Wire structures (e.g., concrete reinforcement bars, building components, etc.) are generally constructed from a plurality of wire coils. The wire coils are connected together (e.g., welded, wire tied, etc.) to form the wire structures. The wire structures constructed from a plurality of wire coils are generally unable to withstand various forces (e.g., vertical pressure, horizontal pressure, etc.) on the structure. Thus, there is a need in the art for an improved continuous wire coil and coiling method.
One approach is a method that provides a continuous wire coil. The method includes winding a continuous strand of wire around a first rod to form a primary coil. The method further includes stretching the primary coil to form a primary spiral. The method further includes winding the stretched primary spiral around a second rod to form a secondary spiral.
Another approach is a continuous wire coil. The continuous wire coil includes a continuous wire wound in a double-spiral and a generally sinusoidal form aligned along a central axis. The continuous wire is connected together at one or more intersecting points formed by the sinusoidal form.
Another approach is an apparatus that provides for coiling a continuous wire coil. The apparatus includes a means for winding a continuous strand of wire around a first rod to form a primary coil. The apparatus further includes a means for stretching the primary coil to form a primary spiral. The apparatus further includes a means for winding the stretched primary spiral around a second rod to form a secondary spiral.
Any of the approaches described herein can include one or more of the following examples.
In some examples, the method further includes automatically and repeatedly winding the continuous strand of wire, stretching the primary coil, and winding the stretched primary spiral.
In other examples, the method further includes attaching one or more connected points of the secondary spiral together to form the continuous wire coil.
In some examples, the attaching the connected point further includes welding the one or more connected points.
In other examples, the first rod has a first diameter and the second rod has a second diameter. In some examples, the first diameter is a different size than the second diameter.
In other examples, the method further includes modifying the first diameter and/or the second diameter to modify a link space in the secondary spiral.
In some examples, the stretching the primary coil expands spacing of the continuous strand of wire.
In other examples, the method further includes applying pressure to the continuous strand of wire during winding the continuous strand of wire.
In some examples, the method further includes applying pressure to the stretched primary spiral during winding the stretched primary spiral.
In other examples, the winding the continuous strand of wire is in a first direction and the winding the stretched primary spiral is in a second direction.
In some examples, the first direction is different than the second direction.
In other examples, the continuous wire coil forms part of a building member, a tunnel structure, a bridge structure, a pole structure, and/or a pipeline structure.
In some examples, the continuous wire coil is a unitary piece of wire.
In other examples, the double-spiral forms link spacing between the one or more intersecting points.
In some examples, the continuous wire coil is formed from a spool of wire.
In other examples, the continuous wire is metal.
In some examples, the continuous wire coil includes a plurality of sides. The plurality of sides is formed by a size of each of the double-spirals.
In other examples, the apparatus further includes means for attaching one or more connected points of the secondary spiral together to form the continuous wire coil.
The wire coil technology described herein can provide one or more of the following advantages. An advantage of the technology is that the coiling method creates a synergistic effect over the unwound wire by dramatically increasing the strength of the coil with respect to the strength of the unwound wire. Another advantage of the technology is that the wire coil is easy to manufacture from a spool of wire, thereby decreasing the cost of manufacturing the wire coil. Another advantage of the technology is that the wire coil is easy to manufacture at any location, thereby increasing the available uses of the wire coil by decreasing transportation costs and increasing installation flexibility.
The foregoing and other objects, features and advantages will be apparent from the following more particular description of the embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments.
Wire coil technology, as described herein, can include a wire coil and a process of coiling the wire. The wire coil can be utilized in a stand-alone application (e.g., underground tunnel, culvert, etc.), integrated into other components (e.g., concrete reinforcement, coated in rubber for a pipeline, etc.), and/or attached to other components (e.g., inner reinforcement for a pipeline, internal building structure, etc.). The wire coil can be flexible and strong, thereby enabling the wire coil to be utilized in a variety of environments (e.g., pipeline in a earthquake prone environment, tunnel is a coastal environment, etc.). The flexibility of the wire coil enables the wire coil to flex in a changing environment (e.g., earthquake, wind, etc.) while still maintaining the strength to distribute loads (e.g., distribute earth about a tunnel, protect a pipeline from collapse, etc.).
In operation, the process of coiling the wire can include the following steps:
1. Wind a continuous strand of wire around a first rod with a first diameter (e.g., ten centimeter diameter, fifty centimeter diameter, etc.) to form a primary coil. The formation of the primary coil can form the initial winding of the wire into the wire coil that is utilized to size (e.g., horizontal size, vertical size, etc.) the wire coil. For example, a wire coil with a ten meter diameter is initially sized via the first winding step.
2. Stretch (e.g., stretch to double the original length, stretch to 1.5 the original length, etc.) the primary coil to expand the spacing of the wire to form a primary spiral. The stretching of the primary coil can be utilized to strengthen the wire coil (e.g., distributing the load horizontally, distributing the load vertically, etc.) by separating the wire during the formation of the primary spiral.
3. Wind the stretched primary spiral around a second rod with a second diameter (e.g., thirty centimeter diameter, two centimeter diameter, etc.) to create a secondary spiral (also referred to as a weave). The winding of the stretched primary spiral can form the double-spiral that is utilized to distribute loads through the wire coil while maintaining flexibility.
In some examples, the process further includes 4. Attaching (e.g., welding, bonding, etc.) the connected points of the secondary spiral together to form the wire coil. The attaching of the connected points can increase the strength of the wire coil (e.g., vertical compression strength, horizontal compression strength, etc.) by interconnecting the wire together to distribute any loads across the wire coil.
In other examples, the process of coiling the wire is a continuous method (steps 1, 2, 3, and/or 4 described above) and the steps can be completed sequentially with a continuous strand of wire. The continuous method decreases the cost of manufacturing by simplifying the process for manufacturing long wire coils. Although the continuous method is described as being utilized for long wire coils, the continuous method can be utilized for any length wire coil.
In some examples, the processing of coiling the wire is a non-continuous method (steps 1, 2, 3, and/or 4 described above). For example, in operation, step 1 is completed for a length of wire; then step 2 is completed for the length of wire; then step 3 is completed for the length of wire; and/or finally, step 4 is completed for the length of wire. The non-continuous method decreases the cost of manufacturing the wire coil by simplifying the process for manufacturing short wire coils. Although the non-continuous method is described as being utilized for short wire coils, the non-continuous method can be utilized for any length wire coil.
Generally, the wire coil is a continuous wire that is wound in a spiral along a longitudinal central axis of the wire coil. The wire coil is aligned along the central axis and connected together at intersecting points which increases the strength of the wire coil (e.g., horizontal strength, vertical strength, etc.) by distributing (e.g., load is distributed across the arches in the wire coil, load is distributed down the wires, etc.) any load across the length of the wire coil. The wire coil is a unitary piece that is turned along a longitudinal central axis, thereby decreasing the manufacturing cost and increasing the strength of the wire coil by evenly distributing loads through the wire coil.
The primary coil 115 is fed (e.g., manually fed, automatically fed, etc.) to a stretching device 120. The stretching device 120 stretches the primary coil 115 to form a primary spiral 125. The stretching device 120 can be a hydraulic ram, a pneumatic piston, and/or any type of device that can stretch wire. The primary coil 115 can be stretched a random length and/or a predetermined length (e.g., 150% of the length of the primary coil 115, ten meters, etc.). The stretching of the primary coil 115 can advantageously increase the strength of the wire coil by separating out the wire, thereby increasing the load limits on the wire coil.
The primary spiral 125 is fed (e.g., manually fed, automatically fed, etc.) to a winding device 130 with a second rod (e.g., ten centimeter diameter, five centimeter diameter, etc.). The winding device 130 can be a rotating drum, a drill with an attached rod, a lathe, and/or any type of device that can wind wire. In some examples, the winding device 110 and the winding device 130 are the same type of winding device. In other examples, the winding device 110 and the winding device 130 are different types of winding devices. The winding device 130 winds the primary coil 125 around the second rod (e.g., different diameter from the first rod, same diameter as the first rod, etc.) to form a secondary spiral 135. The secondary spiral 135 is the double-spiral and generally sinusoidal form of the wire coil. The double-spiral and generally sinusoidal form of the wire coil can advantageously distribute any loads along the wire coil (e.g., horizontal distribution, vertical distribution, etc.).
In some examples, the secondary spiral 135 is fed (e.g., manually fed, automatically fed, etc.) to an attachment device 140. The attachment device 140 can be a welding device, a robot welding device, a cold welding device, an adhesive device, and/or any other type of device that can attach the wire. The attachment device 140 attaches one or more connected points on the secondary spiral 135 together to form a continuous wire coil 145 that provides additional strength along the longitudinal axis of the wire coil. The continuous wire coil 145 can be utilized for a variety of applications (e.g., tunnel, building support, pole, etc.).
In some examples, the first rod and the second rod have the same diameter (e.g., ten centimeters, thirty centimeters, etc.), thereby enabling the continuous wire coil 145 to be formed with a symmetrical aspect. In other examples, the first rod and the second rod have different diameters (e.g., the first rod has a ten centimeter diameter and the second rod has a twenty centimeter diameter, the first rod has a one centimeter diameter and the second rod has a three centimeter diameter, etc.), thereby enabling the continuous wire coil 145 to be formed with different numbers of sides (e.g., six sided continuous wire coil 145, three sided continuous wire coil 145, etc.). The sizes between the first rod and the second rod can be defined by a ratio and various ratios can be utilized to form different numbers of sides. For example, a ratio of 1:2 (first rod diameter to second rod diameter) is utilized to form four sides of the continuous wire coil 145. The different number of sides advantageously enables the technology to be utilized for a variety of applications (e.g., a six sided continuous wire coil for a building application, a four sided continuous wire coil for a tunnel application, etc.). For example, a three sided continuous wire coil is more flexible than a six sided continuous wire coil. As another example, a six sided continuous wire coil is stronger than a three sided continuous wire coil.
In other examples, the winding device 110 and/or the winding device 130 applies pressure to the wire 105 and/or primary spiral 125, respectively. The application of pressure enables the continuous wire coil 145 to be formed with different number of sides. In some examples, the ratio between the diameters of the first rod and the second rod and the application of pressure is utilized to form different number of sides for the continuous wire coil 145. In other examples, the ratio between the diameters of the first rod and the second rod and the application of pressure is utilized to form various link spacing in the continuous wire coil 145. The link spacing is the size of the opening in the continuous wire coil 145 between the wire and/or intersecting points. For example, the link spacing has an area of ten square centimeters. As another example, the link spacing has an area of twenty square centimeters. The link spacing can enable the formation of different size and/or strength continuous wire coils. The link spacing can advantageously increase the flexibility of the wire coil 200a while substantially maintaining the strength (e.g., 99% of the strength, 96% of the strength, etc.) of a similar wire coil without such link spacing. For example, a smaller link spacing (e.g., under one square centimeter, under ten square centimeters, etc.) is utilized to increase the strength of the continuous wire coil 145. In another example, a medium link spacing (e.g., between three and four square centimeters, between four and six square centimeters, etc.) is utilized to balance the strength of the continuous wire coil 145 and the use of wire in the continuous wire coil 145.
In some examples, the coiling apparatus automatically and repeatedly (340) winds (310) the continuous strand of wire, stretches (320) the primary coil, and winds (330) the stretched primary spiral. The automatic and repeating (340) of part of the process advantageously enables the coiling apparatus to quickly and efficiently manufacture wire coils.
In other examples, the coiling apparatus attaches (350) one or more connected points of the secondary spiral together to form the continuous wire coil. In some examples, the attaching (350) the connected point further includes welding the one or more connected points.
In some examples, the first rod has a first diameter and the second rod has a second diameter. In other examples, the first diameter is a different size than the second diameter.
In some examples, the coiling apparatus modifies (315) the first diameter and/or modifies (335) the second diameter to modify a link space in the secondary spiral. In other examples, the stretching (320) the primary coil expands spacing of the continuous strand of wire.
In some examples, the coiling apparatus applies pressure (e.g., application of pad on wire, tightening of fed mechanism, etc.) to the continuous strand of wire during winding the continuous strand of wire. In other examples, the coiling apparatus applies pressure (e.g., application of pad on wire, tightening of fed mechanism, etc.) to the stretched primary spiral during winding the stretched primary spiral.
In some examples, the winding (310) the continuous strand of wire is in a first direction (e.g., clockwise, counter-clockwise) and winding (320) the stretched primary spiral is in a second direction (e.g., clockwise, counter-clockwise, etc.). In other examples, the first direction is different than the second direction.
In some examples, the continuous wire coil is a unitary piece of wire (e.g., single piece, multiple pieces bonded together, etc.). In other examples, the double-spiral forms link spacing between the one or more intersecting points.
In some examples, the continuous wire coil is formed from a spool of wire. In other examples, the continuous wire is metal. In some examples, the continuous wire coil includes a plurality of sides. The plurality of sides is formed by a size of each of the double-spirals.
One skilled in the art will realize the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims, rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
674538 | Martin | May 1901 | A |
2684087 | Stockton | Jul 1954 | A |
3562082 | Van Buskirk | Feb 1971 | A |
3592243 | Fukushima et al. | Jul 1971 | A |
3604180 | Wood | Sep 1971 | A |
3826287 | Tolliver | Jul 1974 | A |
3837372 | Bernot | Sep 1974 | A |
3882905 | James | May 1975 | A |
4487000 | Ball | Dec 1984 | A |
4746075 | Hoxit | May 1988 | A |
5097646 | Lamle | Mar 1992 | A |
5365715 | Steinmetz et al. | Nov 1994 | A |
5803444 | Shibuya et al. | Sep 1998 | A |
5966811 | Zalusky | Oct 1999 | A |
6136023 | Boyle | Oct 2000 | A |
6148873 | Mehre | Nov 2000 | A |
6485524 | Strecker | Nov 2002 | B2 |
7412993 | Tzeng | Aug 2008 | B2 |
7594523 | Koussaifi | Sep 2009 | B2 |
7905119 | Pinkowski | Mar 2011 | B2 |
8066036 | Monetti | Nov 2011 | B2 |
Number | Date | Country |
---|---|---|
834393 | Feb 1976 | BE |
1002467 | Dec 1976 | CA |
2351701 | Apr 1975 | DE |
1909717 | Oct 1976 | DE |
2646272 | Apr 1978 | DE |
3433441 | Mar 1986 | DE |
20315046 | Dec 2003 | DE |
2507231 | Dec 1982 | FR |
2177730 | Jan 1987 | GB |
07158077 | Jun 1995 | JP |
505771 | Apr 1976 | SU |
545733 | May 1977 | SU |
916705 | Apr 1982 | SU |
2005065863 | Jul 2005 | WO |
2005116357 | Dec 2005 | WO |
WO 2005114120 | Dec 2005 | WO |
Entry |
---|
International Search Report; International Application No. PCT/US12/58967; Mailed: Jan. 2, 2013. |
Number | Date | Country | |
---|---|---|---|
20130089750 A1 | Apr 2013 | US |