the peritoneum to slip through and form a sac, or a hernia, containing either fat or part of the intestines. Hernias or incisional hernias (a hernia occurring through a parietal surgical scar) show themselves in the form of a bulge at the surface of the skin and are classed, for example, as umbilical or inguinal hernias or incisional hernias, depending on where they are located.


In order to repair a hernia defect, surgeons often fit a prosthesis in place which is made of synthetic mesh and replaces or strengthens the weakened anatomical tissues.


Within the meaning of the present application, a “mesh” is understood as an arrangement of biocompatible yarns, such as a textile or fabric, preferably open-worked, that is to say provided with pores that favour recolonization of tissue such as cellular growth. Such a mesh can be bioresorbable, permanent or partially bioresorbable. It is sufficiently flexible to be folded up at the time of introduction into the abdominal cavity.


Meshes for forming hernia prosthesis are well known to a person skilled in the art. The mesh can be supplied in any shape whatsoever, for example rectangular, square, circular, oval, etc., and can then be cut to suit the shape of the hernia defect. For example, the overall shape of the mesh can be circular or oval. Alternatively, the mesh can have a generally square shape or a rectangular shape.


Meshes for forming hernia prosthesis are advantageously provided as a knitted structure obtained with biocompatible yarns. Knitting methods allow obtaining knitted structure having openworked faces that promote cell recolonization after implantation.


Once implanted, the mesh must be fixed to the surroundings biological tissues, such as for example the abdominal wall. Many fixing means are available for fixing the mesh to the abdominal wall, such as tacks, staples, adhesives or sutures.


The use of sutures usually imply forming surgical knots in order to anchor the suture.


Surgical knots have been used for ages in order to anchor and allow a conventional suture, in other words a smooth suture without barbs, to perform its role in mesh fixation for example. Anyway, surgical knots reduce the tensile strength of conventional sutures by thinning and stretching the material forming the suture. Indeed, it is known that the weakest portion of any suture line is the knot.


Moreover, the tying of surgical knots introduces the potential of human error. A knot-secured conventional suture may create an uneven distribution of tension across the wound, with the higher tension burden placed at the knots. In addition, in minimally invasive laparoscopic surgery, the ability to quickly and properly tie surgical knots presents a challenge. The skill necessary for performing intra- or extracorporeal knot tying for laparoscopic surgery may be acquired only with practice and patience, yet surgeons need to master such a skill in order to properly perform closure procedures. Laparoscopic knot tying is also more mentally and physically stressful on surgeons.


Given the excessive relative wound tension on the knot and the reasonable concerns of surgeons for suture failure due to knot slippage, there is a natural tendency toward overcoming these potential issues by over-tightening knots. However, tighter knots may be worse for wound healing and strength than looser knots. Surgical knots, when tied too tightly, can cause localized hypoxia, reduced fibroblast proliferation, and excessive tissue overlap, leading to reduced strength in the healed wound.


Eventually, a surgical knot yields the highest density of foreign body material in any given suture line and the volume of a knot may be directly related to the total amount of surrounding inflammatory reaction. If minimizing the inflammatory reaction in a wound is important for optimized wound healing, then minimizing knots sizes or even eliminating knots altogether would be beneficial as long as the wound-holding strength of the suture line is not compromised.


For all these reasons, the use of barbed suture, suture with barbs, has tremendously increased in the past years. In particular, one of the most costly parts of a surgical procedure is time in the operating room.


Barbed sutures are known. They basically consist in strands of smooth suture provided with barbs on their surfaces. Barbed sutures are generally made of the same materials as conventional sutures and offer several advantages for fixing meshes to the abdominal wall compared with conventional sutures. A barbed suture includes an elongated body that has one or more spaced barbs, that project from the surface of the suture body along the body length.


The barbs are generally arranged to allow passage of the barbed suture in one direction through tissue but resist movement of the barbed suture in the opposite direction (one-way suture). One advantage of barbed sutures is the provision of a non-slip property.


Barbed sutures are known for use in laparoscopic and endoscopic procedures. The number of barbs needed for a particular suture may be influenced by the size of the wound and the strength required to fix the mesh. Like a conventional suture, a barbed suture may be inserted into tissue using a surgical needle.


In some circumstances, a random configuration of barbs on the exterior surface of the suture is preferred to achieve optimal fixing of the mesh. However, in other circumstances, where the tissue repair needed is relatively small, a reduced number of barbs may be desired.


Various methods of forming barbs on sutures have been proposed such as mechanical cutting, laser cutting, injection molding, stamping, extrusion and the like. However, such methods may be difficult or costly, in particular when a specific arrangement or configuration of barbs is needed for an appropriate surgical procedure.


For example, conventional cutting methods of forming barbs may involve cutting with a blade into the elongate body of the suture, where the elongate body may be a monofilament for example. Barbed sutures may be fabricated from monofilament fibers by a micro-machining technique, which escarpes barbs into the fiber around the circumference in a variety of configurations. Cutting meth s have therefore significant drawbacks as they weaken the core of the suture and narrow its functional diameter. Moreover, they are costly and have slow manufacturing cycle time.


Accordingly, there is a continuous need for methods of forming barbs on a suture that are less difficult to implement, more efficient and cost effective. There is also a continuous need for methods allowing varying the size, the location and the depth of the barbs, as well as the amount of barbs present on the suture, depending on the contemplated surgical application.


In particular, there is a need for providing a mesh having one or more barbed suture(s) attached thereto, so that the surgeon does not have to waste time looking for a suture at the time he needs to fix the mesh to the biological tissue during the implantation.


A first aspect of the invention is a method for forming a prosthetic mesh having at least a barbed suture attached thereto, said barbed suture comprising an elongate body provided with barbs extending substantially radially out from said elongate body, said method comprising the following steps:


a) producing a knitted structure on a warp knitting machine comprising at least one needle-bed comprising at least three guide bars, a first guide bar B1, a second guide bar B2 and a third guide bar B3, said first guide bar B1 being threaded with first yarns of a biocompatible material, said second guide bar B2 being threaded with second yarns of a biocompatible material, said third guide bar B3 being threaded with third yarns of a biocompatible material, said knitted structure being produced on a determined length along the warp direction corresponding to a total number of N stitches ranging from 1 to N completed along said warp direction by the machine, N being an integer above 7, wherein

    • i) a first knit portion is produced along stitches ranging from 1 to x, where 1<x<N, in which the knitting patterns followed by the first, the second and the third guide bars (B1, B2, B3) produce an openworked knit capable of favoring cellular growth,
    • ii) a second knit portion is produced for stitches ranging from (x+1) to N, in which the knitting pattern followed by said second and third guide bars (B2, B3) produces chain stitches and the knitting pattern followed by the first guide bar B1 produces at least a partial weft in which said first yarns complete weft stitches with at least one of said chain stitches, thereby producing at least one weft stitched chain stitch,


b) cutting the second knit portion along the warp direction on both sides of said at least one weft stitched chain stitch and along an edge separating the second knit portion from the first knit portion, so as to remove the second knit portion from the knitted structure while maintaining said weft stitched chain stitch attached to the first knit portion,


wherein the first knit portion forms the mesh and the second or third yarn forming part of said at least one weft stitched chain stitch forms said elongate body of said barbed suture attached thereto, the first yarns cuts extending from said weft stitches of said at least one weft stitched chain stitch forming said barbs of said barbed suture.


In the prosthetic mesh obtained by the method of the invention, the barbed suture therefore comprises an elongate body made of a yarn of a biocompatible material coming either from guide bar B2 (second yarn) or from guide bar B3 (third yarn), provided with barbs extending substantially radially out from said elongate body, said barbs being first yarns cuts made of a biocompatible material, where said first yarns cuts are stitched to said second or third yarn forming said elongate body. The first yarn cuts result from the cutting of the second knit portion on both sides of the at least one weft stitched chain stitch. In embodiments, said elongate body(ies) of said barbed suture(s) is/are formed of second yarns only.


In the present application, “N” and “x” correspond to numbers of stitches and are therefore integers.


In the present application, by “knit capable of favoring cellular growth” is meant a knit the knitting pattern of which allows creating voids, pores, channels on the surfaces and/or within the thickness of the knit so that cells may colonize the knit once the knit is implanted in the body of a human being.


Another aspect of the invention is a prosthetic mesh having at least a barbed suture attached thereto, said barbed suture comprising an elongate body made of a yarn of biocompatible material, provided with barbs extending substantially radially out from said elongate body, said barbs being yarns cuts made of a biocompatible material, where said yarns cuts are stitched to said yarn forming said elongate body, said prosthetic mesh being obtained by the method above.


In a first step, step a), of the method of the invention, a knitted structure is produced on a warp knitting machine. The warp knitting machine comprises at least one needle-bed comprising at least three guide bars, a first guide bar B1, a second guide bar B2 and a third guide bar B3. The first guide bar B1 is threaded with first yarns of a biocompatible material, the second guide bar B2 is threaded with second yarns of a biocompatible material, the third guide bar B3 being threaded with third yarns of a biocompatible material. The knitted structure is produced on a determined length along the warp direction corresponding to a total number of N stitches ranging from 1 to N completed along said warp direction by the machine, N being an integer above 7. During this step a), i) a first knit portion is produced along stitches ranging from 1 to x, where 1<x<N, in which the knitting patterns followed by the first, the second and the third guide bars (B1, B2, B3) produce an openworked knit capable of favoring cellular growth, and ii) a second knit portion is produced for stitches ranging from (x+1) to N, in which the knitting pattern followed by said second and third guide bars (B2, B3) produces chain stitches and the knitting pattern followed by the first guide bar B1 produces at least a partial weft in which said first yarns complete weft stitches with at least one of said chain stitches, thereby producing at least one weft stitched chain stitch.


The warp knitting machine may be for example a crochet machine or a raschel knitting machine or a Jacquard machine. Warp knitting machines have a warp yarn for each needle.


By “chain stitch” is meant according to the present application a stitch construction where both over and underlapping are always carried out across the same needle. One chain stitch of a knit therefore involves only one warp yarn, in other words involves only one yarn in the warp direction. The tensile strength of one chain stitch is therefore the tensile strength of said single warp yarn involved in the construction of the chain stitch.


The warp knitting machine may comprise one or more needle-bed(s). For example, the warp knitting machine may comprise two needle-beds. Such double needle-bed machines allow producing bidimensional knits and three-dimensional knits.


In the present application by “bidimensional knit” is meant a knit obtained on a warp knitting machine with the use of one needle-bed only, whatever the number of needle-beds present in the machine, and whatever the number of guide bars present in said one needle-bed. For example, a bidimensional knit may be obtained with two guide bars or more, as long as said guide bars all belong to one needle-bed only. Bidimensional knits may also be obtained on a Jacquard machine, where each guide bar elements are independent.


In the present application by “three-dimensional knit” is meant a knit obtained on a warp knitting machine with the use of two needle-beds, with yarns crossing from a needle-bed to the other.


In embodiments, the warp knitting machine comprises two needle-beds, a first needle-bed comprising said first, second and third guide bars (B1, B2, B3) described above, and a second needle-bed comprising fourth guide bar B4, fifth guide bar B5 and sixth guide bar B6. The fourth guide bar B4 is threaded with fourth yarns of a biocompatible material, the fifth guide bar B5 is threaded with fifth yarns of a biocompatible material, the sixth guide bar B6 is threaded with sixth yarns of a biocompatible material. In such embodiments, the first and second knit portions may be produced by using the six guide bars (B1, B2, B3, B4, B5 and B6).


In such embodiments, step a) may comprise a step 0) occurring before step a)i) as follows:


0) a connecting knit portion is produced along stitches ranging from 1 to y, where 1<y<x<N, in which the knitting patterns followed by first, second, third, fourth, fifth and sixth guide bars (B1, B2, B3, B4, B5, B6) produce a three-dimensional openworked knit capable of favoring cellular growth, said knit having a first face produced on said first needle-bed by said first, second and third yarns from said first, second and third guide bars (B1, B2, B3), and a second face, produced on said second needle-bed by said fourth, fifth and sixth yarns from said fourth, fifth and sixth guide bars (B4, B5, B6), said first and second faces being linked together by some of the second, third, fourth and/or fifth yarns, preferably by some of the third and/or fourth yarns, crossing from the first needle-bed to the second needle-bed and vice-versa, thereby forming linking yarns,


and, in step i), the first knit portion is produced along stitches ranging from (y+1) to x, in which the knitting patterns followed by the first, second and third guide bars (B1, B2, B3) produce on the first needle-bed a first bidimensional openworked knit capable of favoring cellular growth, and in which the knitting patterns followed by the fourth, fifth and sixth guide bars (B4, B5, B6) produce on the second needle-bed a second bidimensional openworked knit capable of favoring cellular growth,


said first and second bidimensional openworked knits being independent from each other,


and, in step ii), the second knit portion is produced for stitches ranging from (x+1) to N, in which:


on said first needle-bed, a first needle-bed second knit portion is produced, in which the knitting pattern followed by said second and third guide bars (B2, B3) produces chain stitches and the knitting pattern followed by the first guide bar B1 produces at least a partial weft in which said first yarns complete weft stitches with at least one of said chain stitches, thereby producing at least one first weft stitched chain stitch,


on said second needle-bed, a second needle-bed second knit portion is produced, in which the knitting pattern followed by said fourth and fifth guide bars (B4, B5) produces chain stitches and the knitting pattern followed by the sixth guide bar B6 produces at least a partial weft in which said sixth yarns complete weft stitches with at least one of said chain stitches, thereby producing at least one second weft stitched chain stitch,


said first needle-bed second knit portion and said second needle-bed second knit portion being independent from each other.


In the present application, “y” corresponds to a number of stitches and is therefore an integer.


In the present application, by “independent knits” with respect to two knits produced, for example simultaneously, on a double-bed knitting machine, is meant one knit produced on the first needle-bed and a second knit produced on the second needle-bed, with no yarns from one needle-bed crossing to the other needle-bed during the production of said two independent knits.


In the present application, the terms “weft stitched chain stitch”, “first weft stitched chain stitch” and “second weft stitched chain stitch” all relate to weft stitched chain stitches obtained according to the method of the invention and generally referred to as “weft stitched chain stitch”, the terms “first weft stitched chain stitch” and “second weft stitched chain stitch” being used for sake of clarity when two needle-beds are used, as it may be useful to distinguish the first weft stitched chain stitches obtained with the first needle-bed from the second weft stitched chain stitches obtained with the second needle-bed.


In embodiments where the warp knitting machine comprises a first needle-bed comprising first, second and third guide bars (B1, B2, B3) and a second needle-bed comprising fourth, fifth and sixth guide bars (B4, B5, B6) as described above, the cutting step bº) may comprise the following steps:


cutting the first needle-bed second knit portion along the warp direction on both sides of said at least one first weft stitched chain stitch and along an edge separating the first needle-bed second knit portion from the first bidimensional openworked knit, so as to remove the first needle-bed second knit portion from the knitted structure while maintaining said first weft stitched chain stitch attached to the first bidimensional openworked knit,


cutting the second needle-bed second knit portion along the warp direction on both sides of said at least one second weft stitched chain stitch and along an edge separating the second needle-bed second knit portion from the second bidimensional openworked knit, so as to remove the second needle-bed second knit portion from the knitted structure while maintaining said second weft stitched chain stitch attached to the second bidimensional openworked knit,


and the method may further comprise the following steps occurring after step bº):


cº) optionally cutting said linking yarns from the three-dimensional openworked knit obtained in step a)0) along stitches ranging from 2 to y,


dº) opening the knitted structure so as to spread in a single plane the part of the knitted structure obtained from the first needle-bed and the part of the knitted structure obtained from the second needle-bed,


wherein the first bidimensional openworked knit, the connecting knit portion, optionally cut according to step cº), and the second bidimensional openworked knit form altogether the mesh; the second or third yarn forming part of said at least one first weft stitched chain stitch forms the elongate body of a first barbed suture attached to the first bidimensional openworked knit, the first yarns cuts extending from said weft stitches of said at least one first weft stitched chain stitch forming said barbs of said first barbed suture; the fourth or fifth yarn forming part of said at least one second weft stitched chain stitch forms the elongate body of a second barbed suture attached to the second bidimensional openworked knit, the sixth yarns cuts extending from said weft stitches of said at least one second weft stitched chain stitch forming said barbs of said second barbed suture.


In the present application, the terms “barbed suture”, “first barbed suture” and “second barbed suture” all relate to barbed sutures obtained according to the method of the invention and generally referred to as “barbed suture”, the terms “first barbed suture” and “second barbed suture” being used for sake of clarity when two needle-beds are used, as it may be useful to distinguish the first barbed sutures obtained with the first needle-bed from the second barbed sutures obtained with the second needle-bed.


As will appear from the description below, the method of the invention allows producing prosthetic meshes having barbed sutures attached thereto in a very simple, easy and rapid process. In particular the method of the invention is a cost effective process as there is no need to use sophisticated cutting machines with blades for performing cuts into the body of a monofilament.


It is known that warp knitting machines are capable of producing knits at high production rates. In addition, the knits produced may also show a very long dimension along the warp direction, which is the direction of manufacturing the knit.


As an example, with current existing warp knitting machines, knits of at least 300 meters long may be produced. For example, if the knitted structure of step a) of the method of the invention has a length L corresponding to the N stitches, a plurality of such knitted structures of length L may be obtained on a length of 300 meters, by simply repeating the knitting patterns of stitches 1 to N as many times as possible on the length of 300 meters. The method of the invention therefore allows manufacturing a plurality of meshes having barbed sutures attached thereto on 300 meters long in a very cost effective way, and in particular in only one knitting step.


The three-dimensional openworked knit obtained during step a)0) of the method of the invention is capable of favoring cellular growth and may be obtained thanks to all knitting patterns known from the art allowing to produce a knit with pores, voids, etc. on a double needle-bed warp machine by using the two needle-beds of the machine. Such knitting patterns are well known.


Examples of knitting three-dimensional knits suitable for the present invention are given in the documents WO99/05990, WO2009/031035 and WO2009/071998.


The bidimensional openworked knits obtained during step a)i) of the method of the invention are capable of favoring cellular growth and may be obtained thanks to all knitting patterns known from the art allowing to produce a knit with pores, voids, etc. using only one needle bed of a warp knitting machine. Such knitting patterns are well known.


Examples of knitting two-dimensional knits suitable for the present invention are given in the document WO2009/071998.


In addition, the barbs created in the barbed suture(s) of the mesh produced according to the method for the invention are ineradicable since they are made of yarns cuts, namely first yarns cuts and/or sixth yarns cuts, that stitch through chain stitches pillar.


In embodiments, the knitting pattern followed by the first guide bar B1 during step a)ii) produces at least a partial weft in which said first yarns complete weft stitches with a plurality of chain stitches, thereby producing a plurality of weft stitched chain stitches, and wherein the cutting of step b) is repeated for each weft stitched chain stitch, thereby producing a plurality of barbed sutures attached to the first knit portion.


In embodiments where the warp knitting machine comprises two needle-beds with three guide bars each as described above, the knitting pattern followed by the first guide bar B1 on the first needle-bed, respectively by the sixth guide bar B6 on the second needle-bed, during step a)ii), may produce at least a partial weft in which said first yarns, respectively said sixth yarns, complete weft stitches with a plurality of chain stitches, thereby producing a plurality of first and second weft stitched chain stitches. In such embodiments, the cutting of step b) may be repeated for each of said first and second weft stitched chain stitches, thereby producing a plurality of first barbed sutures attached to the first bidimensional openworked knit, respectively a plurality of second barbed sutures attached to the second bidimensional openworked knit.


The method of the invention therefore allows manufacturing a mesh having a plurality of barbed sutures of significant length each, the plurality of barbed sutures being attached to the mesh.


In current existing warp knitting machines, a high number of chain stitches may be produced along the width of a knit. As an example, 286 or more chain stitches may be produced on the width of a knit. The method of the invention therefore allows producing a mesh having for example from 2 to 20 barbed sutures attached thereto in one single knitting step


Guide bar B1, respectively guide bar B6, may be fed continuously or intermittently with the first yarns, respectively the sixth yarns, during step a)ii). In embodiments, guide bar B1, respectively guide bar B6, is fed continuously with the first yarns, respectively the sixth yarns, during step a)ii).


The method of the invention further allows producing meshes having barbed suture(s) having different functional portions along their length. In particular, the method of the invention allows producing meshes having barbed suture(s) having active portions, namely portions provided with barbs, and passive portions, namely portions free of any barbs. The passive portions may be obtained by simply stopping the feeding of the first guide bar B1, respectively the sixth guide bar B6, with the first yarns, respectively the sixth yarns, for a certain period of time during the knitting process of step aº)ii) of the method of the invention. Meshes with barbed sutures having alternating active portions and passive portions may therefore be obtained by simply intermittently feeding the first guide bar B1, respectively the sixth guide bar B6, during the knitting process. In embodiments, the first guide bar B1, alternatively the sixth guide bar B6, is fed intermittently with said first yarns, alternatively sixth yarns.


Alternatively, barbed sutures having alternating active portions and passive portions may be obtained by modifying the knitting pattern of guide bar B1, respectively of guide bar B6, so that, for one or several determined time periods during step a)ii) of production of the knitted structure, the first yarns, respectively the sixth yarns, do not complete any weft stitches with said weft stitched chain stitch(es).


The method of the invention further allows varying and selecting the length of the barbs according to an easy process. Indeed, the length of the barbs of the barbed sutures of the meshes obtained with the method of the invention will be dependent first on the distance left between a weft stitched chain stitch and the two adjacent chain stitches on both sides of said weft stitched chain stitch, said distance being a function of the knitting pattern used during step a)ii), and second on the location of the cutting line on said distance at the time of the cutting step b) of the method of the invention. The distance left between a weft stitched chain stitch and the two adjacent chain stitches in the first needle-bed second knit portion will be function of the threading-in of the three guide bars (B1, B2, B3) on the first needle-bed, in particular of the threading-in of the second and third guide bars B2 and B3, and optionally of the first guide bar B1. In the same manner, the distance left between a weft stitched chain stitch and the two adjacent chain stitches in the second needle-bed second knit portion will be function of the threading-in of the three guide bars (B4, B5, B6) on the second needle-bed, in particular of the threading-in of the fourth and fifth guide bars (B4, B5) forming the chain stitches. The greater the distance desired, the more empty needles left between two full needles. On the contrary, the smaller the distance desired between two adjacent weft stitched chain stitches, the less empty needles left between two full needles.


In embodiments where the warp knitting machine comprises only one needle-bed, the knitting pattern followed by the first guide bar B1, the second guide bar B2 and the third guide bar B3 may be as described below for a number N of stitches equal to 70, with x=30. All the knitting patterns are given according to the ISO 11676 standard (publication year 2014):


1º) during step a)i), production of the first knit portion capable of favoring cellular growth according to the following knitting pattern for stitches ranging from 1 to 30:

    • Bar B1: (5.4/3.2/0.1)×10//
    • Bar B2: (5.4/3.2/0.1)×10//
    • Bar B3: (0.1/2.3/5.4)×10//


2º) during step a)ii), production of the second knit portion according to the following knitting pattern for stitches ranging from 31 to 70:

    • Bar B1: (0.0/2.3/5.5/3.2)×10//
    • Bar B2: (2.3/2.3/3.2/3.2)×10//
    • Bar B3: (2.3/2.3/3.2/3.2)×10//


wherein, in both steps, B1 is threaded 1 full, 3 empty, B2 is threaded 1 full, 3 empty and B3 is threaded 1 full, 3 empty, along the whole width of the machine.


Such a pattern results in a distance between a weft stitched chain stitch and the two adjacent chain stitches of about 3.5 mm.


In embodiments, where the warp knitting machine comprises a first needle-bed comprising three guide bars B1, B2 and B3 and a second needle-bed comprising three guide bars B4, B5 and B6, the knitting patterns followed by the six guide bars may be as described below for a number N of stitches equal to 70, with x=30, and y=6. All the knitting patterns are given according to the ISO 11676 standard (publication year 2014):


1º) During step a)0): for stitches ranging from 1 to 6, production of a three-dimensional openworked knit capable of favoring cellular growth (connecting knit portion) according to the following knitting pattern:

    • B1: (5.4.3.3/3.2.1.1/0.1.3.3)×2//
    • B2: (5.4.3.3/3.2.1.1/0.1.3.3)×2//
    • B3: 0.1.0.1/2.3.2.3/5.4.2.2/0.1.2.2/2.3.4.4/5.4.2.2//
    • B4: 0.1.0.1/2.3.2.3/4.4.5.4/2.2.0.1/2.2.2.3/4.4.5.4//
    • B5: (3.3.5.4/3.3.3.2/1.1.0.1)×2//
    • B6: (3.3.5.4/3.3.3.2/1.1.0.1)×2//


2º) During step a)i): for stitches ranging from 7 to 30: production of the first knit portion as follows:


On the first needle-bed, production of a first bidimensional openworked knit capable of favoring cellular growth according to the following knitting pattern:

    • B1: (5.4.3.3/3.2.1.1/0.1.3.3)×8//
    • B2: (5.4.3.3/3.2.1.1/0.1.3.3)×8//
    • B3: (0.1.2.2/2.3.4.4/5.4.2.2)×8//


On the second needle-bed, production of a second bidimensional openworked knit capable of favoring cellular growth according to the following knitting pattern:

    • B4: (2.2.0.1/2.2.2.3/4.4.5.4)×8//
    • B5: (3.3.5.4/3.3.3.2/1.1.0.1)×8//
    • B6: (3.3.5.4/3.3.3.2/1.1.0.1)×8//


3º) During step a)ii): for stitches ranging from 31 à 70: production of the second knit portion as follows:


On the first needle-bed, production of first needle-bed second knit portion according to the following knitting pattern:

    • B1: (0.0.0.0/2.3.4.4/5.5.5.5/3.2.1.1)×10//
    • B2: (2.3.2.2/2.3.3.3/3.2.3.3/3.2.2.2)×10//
    • B3: (2.3.2.2/2.3.3.3/3.2.3.3/3.2.2.2)×10//


On the second needle-bed, production of second needle-bed second knit portion according to the following knitting pattern:

    • B4: (2.2.2.3/2.2.2.3/3.3.3.2/3.3.3.2)×10//
    • B5: (2.2.2.3/2.2.2.3/3.3.3.2/3.3.3.2)×10//
    • B6: (1.1.0.0/0.0.2.3/4.4.5.5/5.5.3.2)×10//


For example, in all the steps, all the guide bars (B1, B2, B3, B4, B5, B6) may be threaded 1 full, 3 empty along the whole width of the machine.


The method of the invention also allows varying and selecting the amount or number of barbs along the length of the suture in an easy way. In particular, the method of the invention allows selecting a specific frequency of barbs along the length of the suture, in other words a number of barbs per centimeter of suture. Such a frequency will depend on the knitting pattern followed by the first guide bar B1, respectively the sixth guide bar B6, threaded with the first yarns, respectively the sixth yarns. In particular, the more weft stitches completed along the warp direction of the chain stitch, the more weft stitches present on the weft stitched chain stitch in the end, and the higher the frequency of barbs on the resulting barbed suture. In embodiments, the knitting pattern followed by the first guide bar B1, respectively the sixth guide bar B6, produces a partial weft in which said first yarns, respectively said sixth yarns, complete from about 4 to about 15 weft stitches/cm along a length of each said weft stitched chain stitch.


In addition, the method of the invention allows producing meshes having barbed suture(s) attached thereto without affecting the tensile strength of the elongate body of the barbed suture(s). Indeed, contrary to cutting methods of the prior art which create the barbs by performing cuttings in the elongate body of the suture, made of a monofilament for example, the method of the invention leaves the yarn forming the elongate body of the suture integrate. The integrity of the yarn is not affected. As a consequence, the tensile strength of the yarn forming the elongate body of a barbed suture of the mesh obtained by the method of the invention is not affected by the presence of the barbs. Moreover, the method of the invention allows using both monofilaments and multifilaments yarns as the elongate body of the suture, whereas the methods of the prior art involving cutting steps request that the elongate body be a unitary structure, such as a monofilament yarn.


In embodiments, the chain stitch yarns, that will form the elongate body of the barbed suture(s), in particular the second, third, fourth and/or fifth yarns, may be monofilaments or multifilaments. In embodiments, the chain stitch yarns are monofilaments yarns, for example having a diameter ranging from about 0.07 mm to about 0.30 mm. In embodiments, the chain stitch yarns are multifilaments. Existing multifilament yarns may show high tenacity, in other words, high tensile strength. In embodiments, the chain stitch yarns may be multifilament yarns having a tensile strength ranging from about 25 cN/dTex to about 40 cN/dTex, for example a tensile strength of about 35 cN/dTex.


In embodiments, the chain stitch yarns may be multifilament yarns having a thickness ranging from 30 to 500 dTex, for example a thickness of 165 dTex.


In embodiments, the first yarns, that will form the barbs of the barbed suture, in particular of the first barbed suture when two needle-beds are used, may be monofilaments or multifilaments. In embodiments, the first yarns are monofilaments. In embodiments, the sixth yarns, that will form the barbs of the second barbed suture, may be monofilaments or multifilaments. In embodiments, the sixth yarns are monofilaments. Monofilaments allow obtaining barbs with higher mechanical properties. For example, the first yarns and the sixth yarns may be selected from monofilaments having a diameter ranging from about 0.15 mm to about 0.30 mm, for example from about 0.20 mm to about 0.30 mm.


The method of the invention allows producing meshes with barbed suture(s), with barbs having varying surface area in a very easy way. In particular, the size and/or the surface area of the barbs of a barbed suture of the mesh obtained by the method of the invention will be dependent on the size of the diameter of the first yarns, respectively the sixth yarns. In embodiments, the first yarns and/or the sixth yarns are monofilaments showing a diameter ranging from 0.07 mm to 0.30 mm. Such a diameter allows obtaining a good fixation of the barbed suture within the biological tissues.


Barbs of varying size may be desired depending on the contemplated surgical application of the mesh. For joining fat and relatively soft tissues, larger barbs may be desired, whereas smaller barbs may be more suitable for collagen-dense tissues. With the method of the invention, the production of small or alternatively large barbs may be easily obtained by simply selecting monofilament yarns for the first and/or sixth yarns of adequate diameters. For example, for obtaining a barbed suture with large barbs according to the method of the invention, monofilament yarns with a diameter ranging from 0.20 mm to 0.30 mm may be used for the first and/or sixth yarns. In embodiments, the first and/or sixth yarns are monofilament yarns showing a diameter ranging from 0.20 mm to 0.30 mm. Alternatively, for obtaining a barbed suture with small barbs according to the method of the invention, monofilament yarns with a diameter ranging from 0.07 mm to 0.10 mm may be used for the first and/or sixth yarns. In embodiments, the first and/or sixth yarns are monofilament yarns having a diameter ranging from 0.07 mm to 0.10 mm.


In some embodiments, a combination of large and small barbs within the same suture may be desirable, for example when the mesh of the invention is used in tissue repair with differing layer structures. Use of the combination of large and small barbs with the same suture wherein barb sizes are customized for each tissue layer will ensure maximum anchoring properties. In embodiments, the barbed suture(s) of the mesh obtained by the method of the invention may have both large and small barbs. Such barbed suture(s) with a combination of large and small barbs may be obtained by using monofilament yarns of a large diameter, for example ranging from 0.20 mm to 0.25 mm, for the first yarns which are threaded on the first guide bar B1, respectively for the sixth yarns which are threaded on the sixth guide bar B6, and monofilament yarns of a small diameter, for example ranging from 0.07 mm to 0.09 mm, for the second yarns which are threaded on the second guide bar B2, respectively for the fifth yarns which are threaded on the fifth guide bar B5, and monofilament yarns of a large diameter, for example ranging from 0.20 mm to 0.40 mm, for the third yarns which are threaded on the third guide bar B3, respectively for the fourth yarns which are threaded on the fourth guide bar B4.


All the yarns, namely the first, second, third, fourth, fifth and sixth yarns used for forming the knitted structure in the method of the invention are made of a biocompatible material. The biocompatible material may be identical or different from one yarn to another. The biocompatible material may be synthetic or natural. The biocompatible polymer material may be biodegradable, non-biodegradable or a combination of biodegradable and non-biodegradable. The term “biodegradable” as used herein is defined to include both bioabsorbable and bioresorbable materials. By biodegradable, it is meant that the materials decompose, or lose structural integrity under body conditions (e.g., enzymatic degradation or hydrolysis) or are broken down (physically or chemically) under physiologic conditions in the body such that the degradation products are excretable or absorbable by the body.


The biocompatible material may be selected from the group consisting of biodegradable polymers, non-biodegradable polymers, and combinations thereof.


Non-biodegradable materials that may be used as biocompatible material for the yarns of the method of the invention include polyolefins, such as polyethylene, polypropylene, copolymers of polyethylene and polypropylene, and blends of polyethylene and polypropylene; polyamides (such as nylon); polyamines, polyimines, polyesters such as polyethylene terephthalate; polytetrafluoroethylene; polyether-esters such as polybutester; polytetramethylene ether glycol; 1,4-butanediol; polyurethanes; and combinations thereof. In other embodiments, non-degradable materials may include silk, collagen, cotton, linen, carbon fibers, titanium, and the like. The polypropylene may be isotactic polypropylene or a mixture of isotactic and syndiotactic or atactic polypropylene.


Biodegradable materials that may be used as biocompatible material of the yarns of the method of the invention include polylactic acid (PLA), polyglycolic acid (PGA), oxidized cellulose, polycaprolactone (PCL), polydioxanone (PDO), trimethylene carbonate (TMC), polyvinyl alcohol (PVA), polyhydroxyalkanoates (PHAs), copolymers of these materials and mixtures thereof.


In embodiments, the biocompatible material is selected from polyethylene, polypropylene, polyester such as polyethylene terephthalates, polyamide, silicone, polyether ether ketone (PEEK), polyarylether ether ketone (PAEK), polylactic acid (PLA), polycaprolactone (PCL), polydioxanone (PDO), trimethylene carbonate (TMC), polyvinyl alcohol (PVA), polyhydroxyalkanoate (PHA), polyglycolic acid (PGA), copolymers of these materials, and mixtures thereof.


In embodiments, the biocompatible material used for the second and fifth yarns is polyethylene. The polyethylene may be a ultra high molecular weight polyethylene conferring to a multifilament yarn made therefrom a high tensile strength. In embodiments, the second and/or fifth yarns may be polyethylene multifilament yarns having a tensile strength ranging from about 25 cN/dTex to about 40 cN/dTex, for example a tensile strength of about 35 cN/dTex. Such polyethylene multifilament yarns made from ultra high molecular weight polyethylene and provided with such a tensile strength are commercially available from the company DSM under the tradename “Dyneema Purity®”.


In embodiments, the biocompatible material used for the second and fifth yarns is polyethylene terephthalate. In embodiments, the second and fifth yarns may be polyethylene terephthalate multifilament yarns having a tensile strength ranging from about 25 cN/dTex to about 40 cN/dTex, for example a tensile strength of about 35 cN/dTex. In other embodiments, the second and fifth yarns may be high tenacity polyester yarns having a thickness ranging from 30 to 500 dTex, for example of 165 dTex.


In embodiments, the biocompatible material used for the first, third, fourth and/or sixth yarns is polypropylene. In embodiments, the first, third, fourth and/or sixth yarns are polypropylene monofilaments. Polypropylene may confer rigidity to the monofilaments and therefore to the barbs obtained therefrom.


The method of the invention allows customizing the elongate body and the barbs of the barbed suture(s) attached to the mesh in function of the contemplated surgical application. For example, if the barbed suture(s) is/are to be used to fix the mesh in skin or tendon, the barbs may be made relatively short and more rigid, for example by using polypropylene monofilament for the first, third, fourth and/or sixth yarns, to facilitate entry into this rather firm tissue. Alternatively, if the barbed suture(s) is/are intended for use in fatty tissue, which is relatively soft, the barbs may be made longer and spaced further apart to increase the ability of the suture(s) to grip the soft tissue.


In a second step, step b), of the method of the invention, the second knit portion is cut along the warp direction on both sides of said at least one weft stitched chain stitch and along an edge separating the second knit portion from the first knit portion, so as to remove the second knit portion from the knitted structure while maintaining said weft stitched chain stitch attached to the first knit portion.


In embodiments, where the knitting pattern followed by the first guide bar B1 during step a)ii) produces at least a partial weft in which said first yarns complete weft stitches with a plurality of chain stitches, thereby producing a plurality of weft stitched chain stitches, the cutting of step b) is repeated for each weft stitched chain stitch, thereby producing a plurality of barbed sutures attached to the first knit portion.


In embodiments where the warp knitting machine comprises a first needle-bed comprising first, second and third guide bars (B1, B2, B3) and a second needle-bed comprising fourth, fifth and sixth guide bars (B4, B5, B6) as described above, the cutting step bº) may comprise the following steps:


cutting the first needle-bed second knit portion along the warp direction on both sides of said at least one first weft stitched chain stitch and along an edge separating the first needle-bed second knit portion from the first bidimensional openworked knit, so as to remove the first needle-bed second knit portion from the knitted structure while maintaining said at least one first weft stitched chain stitch attached to the first bidimensional openworked knit, the second or third yarn forming part of said at least one first weft stitched chain stitch forming the elongate body of a first barbed suture attached to the first bidimensional openworked knit, the first yarns cuts extending from said weft stitches of said at least one first weft stitched chain stitch forming said barbs of said first barbed suture,


cutting the second needle-bed second knit portion along the warp direction on both sides of said at least one second weft stitched chain stitch and along an edge separating the second needle-bed second knit portion from the second bidimensional openworked knit, so as to remove the second needle-bed second knit portion from the knitted structure while maintaining said at least one second weft stitched chain stitch attached to the second bidimensional openworked knit, the fourth or fifth yarn forming part of said at least one second weft stitched chain stitch forming the elongate body of a second barbed suture attached to the second bidimensional openworked knit, the sixth yarns cuts extending from said weft stitches of said at least one second weft stitched chain stitch forming said barbs of said second barbed suture.


In embodiments, said elongate body(ies) of said second barbed suture(s) is/are formed of fifth yarns only.


In embodiments, where the knitting pattern followed by the first guide bar B1 on the first needle-bed, respectively by the sixth guide bar B6 on the second needle-bed, during step a)ii), produces at least a partial weft in which said first yarns, respectively said sixth yarns, complete weft stitches with a plurality of chain stitches, thereby producing a plurality of first and second weft stitched chain stitches, the cutting of step b) is repeated for each of said first and second weft stitched chain stitches, thereby producing a plurality of first barbed sutures attached to the first bidimensional openworked knit, respectively a plurality of second barbed sutures attached to the second bidimensional openworked knit.


For each of such attached first and second weft stitched chain stitches, the chain stitch yarns, coming either from guide bar B2 (second yarns), B3 (third yarns), B4 (fourth yarns) and/or B5 (fifth yarns), preferably coming from guide bar B2 and/or guide bar B5, will form the elongate body of the thus obtained barbed sutures (first and/or second barbed sutures), and the first or sixth yarns cuts extending from the weft stitches of the first and second weft stitched chain stitches will form the barbs of the thus obtained barbed sutures (first and/or second barbed sutures).


In embodiments, the cutting step may be performed on line, namely while the knitted structure produced at step a) is still on the knitting machine. For example, the knitting machine may be provided with adequate blades. Alternatively, the cutting step may be performed off line, for example with pairs of scissors. For example, the cutting step may be performed by LASER cutting, high frequency welding cutting, roller cutting and/or hot resistance cutting.


In embodiments where the first and/or sixth yarns are monofilaments, the cutting step may be performed via melting the monofilaments at a temperature above their melting point so as to cut said monofilaments. Such a cutting step may be performed on line or off line.


In embodiments where the knitting machine used in the method of the invention comprises two needle-beds and six guide bars are used as described above, after the cutting step b) as described above, the knitted structure is then opened so as to spread in a single plane the part of the knitted structure obtained from the first needle-bed and the part of the knitted structure obtained from the second needle-bed,


wherein the first bidimensional openworked knit, the connecting knit portion, and the second bidimensional openworked knit form altogether the mesh; the second or third yarn forming part of said at least one first weft stitched chain stitch forms the elongate body of a first barbed suture attached to the first bidimensional openworked knit, the first yarns cuts extending from said weft stitches of said at least one first weft stitched chain stitch forming said barbs of said first barbed suture; the fourth or fifth yarn forming part of said at least one second weft stitched chain stitch forms the elongate body of a second barbed suture attached to the second bidimensional openworked knit, the sixth yarns cuts extending from said weft stitches of said at least one second weft stitched chain stitch forming said barbs of said second barbed suture.


In embodiments, for example when “y” is greater than 2, linking yarns from the three-dimensional openworked knit obtained in step a)0) may be cut along stitches ranging from 2 to y, such a step taking place after the cutting step b) described above and before opening the knitted structure in a single plane. The purpose of such a step is to reduce the height of the connecting knit portion in the final configuration of the mesh, when it is spread in a single plane, in order to avoid generating an extra thickness in the middle of the mesh.


After cutting step b) of the method of the invention, the first and/or sixth yarns cuts forming the barbs may generally extend substantially radially out of the chain stitch yarn forming the elongate body of the barbed suture along an angle between the first and/or sixth yarns cuts and the chain stitch yarn of about 90°. In the present application, the angle between the first and/or sixth yarns cuts and the yarn forming the elongate body is measured with a Profile Projector ORAM 300V geometric.


The angle between the first and/or sixth yarns cuts and the yarn forming the elongate body may be modified by submitting the attached barbed suture to a stretching treatment. For example, the angle between the first and/or sixth yarns cuts and the yarn forming the elongate body may be modified so that said angle reaches 45°, 35°, or 33°. The method of the invention therefore allows selecting the adequate angle between the barbs and the elongate body of the barbed suture for an optimized fixation in the biological tissues.


In embodiments, the method further comprises a stretching step during which the second knit portion produced in step a)ii) and/or the attached barbed suture(s) obtained in step bº) is(are) submitted to a stretching treatment. The stretching treatment may comprise a step of stretching the second knit portion or the attached barbed suture(s) in the warp direction. For example, the stretching treatment may be performed by using a traction testing machine such as Hounsfield model H5KS in which a first end of the second knit portion or the first end of an attached barbed suture is grasped by a fixed jaw of the machine and the opposite end of the second knit portion or of the attached barbed suture is grasped by a moving jaw. By moving away from the fixed jaw, the moving jaw stretches the second knit portion or the attached barbed suture.


On an industrial scale, the stretching treatment of the second knit portion in the warp direction may be performed on a heat-setting machine for example. By stretching the second knit portion in the warp direction, all weft stitched chain stitch(es) of the second knit portion are stretched, and as a consequence, all the attached barbed sutures are stretched.


In embodiments, the attached barbed suture(s) is/are stretched from about 0% to about 90%, which means that the stretched attached barbed suture(s) show(s) a length from about 0% to about 90% greater than the initial length of the attached barbed suture.


In embodiments, the second knit portion and/or the attached barbed suture(s) are stretched at 40%, which means that each of the second knit portion and/or the attached barbed suture(s) shows a length 40% greater than their initial length for each. Such a stretching step of 40% may result in the angle between the first and/or sixth yarns cuts and the yarn forming the elongate body be modified to reach about 45°. Such an angle between the first and/or sixth yarns cuts and the yarn forming the elongate body of the barbed suture may be desirable for barbed sutures intended to be used in soft biological tissues.


In other embodiments the second knit portion and/or the attached barbed suture(s) are stretched at 80%, which means that each of the second knit portion and/or the attached barbed suture(s) shows a length 80% greater than their initial length for each. Such a stretching step of 80% may result in the angle between the first and/or sixth yarns cuts and the yarn forming the elongate body be modified to reach about 35°. Such an angle between the first and/or sixth yarns cuts and the yarn forming the elongate body of the barbed suture may be desirable for barbed sutures intended to be used for anchoring purposes in dense biological tissues such as muscles.


In other embodiments the second knit portion and/or the attached barbed suture(s) are stretched at 90%, which means that each of the second knit portion and/or the attached barbed suture(s) shows a length 90% greater than their initial length for each. Such a stretching step of 90% may result in the angle between the first and/or sixth yarns cuts and the yarn forming the elongate body be modified to reach about 33°. Such an angle between the first and/or sixth yarns cuts and the yarn forming the elongate body of the barbed suture may be desirable for barbed sutures intended to be used for anchoring purposes in dense biological tissues such as muscles.


In embodiments, the attached barbed suture(s) may be submitted to a twisting treatment, for example for giving to the barbs a helical pattern. Such a treatment may be performed with a rotor machine.


In embodiments, the method of the invention further comprises a heat-setting step during which either the second knit portion produced in step a)ii) or the attached barbed suture(s) resulting from step b) is(are) submitted to a heat-setting treatment. The heat-setting treatment is intended to fix the barbed suture in the desired configuration. The heat-setting step may take place either between step a) and b), namely before the cutting step, or after step b), namely after the cutting step. For example, in case the second knit portion or the attached barbed suture(s) are submitted to a stretching treatment and/or a twisting treatment, they may simultaneously be submitted to a heat-setting treatment, so that the barbs configuration regarding for example the angle made between the first and/or sixth yarns cuts and the elongate body and/or the helical pattern obtained by the twisting treatment are fixed.


The heat-setting treatment may comprise a step of heating the second knit portion or the attached barbed suture(s) at a temperature ranging from 30° C. to 230° C. during a time period ranging from 1 min to 4 min. The heat-setting treatment may be performed on a heat-setting machine.


The mesh having one or more barbed suture(s) attached thereto obtained by the method of the invention may be sterilized by any means within the purview of those skilled in the art.


The barbed suture(s) of the mesh obtained by the method of the invention may be coated or impregnated with one or more medico-surgically useful substances which accelerate or beneficially modify the healing process when the barbed suture(s) is/are applied to a surgical site. In certain embodiments, the coating may be formed from biodegradable polymers selected from the group consisting of lactones, carbonates, polyorthoesters, hydroxyalkoanates, hydroxybutyrates, bioactive agents, polyanhydrides, silicone, calcium stearoyl lactylates, vinyl polymers, high molecular weight waxes and oils, natural polymers, proteins, polysaccharides, suspendable particulates, dispersible particulates, microspheres, nanospheres, rods, homopolymers thereof, copolymers thereof, and combinations thereof.


Suitable bioactive agents include, for example, biocidal agents, antimicrobial agents, antibiotics, anti-proliferatives, medicants, growth factors, anti-clotting agents, clotting agents, analgesics, anesthetics, anti-inflammatory agents, wound repair agents and the like, chemotherapeutics, biologics, protein therapeutics, monoclonal or polyclonal antibodies, DNA, RNA, peptides, polysaccharides, lectins, lipids, probiotics, diagnostic agents, angiogenics, anti-angiogenic drugs, polymeric drugs, and combinations thereof.


Bioactive agents include substances which are beneficial and tend to promote the healing process. For example, the barbed suture(s) of the mesh obtained by the method of the invention can be provided with a bioactive agent that will be deposited at the sutured site. The bioactive agent can be chosen for its antimicrobial properties, capability for promoting wound repair and/or tissue growth, or for specific indications such as thrombosis.


The barbed suture(s) of the mesh obtained by the method of the invention may additionally comprise a needle at their free end. The needle attachment may be made by any conventional method such as crimping, swaging, and the like.


The prosthetic mesh having one or more barbed suture(s) attached thereto obtained by the method of the invention may be utilized in any open endoscopic or laparoscopic methods. For example, the prosthetic mesh having one or more barbed suture(s) attached thereto obtained by the method of the invention may be utilized for the treatment of hernia.


For example, the mesh obtained by the method of the invention may play its function of abdominal wall repair while the one or more barbed sutures attached thereto may be used by the surgeon in order to fix the mesh to the abdominal wall. The surgeon does not have to look for sutures at the time he needs to fix the mesh to the biological tissue. Moreover, because of the barbed nature of the suture(s) attached to the mesh, the surgeon needs not perform surgical knots. The barbs of the attached barbed suture(s) perform the anchoring function of the suture into the biological tissue very efficiently.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

The advantages of the method of the invention will appear more clearly from the following examples and attached drawings in which:



FIG. 1 is a schematic top view showing an embodiment of the knitted structure obtained in step a) of the method of the invention in the case where one needle-bed is used,



FIG. 2 is a schematic view showing an embodiment of a knitting pattern suitable for the knitting process of step aº)ii) of the method of the invention in the case where one needle-bed is used such as in FIG. 1,



FIG. 3 is a schematic view showing the cutting step of the method of the invention for the knitted structure of FIG. 1,



FIG. 4 is a schematic top view showing a mesh having a barbed suture attached thereto obtained after performing step bº) of the method of the invention on the knitted structure of FIG. 1,



FIG. 5 is a partial front view of an attached barbed suture obtained by the method of the invention showing the angle formed between the barbs and the elongate body of the suture,



FIG. 6 is a partial schematic view of an attached barbed suture obtained after step bº) of the method of the invention having active and passive portions along its length,



FIG. 7 is a schematic side view showing the knitted structure obtained in step a) of the method of the invention in the case where two needle-beds are used,



FIG. 8 is a schematic top view of the knitted structure of FIG. 7,



FIG. 9 is a schematic top view of the knitted structure of FIG. 7 after cutting step bº),



FIG. 10 is a schematic side view showing optional step cº),



FIG. 11 is a side view of the prosthetic mesh of the invention obtained from the knitted structure of FIG. 7 after step dº),



FIG. 12 is a top view of the prosthetic mesh of the invention obtained from the knitted structure of FIG. 7 after step dº).





DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES
Example 1

In the present example, a prosthetic mesh 1 (see FIG. 4) having an attached barbed suture 10 attached thereto is formed according to the method of the invention, using on needle-bed only.


In a first step, step aº), a knitted structure 2 (see FIG. 1) is produced on a Raschel machine comprising one needle-bed comprising a first guide bar B1, a second guide bar B2 and a third guide bar B3. The knitted structure is produced on a determined length along the warp direction corresponding to a total number N of 70 stitches, with x=30.


In other embodiments, the knitted structure could be produced on other lengths corresponding to other number of stitches.


In the present example, all the knitting patterns are given according to the ISO 11676 standard (publication year 2014).


With reference to FIG. 1, is shown schematically a piece of the knitted structure 2, with the first knit portion 13 and the second knit portion 12, and the edge 14 separating the first knit portion 13 from the second knit portion 12. The knitted structure 2 is produced as described below.


In a step a)i), the first knit portion 13 capable of favoring cellular growth is produced for stitches ranging from 1 to 30.


The knitting pattern followed by bars B1, B2 and B3 is the following one:

    • Bar B1: (5.4/3.2/0.1)×10//
    • Bar B2: (5.4/3.2/0.1)×10//
    • Bar B3: (0.1/2.3/5.4)×10//


In a step a)ii), thr second knit portion 12 is produced for stitches ranging from 31 to 70.


The knitting pattern followed by bars B1, B2 and B3 is the following one:

    • Bar B1: (0.0/2.3/5.5/3.2)×10//
    • Bar B2: (2.3/2.3/3.2/3.2)×10//
    • Bar B3: (2.3/2.3/3.2/3.2)×10//


In both steps a)i) and aii), B1 is threaded 1 full, 3 empty, B2 is threaded 1 full, 3 empty and B3 is threaded 1 full, 3 empty, along the whole width of the machine.


Such a pattern results in a distance between a weft stitched chain stitch and the two adjacent chain stitches of about 3.5 mm.


The yarns threaded in guide bar B1 (first yarns) are polypropylene monofilaments having a diameter of 0.20 mm.


The yarns threaded in guide bar B2 (second yarns) are multifilament yarns of ultra high molecular weight polyethylene, such as those marketed by the company DSM under the tradename “Dyneema Purity®”. These multifilaments have a tensile strength of 35 cN/dTex.


The yarns threaded in guide bar B3 (third yarns) are polypropylene monofilaments having a diameter of 0.30 mm.


With reference to FIG. 2 showing the knitting pattern of step a)ii) above in accordance with a representation well known for one skilled in the art, are shown the warp direction Wa, the weft direction We, the first yarns “a” (threaded in guide bar B1) shown as a thick line, the second yarns “b” (threaded in guide bar B2) shown as a dotted line, and the third yarns “c” (threaded in guide bar B3) shown as a thin line. The knitting pattern produces a plurality of chain stitches 3 (with second and third yarns (b, c) coming from guide bars B2 and B3) and a partial weft 4 (with first yarns “a” coming from guide bar B1). The first yarns “a” complete weft stitches 5 with some of the chain stitches 3, herein after called weft stitched chain stitches 6. Actually, as appears from FIG. 2, the knitting pattern produces one weft stitched chain stitch 6 out of two chain stitches 3 present in the second knit portion 12. In the present example, it happens that the weft stitched chain stitches 6 correspond to all the chain stitches 3 that are made with the second yarns “b”. In other embodiments not shown, the weft stitched chain stitches 6 could correspond to the chain stitches 3 that are made with the third yarns “c”, or could correspond to some of the chain stitches made with the second yarns “b” or with the third yarns “c”. In the present example, the distance between two adjacent weft stitched chain stitches 6 is due to the threading-in of the second guide bar B2, which is 1 full, 3 empty. Such a threading-in may result in a distance between the weft stitched chain stitches 6 of about 3.5 cm.


With reference to FIG. 3, in a second step, step bº), the second knit portion 12 thus produced is cut along the warp direction on both sides of the weft stitched chain stitches 6 and along the edge 14 separating the second knit portion 12 from the first knit portion 13 along cutting lines 11, so as to remove the second knit portion 12 from the knitted structure 2 while maintaining the weft stitched chain stitch 6 attached to the first knit portion 13. The cutting step may be performed for example with a pair of scissors.


For sake of clarity, the figures show the cutting step for one weft stitched chain stitch 6 only. Anyway, the cutting step may be repeated for each weft stitched chain stitch 6 present on the width of the knitted structure 2 corresponding to the desired width of the final mesh 1 to be obtained.



FIG. 4 shows the mesh 1 having an attached barbed suture 10 obtained in the present example with the method of the invention, with the first knit portion 13 forming the mesh and the attached weft stitched chain stitch 6, in which the chain stitch yarn (second yarn “b” with reference to FIG. 2) of the weft stitched chain stitch 6 forms the elongate body 9 of the barbed suture 10 and the monofilament cuts 7 coming from first yarns “a” and extending from the weft stitches 5 of the weft stitched chain stitch 6 form the barbs 8 of the barbed suture 10.


As shown on this Figure, the attached weft stitched chain stitch 6 which is also the elongate body 9 of the attached barbed suture 10 extends along a longitudinal axis A1, and the monofilament cuts 7, which are also the barbs 8, each extend along a longitudinal axis A2. On FIG. 4, the angle α between axis A1 and axis A2 is substantially about 90°.


As appears from the cutting step shown on FIG. 3, the length of the monofilament cuts 7, and therefore of the barbs 8, depend both on the initial distance between the weft stitched chain stitch 6 and adjacent chain stitches 3, and on the location of the cutting lines 11.


Although FIG. 4 shows the mesh 1 with only one attached barbed suture 10, a plurality of attached barbed sutures 10 could be obtained depending on the number of weft stitched chain stitches 6 cut along the width of the knitted structure 2 corresponding to the desired width of the final mesh 1 to be obtained.


With reference to FIG. 6 is shown schematically a portion of an attached barbed suture 10 obtained according to the method of the present example in the case where the first guide bar B1 was fed intermittently with the first yarns. During the time periods for which the guide bar B1 was not fed with the first yarns, no weft stitches were produced on the weft stitched chain stitch 6, thereby resulting in portions of the weft stitched chain stitch 6 free of barbs, namely passive portions 15. An attached barbed suture 10 having alternating active portions 16 (when guide bar B1 was fed with first yarns) and passive portions 15 is therefore obtained. As shown on this Figure, the respective distances (L1, L2) between two adjacent active portions 16 may vary, as such distances are dependent on the time period during which the guide bar B1 was not fed.


With reference to FIG. 5 is shown a larger view of a portion of the attached barbed suture 10 of FIG. 4 after a stretching treatment in which the attached barbed suture was stretched at 90%. As appears from this Figure, after the stretching treatment, the angle α between axis A1 and axis A2, in other words between the yarn “b” forming the elongate body 9 of the barbed suture 10 and the monofilament cuts 7, also barbs 8, has been modified and is now about 33°.


The attached barbed suture 10 of FIG. 5 is then submitted to a heat-setting treatment in order to fix the configuration of the barbs 8 with respect to the elongate body 9 of the suture 10.


In embodiments not shown, the knitting pattern used in step a)ii) above may result in all chain stitches being also weft stitched chain stitches, when the first yarns produce weft stitches with all chain stitches produced by the second and the third guide bars. In other embodiments, the knitting pattern may produce only one weft stitched chain stitch out of three, four, five, etc. . . . chain stitches present in the second knit portion, which may result in variations of the distance between two adjacent weft stitched chain stitches. Alternatively, this distance may vary due to different threading-in of the guide bars.


The mesh 1 with the barbed suture 10 attached thereto may be particularly useful in hernia repair. The mesh may play its function of abdominal wall repair while the one or more barbed sutures 10 attached thereto may be used by the surgeon in order to fix the mesh to the abdominal wall. The surgeon does not have to look for sutures at the time he needs to fix the mesh to the biological tissue. Moreover, because of the barbed nature of the suture(s) attached to the mesh, the surgeon needs not perform surgical knots. The barbs of the attached barbed suture(s) perform the anchoring function of the suture into the biological tissue very efficiently.


Example 2

In the present example, a prosthetic mesh 28 having a plurality of barbed sutures (10; 10′) attached thereto (see FIG. 12) is formed according to the method of the invention using two needle-beds. The knitting machine used may be a Raschel knitting machine comprising a double needle-bed. The description of the method used in the present example is made with reference to FIGS. 7-12.


The Raschel knitting machine comprises a first needle-bed comprising three guide bars B1, B2 and B3 and a second needle-bed comprising three guide bars B4, B5 and B6. In the present example, the same references that are used for the production and steps performed in relation to the first needle-bed will be maintained for the production and steps performed in relation to the first needle-bed, but with a “prime” indicated after the reference digit.


In the present example, all the guide bars (B1, B2, B3, B4, B5, B6) are threaded 1 full, 3 empty along the whole width of the machine and all the knitting patterns are given according to the ISO 11676 standard (publication year 2014).


In the present example:


first guide bar B1 is threaded with first yarns and sixth guide bar B6 is threaded with sixth yarns, the first and sixth yarns being monofilaments of polypropylene having a diameter of about 0.20 mm,


second guide bar B2 is threaded with second yarns, and fifth guide bar B5 is threaded with fifth yarns, the second and fifth yarns being multifilaments of high tenacity polyester having a thickness of 165 dTex,


third guide bar B3 is threaded with third yarns and fourth guide bar B4 is threaded with fourth yarns, the third and fourth yarns being monofilaments of polypropylene having a diameter of about 0.30 mm.


In a first step a), a knitted structure 27 (see FIG. 7) is produced on a length in the warp direction Wa corresponding to a number N of 70 stitches, with x=30 and y=6. The warp direction Wa is indicated on FIG. 7. Although this warp direction is not repeated for FIGS. 8-10 for sake of clarity, it is identical for these Figures as in FIG. 7.


1º) During step a)0): for stitches ranging from 1 to 6, a connecting portion 20 is produced under the form of a three-dimensional openworked knit 21 capable of favoring cellular growth, according to the following knitting pattern:

    • B1: (5.4.3.3/3.2.1.1/0.1.3.3)×2//
    • B2: (5.4.3.3/3.2.1.1/0.1.3.3)×2//
    • B3: 0.1.0.1/2.3.2.3/5.4.2.2/0.1.2.2/2.3.4.4/5.4.2.2//
    • B4: 0.1.0.1/2.3.2.3/4.4.5.4/2.2.0.1/2.2.2.3/4.4.5.4//
    • B5: (3.3.5.4/3.3.3.2/1.1.0.1)×2//
    • B6: (3.3.5.4/3.3.3.2/1.1.0.1)×2//


The above knitting pattern allows producing a knit that has a first face produced on the first needle-bed by the first, second and third yarns from the first, second and third guide bars (B1, B2, B3), and a second face, produced on the second needle-bed by the fourth, fifth and sixth yarns from the fourth, fifth and sixth guide bars (B4, B5, B6), the first and second faces being linked together by some of the third and/or fourth, yarns crossing from the first needle-bed to the second needle-bed and vice-versa, thereby forming linking yarns.


2º) During step a)i): for stitches ranging from 7 to 30: a first knit portion 22 is produced. During this step and the subsequent step, independent knits are produced on each of the needle bed in parallel.


On the first needle-bed, a first bidimensional openworked knit 23 capable of favoring cellular growth is produced according to the following knitting pattern:

    • B1: (5.4.3.3/3.2.1.1/0.1.3.3)×8//
    • B2: (5.4.3.3/3.2.1.1/0.1.3.3)×8//
    • B3: (0.1.2.2/2.3.4.4/5.4.2.2)×8//


On the second needle-bed, a second bidimensional openworked knit 23′ capable of favoring cellular growth is produced according to the following knitting pattern:

    • B4: (2.2.0.1/2.2.2.3/4.4.5.4)×8//
    • B5: (3.3.5.4/3.3.3.2/1.1.0.1)×8//
    • B6: (3.3.5.4/3.3.3.2/1.1.0.1)×8//


The first and second bidimensional openworked knits being independent from each other. They each constitute a bidimensional knit suitable for use as a reinforcement member for the repair of hernia in the abdominal wall.)


3º) During step a)ii): for stitches ranging from 31 to 70: a second knit portion 24 is produced.


On the first needle-bed, a first needle-bed second knit portion 25 is produced according to the following knitting pattern:

    • B1: (0.0.0.0/2.3.4.4/5.5.5.5/3.2.1.1)×10//
    • B2: (2.3.2.2/2.3.3.3/3.2.3.3/3.2.2.2)×10//
    • B3: (2.3.2.2/2.3.3.3/3.2.3.3/3.2.2.2)×10//


In a similar way as described in Example 1 for the second knit portion 12, in the present example, the knitting pattern followed by the second and third guide bars (B2, B3) produces chain stitches and the knitting pattern followed by the first guide bar B1 produces a partial weft in which said first yarns complete weft stitches with a plurality, four in the example shown in the Figures, of said chain stitches, thereby producing a plurality of weft stitched chain stitches 6, four in the example shown.


On the second needle-bed, a second needle-bed second knit portion 25′ is produced according to the following knitting pattern:

    • B4: (2.2.2.3/2.2.2.3/3.3.3.2/3.3.3.2)×10//
    • B5: (2.2.2.3/2.2.2.3/3.3.3.2/3.3.3.2)×10//
    • B6: 1.1.0.0/0.0.2.3/4.4.5.5/5.5.3.2)×10//


Similarly to what takes place for the first-needle bed, the knitting pattern followed by the fourth and fifth guide bars (B4, B5) produces chain stitches and the knitting pattern followed by the sixth guide bar B6 produces a partial weft in which the sixth yarns complete weft stitches with a plurality, four as shown on the Figures, of said chain stitches, thereby producing a plurality of weft stitched chain stitches, for example four weft stitched chain stitches 6′.


The knitted structure 27 produced in the step a) above is shown on FIGS. 7 and 8 which are schematic side view and bottom view of the knitted structure.


In a step bº), with reference to FIGS. 9-12:


the first needle-bed second knit portion 25 is cut along the warp direction on both sides of each of the four weft stitched chain stitches 6 obtained by first, second and third guide bars (B1, B2, B3) and along an edge 26 separating the first needle-bed second knit portion 25 from the first bidimensional openworked knit 23, so as to remove the first needle-bed second knit portion 25 from the knitted structure 27 while maintaining the four weft stitched chain stitches 6 attached to the first bidimensional openworked knit 23,


the second needle-bed second knit portion 25′ is cut along the warp direction on both sides of each of the four weft stitched chain stitches 6′ obtained by third, fourth and fifth guide bars (B4, B5, B6) and along an edge 26′ separating the second needle-bed second knit portion 25′ from the second bidimensional openworked knit 23′, so as to remove the second needle-bed second knit portion 25′ from the knitted structure 27 while maintaining the four weft stitched chain stitches 6′ attached to the second bidimensional openworked knit 23′.


The cutting step is performed in the same manner as described in Example 1.


In a step cº), with reference to FIG. 10, the linking yarns from the three-dimensional openworked knit 21 obtained in step a)0) are cut along stitches ranging from 2 to 6. As a result, the connecting knit portion 20 comprises a cut part 20a and a bridge part 20b, said bridge part 20b connecting the part of the knitted structure 27 obtained on the first needle-bed to the part of the knitted structure 27 obtained on the second needle-bed.


This step may be optional, for example in the case where the connecting knit portion 20 extends already on a length corresponding to 2 stitches only from the start. The purpose of this step cº) is to reduce the height of the connecting knit portion in the final configuration of the mesh as shown in FIG. 11, in order to avoid generating an extra thickness in the middle of the mesh 28.


If the number of stitches in the warp direction along which the connecting knit portion extends from the start is low enough for not producing any extra thickness in the final configuration of the mesh, than the present step cº) is unnecessary.


In a step dº), the knitted structure 27 is opened so as to spread in a single plane the part of the knitted structure obtained from the first needle-bed and the part of the knitted structure obtained from the second needle-bed as shown on FIGS. 11 and 12.


With reference to FIGS. 11 and 12, the first bidimensional openworked knit 23, the connecting knit portion 20, cut according to step cº), and the second bidimensional openworked knit 23′ form altogether the mesh 28: this mesh 28 is made of knits capable of favoring cellular growth and is therefore particularly indicated for repair of the abdominal wall for example. The second yarns forming part of the weft stitched chain stitches 6 obtained by first, second and third guide bars (B1, B2, B3) form the elongate body 9 of first barbed sutures 10 attached to the first bidimensional openworked knit 23, the monofilament cuts 7 of first yarns extending from the weft stitches of the weft stitched chain stitches 6 form the barbs 8 of the first barbed sutures 10; the fifth yarns forming part of the weft stitched chain stitches 6′ obtained by fourth, fifth and sixth guide bars (B4, B5, B6) form the elongate body 9′ of second barbed sutures 10′ attached to the second bidimensional openworked knit 23′, the monofilament cuts 7′ of sixth yarns extending from the weft stitches of the weft stitched chain stitches 6′ form the barbs 8′ of the second barbed sutures 10′.


In the present example, the elongate bodies 9 of the first barbed sutures 10 are formed of second yarns only and the elongate bodies 9′ of the second barbed sutures 10′ are formed of fifth yarns only.


In other embodiments not shown, the elongate bodies 9 of the first barbed sutures 10 may be formed of third yarns only or of a combination of second and third yarns, and the elongate bodies 9′ of the second barbed sutures 10′ may be formed of fourth yarns only or of a combination of fourth and fifth yarns.


The mesh 28 having barbed sutures (10, 10′) attached thereto as obtained in the present example may be particularly useful in hernia repair. The mesh 28 may play its function of abdominal wall repair while the barbed sutures (10, 10′) attached thereto may be used by the surgeon in order to fix the mesh 28 to the abdominal wall. The surgeon does not have to look for sutures at the time he needs to fix the mesh to the biological tissue. Moreover, because of the barbed nature of the suture(s) (10, 10′) attached to the mesh 28, the surgeon needs not perform surgical knots. As appears from FIGS. 11 and 12, the barbs (8, 8′) of the attached barbed suture(s) (10, 10′) are naturally oriented in opposite direction, thereby performing efficiently their anchoring function of the suture (10; 10′) and of the mesh 28 into the biological tissue.


In addition, the attached barbed sutures (10; 10′) of the mesh 28 may be further submitted to a treatment, such as a stretching treatment, a twisting treatment, a heat-setting treatment and/or a combination of these treatments, so as to provide them with an optimized configuration in function of the intended use of the mesh and sutures, in order to ensure an optimized fixation of the mesh in the biological tissues.


The method of the invention allows preparing prosthetic meshes having one or more barbed suture(s) attached thereto in a very simple way, and in only one single knitting process. The method further allows adapting very easily and in a cost effective manner the nature and structure of the attached barbed suture(s), such as frequency per cm, configuration, spacing, length and surface area of the barbs, depending upon the tissue in which the barbed suture(s) are to be used. With the method of the invention, it is possible to obtain meshes having barbed suture(s) attached thereto, with barbed suture(s) in which the barbs may be arranged in any suitable pattern, for example, helical, linear, or randomly spaced.

Claims
  • 1. A method for forming a prosthetic mesh having at least one barbed suture attached thereto, said barbed suture comprising an elongate body provided with barbs extending substantially radially out from said elongate body, said method comprising the following steps: a) producing a knitted structure on a warp knitting machine comprising at least one needle-bed comprising at least three guide bars, a first guide bar B1 a second guide bar B2 and a third guide bar B3, said first guide bar B1 being threaded with first yarns of a biocompatible material, said second guide bar B2 being threaded with second yarns of a biocompatible material, said third guide bar B3 being threaded with third yarns of a biocompatible material, said knitted structure being produced on a determined length along a warp direction corresponding to a total number of N stitches ranging from 1 to N completed along said warp direction by the machine, N being an integer above 7, whereini) a first knit portion is produced along stitches ranging from 1 to x, where 1<x<N, in which the first, the second and the third guide bars (B1, B2, B3) follow a first knit pattern to produce an openworked knit capable of favoring cellular growth,ii) a second knit portion is produced for stitches ranging from (x+1) to N, in which the first, the second and the third guide bars (B1, B2, B3) follow a second knit pattern wherein said second and third guide bars B2, B3 produce chain stitches and the first guide bar B1 produces at least a partial weft in which said first yarns complete weft stitches with at least one of said chain stitches, thereby producing at least one weft stitched chain stitch,b) cutting the second knit portion along the warp direction on both sides of said at least one weft stitched chain stitch and along an edge separating the second knit portion from the first knit portion, so as to remove the second knit portion from the knitted structure while maintaining said weft stitched chain stitch attached to the first knit portion,wherein the first knit portion forms the mesh and the second or third yarn forming part of said at least one weft stitched chain stitch forms said elongate body of said barbed suture attached thereto, the first yarns cuts extending from said weft stitches of said at least one weft stitched chain stitch forming said barbs of said barbed suture.
  • 2. The method of claim 1, wherein the second knitting pattern followed by the first guide bar B1 during step a)ii) produces at least a partial weft in which said first yarns complete weft stitches with a plurality of chain stitches, thereby producing a plurality of weft stitched chain stitches, and wherein the cutting of step b) is repeated for each weft stitched chain stitch, thereby producing a plurality of barbed sutures attached to the first knit portion.
  • 3. The method of claim 1, wherein said elongate body of said barbed suture is formed of second yarns only.
  • 4. The method of claim 1, wherein the warp knitting machine comprises two needle-beds, a first needle-bed comprising said first, second and third guide bars (B1, B2, B3), and a second needle-bed comprising fourth guide bar B4, fifth guide bar B5 and sixth guide bar B6, said fourth guide bar B4 being threaded with fourth yarns of a biocompatible material, said fifth guide bar B5 being threaded with fifth yarns of a biocompatible material, said sixth guide bar B6 being threaded with sixth yarns of a biocompatible material, wherein step a) comprises a step 0) occurring before step a)i) as follows:0) a connecting knit portion is produced along stitches ranging from 1 to y, where 1<y<x<N, in which first, second, third, fourth, fifth and sixth guide bars (B1, B2, B3, B4, B5, B6) produce a three-dimensional openworked knit capable of favoring cellular growth, said knit having a first face produced on said first needle-bed by said first, second and third yarns from said first, second and third guide bars (B1, B2, B3), and a second face, produced on said second needle-bed by said fourth, fifth and sixth yarns from said fourth, fifth and sixth guide bars (B4, B5, B6), said first and second faces being linked together by some of the second, third, fourth and/or fifth yarns, thereby forming linking yarns,and, in step i), the first knit portion is produced along stitches ranging from (y+1) to x, in which the first, second and third guide bars (B1, B2, B3) produce on the first needle-bed a first bidimensional openworked knit capable of favoring cellular growth, and in which the fourth, fifth and sixth guide bars (B4, B5, B6) produce on the second needle-bed a second bidimensional openworked knit capable of favoring cellular growth,said first and second bidimensional openworked knits being independent from each other,and, in step ii) the second knit portion is produced for stitches ranging from (x+1) to N, in which:on said first needle-bed, a first needle-bed second knit portion is produced, in which said second and third guide bars (B2, B3) produces chain stitches and the first guide bar B1 produces at least a partial weft in which said first yarns complete weft 5 stitches with at least one of said chain stitches, thereby producing at least one first weft stitched chain stitch,on said second needle-bed, a second needle-bed second knit portion is produced, in which said fourth and fifth guide bars (B4, B5) produces chain stitches and the sixth guide bar B6 produces at least a partial weft in which said sixth yarns complete weft stitches with at least one of said chain stitches, thereby producing at least one second weft stitched chain stitch,said first needle-bed second knit portion and said second needle-bed second knit portion being independent from each otherwherein step b) comprises:cutting the first needle-bed second knit portion along the warp direction on both sides of said at least one first weft stitched chain stitch and along an edge separating the first needle-bed second knit portion from the first bidimensional openworked knit, so as to remove the first needle-bed second knit portion from the knitted structure while maintaining said at least one first weft stitched chain stitch attached to the first bidimensional openworked knit,cutting the second needle-bed second knit portion along the warp direction on both sides of said at least one second weft stitched chain stitch and along an edge separating the second needle-bed second knit portion from the second bidimensional openworked knit, so as to remove the second needle-bed second knit portion from the knitted structure while maintaining said at least one second weft stitched chain stitch attached to the second bidimensional openworked knit,wherein the method further comprises the following steps occurring after step bº):cº optionally cutting said linking yarns from the three-dimensional openworked knit obtained in step a)0) along stitches ranging from 2 to y, anddº) opening the knitted structure so as to spread in a single plane the part of the knitted structure obtained from the first needle-bed and the part of the knitted structure obtained from the second needle-bed,wherein the first bidimensional openworked knit, the connecting knit portion, optionally cut according to step cº), and the second bidimensional openworked knit form altogether the mesh; the second or third yarn forming part of said at least one first weft stitched chain stitch forms the elongate body of a first barbed suture attached to the first bidimensional openworked knit, the first yarns cuts extending from said weft stitches of said at least one first weft stitched chain stitch forming said barbs of said first barbed suture; the fourth or fifth yarn forming part of said at least one second weft stitched chain stitch forms the elongate body of a second barbed suture attached to the second bidimensional openworked knit, the sixth yarns cuts extending from said weft stitches of said at least one second weft stitched chain stitch forming said barbs of said second barbed suture.
  • 5. The method of claim 4, wherein the first guide bar B1 on the first needle-bed, respectively by the sixth guide bar B6 on the second needle-bed, during step a)ii), produces at least a partial weft in which said first yarns, respectively said sixth yarns, complete weft stitches with a plurality of chain stitches, thereby producing a plurality of first and second weft stitched chain stitches, and wherein the cutting of step b) is repeated for each of said first and second weft stitched chain stitches, thereby producing a plurality of first barbed sutures attached to the first bidimensional openworked knit, respectively a plurality of second barbed sutures attached to the second bidimensional openworked knit.
  • 6. The method of claim 4, wherein said elongate body of said second barbed suture is formed of fifth yarns only.
  • 7. The method of claim 1, wherein the first yarns are monofilaments.
  • 8. The method of claim 1, wherein the sixth yarns are monofilaments.
  • 9. The method of claim 1, further comprising a stretching step during which the second knit portion produced in step a)ii) and/or the attached barbed suture obtained in step bº) is submitted to a stretching treatment.
  • 10. The method of claim 1, wherein the attached barbed suture is submitted to a twisting treatment.
  • 11. The method of claim 1, further comprising a heat-setting step during which either the second knit portion produced in step a)ii) or the attached barbed suture resulting from step b) is submitted to a heat-setting treatment.
  • 12. A prosthetic mesh having at least one barbed suture attached thereto, said barbed suture comprising an elongate body made of a yarn of biocompatible material, provided with barbs extending substantially radially out from said elongate body, said barbs being yarns cuts made of a biocompatible material, where said yarns cuts are stitched to said yarn forming said elongate body, said prosthetic mesh being obtained by the method according to claim 1.
  • 13. The method of claim 4, wherein said first and second faces are linked together the third and/or fourth yarns crossing from the first needle-bed to the second needle-bed.
Priority Claims (1)
Number Date Country Kind
16306383 Oct 2016 EP regional
US Referenced Citations (466)
Number Name Date Kind
1187158 Mcginley Jun 1916 A
3054406 Usher Sep 1962 A
3118294 Van Laethem Jan 1964 A
3124136 Usher Mar 1964 A
3272204 Charles et al. Sep 1966 A
3276448 Usher Oct 1966 A
3320649 Naimer May 1967 A
3364200 Ashton et al. Jan 1968 A
3570482 Emoto et al. Mar 1971 A
3718725 Hamano Feb 1973 A
4006747 Kronenthal et al. Feb 1977 A
4060081 Yannas et al. Nov 1977 A
4173131 Pendergrass et al. Nov 1979 A
4193137 Heck Mar 1980 A
4248064 Odham Feb 1981 A
4294241 Miyata Oct 1981 A
4307496 Nakagaki Dec 1981 A
4307717 Hymes et al. Dec 1981 A
4338800 Matsuda Jul 1982 A
4476697 Schafer et al. Oct 1984 A
4487865 Balazs et al. Dec 1984 A
4500676 Balazs et al. Feb 1985 A
4511653 Play et al. Apr 1985 A
4527404 Nakagaki et al. Jul 1985 A
4591501 Cioca May 1986 A
4597762 Walter et al. Jul 1986 A
4603695 Ikada et al. Aug 1986 A
4631932 Sommers Dec 1986 A
4670014 Huc et al. Jun 1987 A
4709562 Matsuda Dec 1987 A
4748078 Doi et al. May 1988 A
4759354 Quarfoot Jul 1988 A
4769038 Bendavid et al. Sep 1988 A
4796603 Dahlke et al. Jan 1989 A
4813942 Alvarez Mar 1989 A
4841962 Berg et al. Jun 1989 A
4854316 Davis Aug 1989 A
4925294 Geshwind et al. May 1990 A
4931546 Tardy et al. Jun 1990 A
4942875 Hlavacek et al. Jul 1990 A
4948540 Nigam Aug 1990 A
4950483 Ksander et al. Aug 1990 A
4970298 Silver et al. Nov 1990 A
4976737 Leake Dec 1990 A
5002551 Linsky et al. Mar 1991 A
5015584 Brysk May 1991 A
5116357 Eberbach May 1992 A
5147374 Fernandez Sep 1992 A
5162430 Rhee et al. Nov 1992 A
5171273 Silver et al. Dec 1992 A
5176692 Wilk et al. Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5195542 Gazielly et al. Mar 1993 A
5196185 Silver et al. Mar 1993 A
5201745 Tayot et al. Apr 1993 A
5201764 Kelman et al. Apr 1993 A
5206028 Li Apr 1993 A
5217493 Raad et al. Jun 1993 A
5254133 Seid Oct 1993 A
5256418 Kemp et al. Oct 1993 A
5258000 Gianturco Nov 1993 A
5263983 Yoshizato et al. Nov 1993 A
5304595 Rhee et al. Apr 1994 A
5306500 Rhee et al. Apr 1994 A
5324775 Rhee et al. Jun 1994 A
5328955 Rhee et al. Jul 1994 A
5334527 Brysk Aug 1994 A
5339657 McMurray Aug 1994 A
5350583 Yoshizato et al. Sep 1994 A
5356432 Rutkow et al. Oct 1994 A
5368549 McVicker Nov 1994 A
5368602 de la Torre Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5376375 Rhee et al. Dec 1994 A
5376376 Li Dec 1994 A
5397331 Himpens et al. Mar 1995 A
5399361 Song et al. Mar 1995 A
5413791 Rhee et al. May 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5428022 Palefsky et al. Jun 1995 A
5433996 Kranzler et al. Jul 1995 A
5441491 Verschoor et al. Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5456693 Conston et al. Oct 1995 A
5456711 Hudson Oct 1995 A
5466462 Rosenthal et al. Nov 1995 A
5480644 Freed Jan 1996 A
5487895 Dapper et al. Jan 1996 A
5490984 Freed Feb 1996 A
5512291 Li Apr 1996 A
5512301 Song et al. Apr 1996 A
5514181 Light et al. May 1996 A
5522840 Krajicek Jun 1996 A
5523348 Rhee et al. Jun 1996 A
5536656 Kemp et al. Jul 1996 A
5543441 Rhee et al. Aug 1996 A
5565210 Rosenthal et al. Oct 1996 A
5567806 Abdul-Malak et al. Oct 1996 A
5569273 Titone et al. Oct 1996 A
RE35399 Eisenberg Dec 1996 E
5593441 Lichtenstein et al. Jan 1997 A
5595621 Light Jan 1997 A
5601571 Moss Feb 1997 A
5607474 Athanasiou et al. Mar 1997 A
5607590 Shimizu Mar 1997 A
5614587 Rhee et al. Mar 1997 A
5618551 Tardy et al. Apr 1997 A
5634931 Kugel Jun 1997 A
5639796 Lee Jun 1997 A
5665391 Lea Sep 1997 A
5667839 Berg Sep 1997 A
5676967 Williams et al. Oct 1997 A
5681568 Goldin et al. Oct 1997 A
5686090 Schilder et al. Nov 1997 A
5686115 Voumakis et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5695525 Mulhauser et al. Dec 1997 A
5697978 Sgro Dec 1997 A
5700476 Rosenthal et al. Dec 1997 A
5700477 Rosenthal et al. Dec 1997 A
5702416 Kieturakis et al. Dec 1997 A
5709934 Bell et al. Jan 1998 A
5711960 Shikinami Jan 1998 A
5716409 Debbas Feb 1998 A
5720981 Eisinger Feb 1998 A
5732572 Litton Mar 1998 A
5743917 Saxon Apr 1998 A
5749895 Sawyer et al. May 1998 A
5752974 Rhee et al. May 1998 A
5766246 Mulhauser et al. Jun 1998 A
5766631 Arnold Jun 1998 A
5769864 Kugel Jun 1998 A
5771716 Schlussel Jun 1998 A
5785983 Furlan Jul 1998 A
5800541 Rhee et al. Sep 1998 A
5814328 Gunasekaran Sep 1998 A
5833705 Ken et al. Nov 1998 A
5840011 Landgrebe et al. Nov 1998 A
5861034 Taira et al. Jan 1999 A
5863984 Doillon et al. Jan 1999 A
5869080 McGregor et al. Feb 1999 A
5871767 Dionne et al. Feb 1999 A
5876444 Lai Mar 1999 A
5891558 Bell et al. Apr 1999 A
5899909 Claren May 1999 A
5906937 Sugiyama et al. May 1999 A
5910149 Kuzmak Jun 1999 A
5911731 Pham et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5919232 Chaffringeon et al. Jul 1999 A
5919233 Knopf et al. Jul 1999 A
5922026 Chin Jul 1999 A
5931165 Reich et al. Aug 1999 A
5942278 Hagedorn et al. Aug 1999 A
5962136 Dewez et al. Oct 1999 A
5972022 Huxel Oct 1999 A
RE36370 Li Nov 1999 E
5993844 Abraham et al. Nov 1999 A
5994325 Roufa et al. Nov 1999 A
5997895 Narotam et al. Dec 1999 A
6001895 Harvey et al. Dec 1999 A
6008292 Lee et al. Dec 1999 A
6015844 Harvey et al. Jan 2000 A
6039686 Kovac Mar 2000 A
6042534 Gellman et al. Mar 2000 A
6042592 Schmitt Mar 2000 A
6043089 Sugiyama et al. Mar 2000 A
6051425 Morota et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6056970 Greenawalt et al. May 2000 A
6057148 Sugiyama et al. May 2000 A
6063396 Kelleher May 2000 A
6066776 Goodwin et al. May 2000 A
6066777 Benchetrit May 2000 A
6071292 Makower et al. Jun 2000 A
6077281 Das Jun 2000 A
6080194 Pachence et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6090116 D'Aversa et al. Jul 2000 A
6113623 Sgro Sep 2000 A
6120539 Eldridge et al. Sep 2000 A
6132765 DiCosmo et al. Oct 2000 A
6143037 Goldstein et al. Nov 2000 A
6153292 Bell et al. Nov 2000 A
6162962 Hinsch et al. Dec 2000 A
6165488 Tardy et al. Dec 2000 A
6171318 Kugel et al. Jan 2001 B1
6174320 Kugel et al. Jan 2001 B1
6176863 Kugel et al. Jan 2001 B1
6179872 Bell et al. Jan 2001 B1
6180848 Flament et al. Jan 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6197934 DeVore et al. Mar 2001 B1
6197935 Doillon et al. Mar 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6221109 Geistlich et al. Apr 2001 B1
6224616 Kugel May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6258124 Darois et al. Jul 2001 B1
6262332 Ketharanathan Jul 2001 B1
6264702 Ory et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6277397 Shimizu Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6289700 Gangi Sep 2001 B1
6290708 Kugel et al. Sep 2001 B1
6306079 Trabucco Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6312474 Francis et al. Nov 2001 B1
6319264 Tormala et al. Nov 2001 B1
6328686 Kovac Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6383201 Dong May 2002 B1
6391060 Ory et al. May 2002 B1
6391333 Li et al. May 2002 B1
6391939 Tayot et al. May 2002 B2
6408656 Ory et al. Jun 2002 B1
6410044 Chudzik et al. Jun 2002 B1
6413742 Olsen et al. Jul 2002 B1
6425924 Rousseau Jul 2002 B1
6428978 Olsen et al. Aug 2002 B1
6436030 Rehil Aug 2002 B2
6440167 Shimizu Aug 2002 B2
6443964 Ory et al. Sep 2002 B1
6447551 Goldmann Sep 2002 B1
6447802 Sessions et al. Sep 2002 B2
6448378 DeVore et al. Sep 2002 B2
6451032 Ory et al. Sep 2002 B1
6451301 Sessions et al. Sep 2002 B1
6454787 Maddalo et al. Sep 2002 B1
6477865 Matsumoto Nov 2002 B1
6479072 Morgan et al. Nov 2002 B1
6485503 Jacobs et al. Nov 2002 B2
6500464 Ceres et al. Dec 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6509031 Miller et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514286 Leatherbury et al. Feb 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6540773 Dong Apr 2003 B2
6541023 Andre et al. Apr 2003 B1
6548077 Gunasekaran Apr 2003 B1
6554855 Dong Apr 2003 B1
6559119 Burgess et al. May 2003 B1
6566345 Miller et al. May 2003 B2
6575988 Rousseau Jun 2003 B2
6576019 Atala Jun 2003 B1
6596002 Therin et al. Jul 2003 B2
6596304 Bayon et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
6599524 Li et al. Jul 2003 B2
6599690 Abraham et al. Jul 2003 B1
6610006 Amid et al. Aug 2003 B1
6613348 Jain Sep 2003 B1
6616685 Rousseau Sep 2003 B2
6623963 Muller et al. Sep 2003 B1
6630414 Matsumoto Oct 2003 B1
6637437 Hungerford et al. Oct 2003 B1
6638284 Rousseau et al. Oct 2003 B1
6645226 Jacobs et al. Nov 2003 B1
6652594 Francis et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
6653450 Berg et al. Nov 2003 B1
6656206 Corcoran et al. Dec 2003 B2
6660280 Allard et al. Dec 2003 B1
6669735 Pelissier Dec 2003 B1
6670018 Fujita et al. Dec 2003 B2
6682760 Noff et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6706684 Bayon et al. Mar 2004 B1
6706690 Reich et al. Mar 2004 B2
6712859 Rousseau et al. Mar 2004 B2
6719795 Cornwall et al. Apr 2004 B1
6723335 Moehlenbruck et al. Apr 2004 B1
6726660 Hessel et al. Apr 2004 B2
6730299 Tayot et al. May 2004 B1
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6737371 Planck et al. May 2004 B1
6743435 DeVore et al. Jun 2004 B2
6746458 Cloud Jun 2004 B1
6752834 Geistlich et al. Jun 2004 B2
6755868 Rousseau Jun 2004 B2
6773723 Spiro et al. Aug 2004 B1
6783554 Amara et al. Aug 2004 B2
6790213 Cherok et al. Sep 2004 B2
6790454 Abdul Malak et al. Sep 2004 B1
6800082 Rousseau Oct 2004 B2
6833408 Sehl et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6852330 Bowman et al. Feb 2005 B2
6869938 Schwartz et al. Mar 2005 B1
6872227 Sump et al. Mar 2005 B2
6893653 Abraham et al. May 2005 B2
6896904 Spiro et al. May 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6936276 Spiro et al. Aug 2005 B2
6939562 Spiro et al. Sep 2005 B2
6949625 Tayot Sep 2005 B2
6966918 Schuldt-Hempe et al. Nov 2005 B1
6971252 Therin Dec 2005 B2
6974679 Andre et al. Dec 2005 B2
6974862 Ringeisen et al. Dec 2005 B2
6977231 Matsuda Dec 2005 B1
6984392 Bechert et al. Jan 2006 B2
6988386 Okawa et al. Jan 2006 B1
7011688 Gryska et al. Mar 2006 B2
7021086 Ory et al. Apr 2006 B2
7022358 Eckmayer et al. Apr 2006 B2
7025063 Snitkin et al. Apr 2006 B2
7041868 Greene et al. May 2006 B2
7060103 Carr, Jr. et al. Jun 2006 B2
RE39172 Bayon et al. Jul 2006 E
7070558 Gellman et al. Jul 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7094261 Zotti et al. Aug 2006 B2
7098315 Schaufler Aug 2006 B2
7101381 Ford et al. Sep 2006 B2
7115220 Dubson et al. Oct 2006 B2
7156804 Nicolo Jan 2007 B2
7156858 Schuldt-Hempe et al. Jan 2007 B2
7175852 Simmoteit et al. Feb 2007 B2
7192604 Brown et al. Mar 2007 B2
7207962 Anand et al. Apr 2007 B2
7214765 Ringeisen et al. May 2007 B2
7226611 Yura et al. Jun 2007 B2
7229453 Anderson et al. Jun 2007 B2
7252837 Guo et al. Aug 2007 B2
7279177 Looney et al. Oct 2007 B2
7331199 Ory et al. Feb 2008 B2
7393319 Merade et al. Jul 2008 B2
7556598 Rao Jul 2009 B2
7594921 Browning Sep 2009 B2
7614258 Cherok et al. Nov 2009 B2
7615065 Priewe et al. Nov 2009 B2
7662169 Wittmann Feb 2010 B2
7670380 Cauthen, III Mar 2010 B2
7682381 Rakos et al. Mar 2010 B2
7709017 Tayot May 2010 B2
7718556 Matsuda et al. May 2010 B2
7732354 Fricke et al. Jun 2010 B2
7785334 Ford et al. Aug 2010 B2
7789888 Bartee et al. Sep 2010 B2
7799767 Lamberti et al. Sep 2010 B2
7806905 Ford et al. Oct 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7828854 Rousseau et al. Nov 2010 B2
7900484 Cherok et al. Mar 2011 B2
7931695 Ringeisen Apr 2011 B2
8052759 Dupic et al. Nov 2011 B2
8079023 Chen Dec 2011 B2
8100924 Browning Jan 2012 B2
8123817 Intoccia et al. Feb 2012 B2
8142515 Therin et al. Mar 2012 B2
8157821 Browning Apr 2012 B2
8157822 Browning Apr 2012 B2
8182545 Cherok et al. May 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8206632 Rousseau et al. Jun 2012 B2
8215310 Browning Jul 2012 B2
8317872 Adams Nov 2012 B2
8323675 Greenawalt Dec 2012 B2
8343232 Adzich et al. Jan 2013 B2
8366787 Brown et al. Feb 2013 B2
8435307 Paul May 2013 B2
8470355 Skalla et al. Jun 2013 B2
8562633 Cully et al. Oct 2013 B2
8574627 Martakos et al. Nov 2013 B2
8709094 Stad et al. Apr 2014 B2
8734471 Deitch May 2014 B2
8753360 Gleiman et al. Jun 2014 B2
8758800 Stopek et al. Jun 2014 B2
8784294 Goddard Jul 2014 B2
8814887 Walther et al. Aug 2014 B2
8828092 Toso et al. Sep 2014 B2
8834864 Odar et al. Sep 2014 B2
8846060 Archibald et al. Sep 2014 B2
8865215 Ladet et al. Oct 2014 B2
8877233 Obermiller et al. Nov 2014 B2
8911504 Mathisen et al. Dec 2014 B2
8920370 Sholev et al. Dec 2014 B2
8956373 Ford et al. Feb 2015 B2
8962006 Bayon et al. Feb 2015 B2
8968762 Ladet et al. Mar 2015 B2
8979935 Lozier et al. Mar 2015 B2
9034357 Stopek May 2015 B2
9113993 Lee Aug 2015 B2
9211175 Stopek et al. Dec 2015 B2
9216075 Bailly et al. Dec 2015 B2
20020087174 Cabello Jul 2002 A1
20020095218 Carr et al. Jul 2002 A1
20030086975 Ringeisen May 2003 A1
20030106346 Matsumoto Jun 2003 A1
20030114937 Leatherbury et al. Jun 2003 A1
20030133967 Ruszczak et al. Jul 2003 A1
20030225355 Butler Dec 2003 A1
20040034373 Schuldt-Hempe et al. Feb 2004 A1
20040054376 Ory et al. Mar 2004 A1
20040059356 Gingras Mar 2004 A1
20040101546 Gorman et al. May 2004 A1
20050002893 Goldmann Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050085924 Darois et al. Apr 2005 A1
20050113849 Popadiuk et al. May 2005 A1
20050137512 Campbell et al. Jun 2005 A1
20050142161 Freeman et al. Jun 2005 A1
20050148963 Brennan Jul 2005 A1
20050175659 Macomber et al. Aug 2005 A1
20050232979 Shoshan Oct 2005 A1
20050267521 Forsberg Dec 2005 A1
20050288691 Leiboff Dec 2005 A1
20060116696 Odermatt et al. Jun 2006 A1
20060135921 Wiercinski et al. Jun 2006 A1
20060147501 Hillas et al. Jul 2006 A1
20060216320 Kitazono et al. Sep 2006 A1
20060252981 Matsuda et al. Nov 2006 A1
20060253203 Alvarado Nov 2006 A1
20060282103 Fricke et al. Dec 2006 A1
20070088391 McAlexander et al. Apr 2007 A1
20070129736 Solecki Jun 2007 A1
20070198040 Buevich et al. Aug 2007 A1
20070299538 Roeber Dec 2007 A1
20080091276 Deusch et al. Apr 2008 A1
20080109017 Herweck et al. May 2008 A1
20080113001 Herweck et al. May 2008 A1
20080172071 Barker Jul 2008 A1
20080255593 St-Germain Oct 2008 A1
20090035341 Wagener et al. Feb 2009 A1
20090036996 Roeber Feb 2009 A1
20090068250 Gravagna et al. Mar 2009 A1
20090105526 Piroli Torelli et al. Apr 2009 A1
20090163936 Yang et al. Jun 2009 A1
20090187197 Roeber et al. Jul 2009 A1
20090192530 Adzich et al. Jul 2009 A1
20090204129 Fronio Aug 2009 A1
20090216338 Gingras et al. Aug 2009 A1
20090270999 Brown Oct 2009 A1
20090281558 Li Nov 2009 A1
20090318752 Evans et al. Dec 2009 A1
20100104608 Abuzaina et al. Apr 2010 A1
20100318108 Datta et al. Dec 2010 A1
20110015760 Kullas Jan 2011 A1
20110022083 DiMatteo Jan 2011 A1
20110144667 Horton et al. Jun 2011 A1
20110190795 Hotter et al. Aug 2011 A1
20110238094 Thomas et al. Sep 2011 A1
20110251699 Ladet Oct 2011 A1
20110257666 Ladet et al. Oct 2011 A1
20110270278 Overes Nov 2011 A1
20120016388 Houard et al. Jan 2012 A1
20120029537 Mortarino Feb 2012 A1
20120065727 Reneker et al. Mar 2012 A1
20120082712 Stopek et al. Apr 2012 A1
20120116425 Intoccia et al. May 2012 A1
20120150204 Mortarino Jun 2012 A1
20120165937 Montanari et al. Jun 2012 A1
20120179175 Hammell Jul 2012 A1
20120179176 Wilson et al. Jul 2012 A1
20120197415 Montanari et al. Aug 2012 A1
20120330093 Odermatt Dec 2012 A1
20130172915 Thomas Jul 2013 A1
20140044861 Boey et al. Feb 2014 A1
20140364684 Lecuivre Dec 2014 A1
Foreign Referenced Citations (140)
Number Date Country
1317836 May 1993 CA
201879864 Jun 2011 CN
19544162 Apr 1997 DE
19718903 Dec 1997 DE
19751733 Dec 1998 DE
19832634 Jan 2000 DE
10019604 Oct 2001 DE
10120942 Oct 2001 DE
10043396 Jun 2002 DE
0194192 Sep 1986 EP
0248544 Dec 1987 EP
0263360 Apr 1988 EP
0276890 Aug 1988 EP
0372969 Jun 1990 EP
0531742 Mar 1993 EP
544485 Jun 1993 EP
0552576 Jul 1993 EP
0611561 Aug 1994 EP
614650 Sep 1994 EP
0621014 Oct 1994 EP
0621014 Oct 1994 EP
0625891 Nov 1994 EP
0637452 Feb 1995 EP
0664132 Jul 1995 EP
0705878 Apr 1996 EP
0719527 Jul 1996 EP
0774240 May 1997 EP
0797962 Oct 1997 EP
0800791 Oct 1997 EP
827724 Mar 1998 EP
0836838 Apr 1998 EP
0847727 Jun 1998 EP
0876808 Nov 1998 EP
0895762 Feb 1999 EP
898944 Mar 1999 EP
1017415 Jul 2000 EP
1036545 Sep 2000 EP
1052319 Nov 2000 EP
1055757 Nov 2000 EP
1090590 Apr 2001 EP
1 216 717 Jun 2002 EP
1 216 718 Jun 2002 EP
0693523 Nov 2002 EP
1273312 Jan 2003 EP
1315468 Jun 2003 EP
1382728 Jan 2004 EP
1382728 Jan 2004 EP
1484070 Dec 2004 EP
1561480 Aug 2005 EP
1645232 Apr 2006 EP
1674048 Jun 2006 EP
1691606 Aug 2006 EP
1782848 May 2007 EP
2229918 Sep 2010 EP
2327373 Jun 2011 EP
2327373 Jun 2011 EP
2244853 Apr 1975 FR
2257262 Aug 1975 FR
2 308 349 Nov 1976 FR
2453231 Oct 1980 FR
2612392 Sep 1988 FR
2715309 Jul 1995 FR
2715405 Jul 1995 FR
2 724 563 Mar 1996 FR
2730406 Aug 1996 FR
2744906 Aug 1997 FR
2766698 Feb 1999 FR
2771622 Jun 1999 FR
2773057 Jul 1999 FR
2774277 Aug 1999 FR
2779937 Dec 1999 FR
2859624 Mar 2005 FR
2863277 Jun 2005 FR
2876020 Apr 2006 FR
2884706 Oct 2006 FR
2929834 Oct 2009 FR
2953709 Jun 2011 FR
1174814 Dec 1969 GB
2 051 153 Jan 1981 GB
2306110 Apr 1997 GB
H0332677 Feb 1991 JP
H05237128 Sep 1993 JP
H09137380 May 1997 JP
H11146888 Jun 1999 JP
2008538300 Oct 2008 JP
2011078767 Apr 2011 JP
8902445 Mar 1989 WO
8908467 Sep 1989 WO
9012551 Nov 1990 WO
9206639 Apr 1992 WO
9220349 Nov 1992 WO
9311805 Jun 1993 WO
9310731 Jun 1993 WO
9318174 Sep 1993 WO
9417747 Aug 1994 WO
9507666 Mar 1995 WO
9518638 Jul 1995 WO
9532687 Dec 1995 WO
9603091 Feb 1996 WO
9608277 Mar 1996 WO
9609795 Apr 1996 WO
9614805 May 1996 WO
9641588 Dec 1996 WO
9735533 Oct 1997 WO
9835632 Aug 1998 WO
9849967 Nov 1998 WO
9905990 Feb 1999 WO
9906079 Feb 1999 WO
9906080 Feb 1999 WO
9951163 Oct 1999 WO
0016821 Mar 2000 WO
0067663 Nov 2000 WO
0115625 Mar 2001 WO
0180773 Nov 2001 WO
0181667 Nov 2001 WO
02007648 Jan 2002 WO
0217853 Mar 2002 WO
02078568 Oct 2002 WO
03002168 Jan 2003 WO
2004004600 Jan 2004 WO
2004071349 Aug 2004 WO
2004078120 Sep 2004 WO
2004103212 Dec 2004 WO
200511280 Feb 2005 WO
2005013863 Feb 2005 WO
2005018698 Mar 2005 WO
2005048708 Jun 2005 WO
2005105172 Nov 2005 WO
2006018552 Feb 2006 WO
2006023444 Mar 2006 WO
2006032812 Mar 2006 WO
2007048099 Apr 2007 WO
2009031035 Mar 2009 WO
2009071998 Jun 2009 WO
WO2009071998 Jun 2009 WO
2010043978 Apr 2010 WO
2011007062 Jan 2011 WO
2011026987 Mar 2011 WO
2011038740 Apr 2011 WO
WO2013098347 Jul 2013 WO
Non-Patent Literature Citations (32)
Entry
Machine Translation EP 1 382 728 (Year: 2003).
Machine Translation EP 0 621 014 (Year: 1994).
European Search Report for EP16306383.7 date of completion is May 9, 2017 (4 pages).
Malette, W. G. et al., “Chitosan, A New Hemostatic,” Ann Th. Surg., Jul. 1983, pp. 55-58, 36.
Langenbech, M. R. et al., “Comparison of biomaterials in the early postoperative period,” Surg Endosc., May 2003, pp. 1105-1109, 17 (7).
Bracco, P. et al., “Comparison of polypropylene and polyethylene terephthalate (Dacron) meshes for abdominal wall hernia repair: A chemical and morphological study,” Hernia, 2005, pp. 51-55, 9 (1), published online Sep. 2004.
Klinge, U. et al., “Foreign Body Reaction to Meshes Used for the Repair of Abdominal Wall Hernias,” Eur J. Surg, Sep. 1999, pp. 665-673, 165.
Logeart, D. et al., “Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect,” Eur. J. Cell. Biol., Dec. 1997, pp. 385-390, 74(4).
Haneji, K. et al., “Fucoidan extracted from Cladosiphon Okamuranus Tokida Induces Apoptosis of Human T-cell Leukemia Virus Type 1-Infected T-Cell Lines and Primary Adult T-Cell Leukemia Cells,” Nutrition and Cancer, 2005, pp. 189-201, 52(2), published online Nov. 2009.
Junge, K. et al., “Functional and Morphologic Properties of a Modified Mesh for Inguinal Hernia Repair,” World J. Surg., Sep. 2002, pp. 1472-1480, 26.
Klinge, U. et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” J. Biomed. Mater. Res., Jan. 2002, pp. 129-136, 63.
Welty, G. et al., “Functional impairment and complaints following incisional hernia repair with different polypropylene meshes,” Hernia, Aug. 2001; pp. 142-147, 5.
Varum, K. et al., “In vitro degradation rates of partially N-acetylated chitosans in human serum,” Carbohydrate Research, Mar. 1997, pp. 99-101, 299.
Haroun-Bouhedja, F. et al., “In Vitro Effects of Fucans on MDA-MB231 Tumor Cell Adhesion and Invasion,” Anticancer Res., Jul.-Aug. 2002, pp. 2285-2292, 22(4).
Scheidbach, H. et al., “In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: An experimental study in pigs,” Surg. Endosc., Feb. 2004, pp. 211-220,18(2).
Blondin, C. et al., “Inhibition of Complement Activation by Natural Sulfated Polysaccharides (Fucans) from Brown Seaweed,” Molecular Immuol., Mar. 1994, pp. 247-253, 31(4).
Zvyagintseva, T. et al., “Inhibition of complement activation by water-soluble polysaccharides of some far-eastern grown seaweeds,” Comparative Biochem and Physiol, Jul. 2000, pp. 209-215,126(3).
Rosen, M. et al., “Laparoscopic component separation in the single-stage treatment of infected abdominal wall prosthetic removal,” Hernia, 2007, pp. 435-440, 11, published online Jul. 2007.
Amid, P., “Lichtenstein tension-free hernioplasty: Its inception, evolution, and principles,” Hernia, 2004; pp. 1-7, 8, published online Sep. 2003.
Boisson-Vidal, C. et al., “Neoangiogenesis Induced by Progenitor Endothelial Cells: Effect of Fucoidan From Marine Algae,” Cardiovascular & Hematological Agents in Medicinal Chem., Jan. 2007, pp. 67-77, 5(1).
D'Dwyer, P. et al., “Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair,” Br. J. Surg., Feb. 2005, pp. 166-170, 92(2).
Muzzarelli, R. et al., “Reconstruction of parodontal tissue with chitosan,” Biomaterials, Nov. 1989, pp. 598-604, 10.
Haroun-Bouhedja, F. et al., “Relationship between sulfate groups and biological activities of fucans,” Thrombosis Res., Dec. 2000, pp. 453-459, 100(5).
Blondin, C. et al., “Relationships between chemical characteristics and anticomplementary activity of fucans,” Biomaterials, Mar. 1996, pp. 597-603, 17(6).
Strand, S. et al., “Screening of Chitosans and Conditions for Bacterial Flocculation,” Biomacromolecules, Mar. 2001, 126-133, 2.
Kanabar, V. et al., “Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle,” Br. J. Pharmacol., Oct. 2005, pp. 370-777, 146(3).
Hirano, S. et al., “The blood biocompatibility of chitosan and N-acylchitosans,” J. Biomed. Mater. Res., Apr. 1985, 413-417, 19.
Rao, B. et al., “Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential,” J. Biomed. Mater. Res., Jan. 1997, pp. 21-28, 34.
Prokop, A. et al., “Water Soluble Polymers for Immunoisolation I: Complex Coacevation and Cytotoxicity,” Advances in Polymer Science, Jul. 1998, pp. 1-51, 136.
Collins, R. et al., “Use of collagen film as a dural substitute: Preliminary animal studies,” Journal of Biomedical Materials Research, Feb. 1991, pp. 267-276, vol. 25.
Dr. S. Raz, “The Karl Mayer Guide to Tehnical Textiles,” Jan. 2000, pp. 1-36, Obertshausen, Germany.
Chen, G. et al., “A Hybrid Network of Synthetic Polymer Mesh and Collagen Sponge,” The Royal Society of Chemistry 2000, Chem. Commun., Jul. 2000, pp. 1505-1506.
Related Publications (1)
Number Date Country
20180110605 A1 Apr 2018 US