The present invention relates to a method of making liquid crystal display (LCD), and more specifically, to a method of using different liquid crystal twist angle in a LCD having both reflection and transmission regions to reach the maximum light efficiency.
Recently, personal digital assistant (PDA) and notebooks have progressed remarkably. Displays for portable use must be light in weight and have low power consumption. Thin film transistor liquid crystal display (TFT-LCD) can meet the above requirements and are known as the display required for high pixel density and quality. In general, a TFT-LCD includes a bottom plate formed with thin film transistors and pixel electrodes and a top plate formed with color filters. The space between the top plate and the bottom plate is filled with liquid crystal. In each unit pixel, a capacitor and a further capacitor are provided; these capacitors are charged and discharged using the TFT as the switching element of the unit pixel. When the data voltage is applied to the TFT, the arrangement of the liquid crystal molecules is changed, thereby changing the optical properties and displaying the image.
Because liquid crystal is not itself luminescent, there are two types, transmission type and reflection type, of LCDs. A transmission type LCD includes an illuminator called a backlight disposed at the rear, which provides a light source. In such a transmission type liquid crystal display device, however, the backlight consumes a large portion of the total power consumed by the liquid crystal display device. Further, in order to improve the display quality in a bright environment, the intensity of the light from the backlight needs to be increased. This further increases the power consumption of the backlight and thus the resultant liquid crystal display device.
In order to overcome the above problem, a reflection type liquid crystal display device has been provided. Such a reflection type liquid crystal display device uses a reflector formed on one of a pair of substrates so that ambient light is reflected from the surface of the reflector. Since the conventional liquid crystal display of the reflection type use the ambient light for the display, the display luminance largely depends on the surrounding environment, and when used under the circumstances where the ambient light is weak, the display content may not be observed. The liquid crystal displays of the reflection type do not use back light for the display, and therefore, have an advantage of saving power.
In order to overcome the above problems, a construction having both a transmission type display and a reflection type display in one liquid crystal display device has been disclosed in U.S. Pat. No. 6,195,140. Such a liquid crystal display device has a different cell gap between the top plate and bottom plate in a transmission region and reflection region to maximize the luminance efficiency.
Because differences in liquid crystal twist angle may realize different luminescence efficiencies, the main purpose of the present invention is to provide a manufacture method of liquid crystal display to employ different liquid crystal twist angles in the reflection and transmission regions to maximize the total luminance. The liquid crystal display of the present invention may transmit a part of incident light and reflects the rest so that it can be used when the ambient light is weak while maintaining the advantages of the reflection type liquid crystal display.
The difference of liquid crystal twist angles may result in the different luminescence efficiency for reflection and transmission regions, respectively. Therefore, the difference of liquid crystal twist angles will be respectively used in reflection and transmission regions of a liquid crystal display to maximize their luminescence efficiency. Concave and convex structures are utilized in the lower substrate of the liquid crystal display in accordance with the present invention.
In the first embodiment, a rubbing method is used to arrange the orientation. A rubbing process adjusts and determines the orientation of the orientation layer that may arrange the liquid crystal molecules according to the determined orientation. The present invention uses different rubbing pressures to adjust and determine the orientation of the reflection region and transmission region. A higher rubbing pressure is used to adjust and determine the orientation of the transmission region. At this time, the orientation of the reflection region is also rubbed in the same direction. However, a lower rubbing pressure is used to adjust and determine the orientation of the reflection region. Because the transmission region is located in the recess of the concave and convex structure, it is not rubbed in this step so that the orientation of the transmission region is not changed in this step. In other words, different rubbing pressure is used in this embodiment to arrange the orientation. Both the transmission region and the reflection region can be rubbed when using the higher rubbing pressure. However, only the reflection region can be rubbed when using the lower rubbing pressure. Therefore, there are different orientation arrangements formed on the two regions.
The second embodiment uses UV light to adjust and determine the orientation of the liquid crystal display. This method utilizes UV lights with different polarized direction to illuminate the orientation layer in the transmission region and the reflection region respectively. Accordingly, a UV light with a polarized direction that is same as the required orientation direction is used to illuminate the orientation layer, wherein the UV light source is located above the orientation layer. After illuminating, the transmission region and the reflection region both have the same orientation direction. Next, a UV light with a polarized direction that is same as the required orientation direction of the transmission region is used to illuminate the orientation layer, wherein the UV light is located under the transmission region and reflection region. Accordingly, an orientation layer is formed over the transmission region and the reflection region. Therefore, when the UV light is located above the orientation layer, the whole orientation layer will be arranged. When the UV light is located under the transmission region and reflection region, because the reflection region is composed of an opaque material, the orientation layer located above the reflection layer is not illuminated by the UV light again. As a result, the transmission region and the reflection region have different orientation directions.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Without limiting the spirit and scope of the present invention, the method proposed in the present invention is illustrated with one preferred embodiment about a manufacturing method of liquid crystal display. Skilled artisans, upon reviewing the embodiments, can apply the fabricating method according to the present invention to any kind of liquid crystal display having reflection and transmission region to maximize the light-utilization efficiency in the two regions. The method of the present invention transmits part of the incident light and reflects the rest and can be used when the ambient light is weak while maintaining the advantages of the liquid crystal displays of the reflection type. The application of the present invention is not limited by the following embodiment.
The difference in liquid crystal twist angle may cause different luminescence efficiencies for reflection and transmission regions respectively. In accordance with the present invention, different liquid crystal twist angles will be used in reflection and transmission regions respectively to maximize the luminescence efficiency of the liquid crystal display so that the total luminescence may reach the optimum state. In accordance with one embodiment of the present invention, for a liquid crystal display with a 4 μm distance between the upper and lower substrates, when the liquid crystal twist angle is between 70 degrees and 90 degrees, the reflection region has the optimum luminescence efficiency herein, and, when the liquid crystal twist angle is between 10 degrees and 70 degrees, the transmission region has the optimum luminescence efficiency. Therefore, the whole luminescence efficiency of a liquid crystal display will reach the optimum state when the reflection region has a liquid crystal twist angle between 70 degrees and 90 degrees and the transmission region has a liquid crystal twist angle between 10 degrees and 70 degrees.
The present invention will now be described in detail with reference to drawings.
In accordance with an embodiment of the present invention, the whole luminescence efficiency of a liquid crystal display with a 4 μm distance between the upper and lower substrate will reach the optimum state when the reflection region has a liquid crystal twist angle between about 70 degrees and 90 degrees and the transmission region has a liquid crystal twist angle between about 10 degrees and 70 degrees. The following is a description of the methods in this invention to arrange the orientation of the liquid crystal twist angle.
Rubbing
The rubbing method is used to arrange the orientation in the first embodiment. The rubbing process adjusts and determines the orientation of the orientation layer that may arrange the liquid crystal molecules according to the determined orientation. The present invention uses different rubbing pressures to adjust and determine the orientation of the reflection region 130 and transmission region 132, as shown in
Conversely, because the reflection region 130 is located in the convex portion of the concave and convex structure, the lower rubbing pressure is used to adjust and determine the orientation of this region. The transmission region 132 located in the recess of the concave and convex structures is not rubbed in this step because of the lower rubbing pressure so that the orientation of this region is not changed in this step. Therefore, the two regions have different orientations after the two rubbing steps, wherein the transmission region 132 is only rubbed in the first rubbing step but the reflection region 130 is rubbed in the two rubbing steps. However, because of the rubbing characteristic that the latter rubbing step determines the orientation, the second rubbing step dictates the orientation of the reflection region 130. In accordance with the preferred embodiment of the present invention, the rubbing pressure applied to the transmission region 132 at least may rub the lowest portion herein. Conversely, the rubbing pressure applied to the reflection region 130 may not overlap the transmission region 132.
In accordance with the preferred embodiment, a 60-degree liquid crystal twist angle is required in the transmission region 132 and an 80-degree liquid crystal twist angle is required in the reflection region 130.
The rubbing method, evaporation method and UV light alignment method may also be used to arrange the orientation of the orientation layer 134 formed on the common electrode 114.
UV Light
The second embodiment of the present invention uses the UV alignment method. The method uses UV light having an identical polarized direction to arrange the respective orientations of the orientation layers formed over the reflection region 130 and transmission region 132.
Referring to
Referring to
In accordance with the second embodiment, the rubbing method, evaporation method and UV light alignment method may also be used to arrange the orientation of the orientation layer 134 formed on the common electrode 114.
Although the invention has been described in detail herein, with reference to its preferred embodiment, it is to be understood that this description is by way of example only, and is not to be interpreted in a limiting sense. It is to be further understood that numerous changes in the details of the embodiments of the invention can occur, and additional embodiments of the invention will be apparent to, and may be made by, persons of ordinary skill in the art having reference to this description. Such changes and additional embodiments fall within the spirit and true scope of the invention as claimed below.
Number | Date | Country | Kind |
---|---|---|---|
91120659 | Sep 2002 | TW | national |
The present application is a divisional of U.S. patent application Ser. No. 10/656,122, filed Sep. 8, 2003 which is based on, and claims priority from, Taiwanese Application Number 91120659, filed Sep. 10, 2002, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10646122 | Aug 2003 | US |
Child | 11419727 | May 2006 | US |