Method for forming elongated dimples

Information

  • Patent Grant
  • 6315685
  • Patent Number
    6,315,685
  • Date Filed
    Wednesday, August 23, 2000
    24 years ago
  • Date Issued
    Tuesday, November 13, 2001
    23 years ago
Abstract
A spherical ball and a method of making the spherical ball wherein the ball has a plurality of elongated dimples substantially covering the outer surface of the ball without any dimple overlap. The elongated dimples are of at least two types including a first plurality of dimples having a minor axis and a major axis which together form the long axis of the first plurality of dimples. The minor axis being less than the major axis. A second plurality of dimples has a minor axis equal to that of the first plurality of dimples and a major axis less than the major axis of the first plurality of dimples but greater than the minor axis.
Description




BACKGROUND OF THE INVENTION




Golf balls are now being produced having various dimple patterns, dimple sizes, and geometric dimple patterns. Generally speaking, all of these dimples are configured so as to have a substantially constant geometric surface. Whether circular or multi-sided, the dimples are designed so that the geometrical configuration of each dimple is substantially the same regardless of its size. In this type of dimple arrangement, the dimples are normally configured in some pattern such as an octahedron, dodecahedron, or the like, or are configured so as to provide sections within the hemisphere, whether those sections number four, or six, or whatever desired configuration. Normally, the dimples are arranged in a desired pattern within each section and then this pattern is repeated for each section. The standard procedure is that each hemisphere has the same number of dimples and in substantially the same pattern and the hemispheres may be rotated with respect to each other depending upon the position of the mold halves.




U.S. Pat. No. 5,356,150 issued Oct. 18, 1994 and assigned to the assignee of the present invention discloses a golf ball having a plurality of dimples formed on the spherical surface of the golf ball, with the surface defining opposite poles and an equator midway between the poles so as to divide the surface into two hemispheres. The hemispheres have substantially the same dimple pattern and each dimple pattern comprises a dimple-free area surrounding the pole, a dimple-free area adjacent the equator, and a plurality of substantially identical sections extending between the pole and the equator, with each of said sections having a dimple pattern which comprises a plurality of elongated dimples. The axis of each dimple may extend in a direction between a line parallel with the equator and a line between the equator and the pole. The majority of the dimples overlap at least one adjacent dimple. The method used for obtaining this pattern is to locate a plurality of substantially similar geometric dimples on each of the hemispheres and move the outline of the dimples tangentially along the surface of the ball in the selected direction until it passes beyond the spherical surface so as to form elongated dimples in the surface of the ball.




SUMMARY OF THE INTENTION




The present invention is an improvement over the ball disclosed in U.S. Pat. No. 5,356,150 in that it improves the aerodynamics of that ball. It has been found that the use of a dimpled surface where substantially all of the dimples overlap does not necessarily have the optimum aerodynamic characteristics during the flight of the ball. The present invention may be formed by the basic movement as set forth in the above-described patent and uses at least two different sizes of elongated dimples with substantially no dimple overlap. In order to obtain substantially maximum dimple coverage of the surface of the ball a first set of dimples are provided which are formed by extending the dimple depression in a selected direction which may extend until it terminates as it leaves the surface of the ball. For the purposes of clarification, this movement will be referred to as full dimple drag. A second set of dimples are provided by using a dimple drag less than the full distance described above which will be referred to as partial dimple drag. This second set of elongated dimples permit the use of shorter elongated dimples which provides a substantial dimple coverage with substantially no dimple overlap. Additional elongated dimples may be added using dimple depressions of differing diameters and depths. Further, a pattern may include dimples having different partial drag lengths.




According to another object of the invention, elongated dimples may be formed by drilling into a spherical surface to a first depth with a drill bit having a first radius and by displacing the drill bit and/or the spherical surface in a first direction during the drilling step. The first direction may be either straight or curved. In addition the drill bit and/or the spherical surface may be further displaced in a second direction during the drilling step to form an elongated dimple with two axes.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective off-equator view showing a basic dimple pattern section which is repeated about the surface of the ball in each hemisphere;





FIG. 2

is a perspective off equator view showing a finished ball incorporating the pattern of

FIG. 1

;





FIGS. 3 and 3A

show a plan view and a cross-sectional view of a basic circular dimple;





FIGS. 4 and 4A

show a plan and cross-sectional view of an elongated dimple formed by having a partial dimple drag;





FIGS. 5 and 5A

show a plan and cross-sectional view of an elongated dimple formed by having a full dimple drag;





FIG. 6

is a perspective off-equator view showing a modified basic elongated dimple pattern section which is repeated about the surface of the ball;





FIGS. 7 and 7A

show a plan and cross-sectional view of a further elongated dimple formed by having a partial dimple drag;





FIGS. 8 and 8A

show a plan and cross-sectional view of a further elongated dimple formed by having a full dimple drag;





FIG. 9

is a perspective off-equator view showing a finished ball incorporating the pattern of

FIG. 6

;





FIG. 10

is an enlarged cross-sectional view comparing dimples of different depths;





FIGS. 11-13

are plan views, respectively, showing different techniques for drilling elongated dimples into a spherical surface according to a further embodiment of the invention;





FIGS. 14 and 15

are plan and sectional views of a dimple formed with displacement relative to a cutting tool in a straight line.





FIGS. 16 and 17

are plan and sectional views of a dimple formed with displacement relative to a cutting tool in a curved line; and





FIGS. 18 and 19

are plan and sectional views of a dimple formed with displacement relative to a cutting tool in two different straight directions.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

shows the basic pattern used to develop the dimple coverage in one example of the present invention. The ball is divided into two hemispheres


11


and


12


divided by a dimple free equator E—E. A basic pattern section is shown on hemisphere


11


. The pattern shows two different dimples


2


and


3


which will be described in detail below.





FIG. 2

is an off-equator view of a finished ball where substantially all of the dimples are different dimples


2


and


3


. As can be seen, a ball is provided which has substantially no dimple overlap. By creating dimples


2


by partial dimple drag, it is possible to increase the percent dimple coverage over the coverage obtained using circular dimples in combination with elongated dimples


3


formed by full dimple drag since the surface area between dimples is reduced.




This pattern of

FIG. 1

is repeated five times about the surface of hemisphere


11


except that all repeating patterns share a common pole dimple. This same pattern appears on hemisphere


12


.




All of the elongated dimples


2


are substantially identical and all of the elongated dimples


3


are substantially identical. The specific configuration of these dimples is discussed below.




Dimples X are formed by the five core pins in each hemisphere which support the core within the mold while the cover is being formed. Due to the position of the core pins and the manner of their creation, dimples X are elliptical. The two polar dimples P are formed by vent pins during the formation of the cover and are substantially circular. Each key pattern includes 33 dimples plus the common pole dimple P which, when duplicated completely over the ball in the manner described above, results in a ball having a total of 332 dimples as shown in FIG.


2


.





FIGS. 3

,


3


A,


4


,


4


A, and


5


,


5


A illustrate the progression of dimple formation as used in the present invention.

FIG. 3

is an illustration of a circular dimple as used on most golf ball surfaces at the present time. This dimple has a constant radius. Thus, the two axes A


1


are equal. Arrow


20


indicates the initial direction of the drill which is used to form the dimple in


3


A. The drill (not shown) extends into the spherical ball outer periphery at point C until the desired depth D


1


is reached.





FIG. 4

illustrates dimple


2


of FIG.


1


. Again the dimple is formed to the desired depth D


2


. Since the formation of this dimple starts with a circular dimple as in

FIG. 3

, the minor axis A I is the same as the radius of the circular dimple. Dimple drag as discussed above, is in the direction indicated by arrow


15


. In the illustration of

FIG. 4

, partial dimple drag results in major axis A


2


which is greater than axis A


1


.





FIG. 5

illustrates dimple


3


of

FIG. 1

which has been formed using a full dimple drag. That is, the cutting drill is dragged until it leaves the curving surface of the ball. Again, since dimple


3


starts with a circular dimple, minor axis A


1


is the same as minor axis A


1


of FIG.


3


. The full dimple drag produces an elongated dimple


3


having major axis A


3


which is greater than axis A


2


of elongated dimple


2


.





FIGS. 3A

,


4


A and


5


A which are cross-sectional views taken along lines


3


A,


4


A, and


5


A of

FIGS. 3

,


4


, and


5


show the depth of the dimples of

FIGS. 3

,


4


, and


5


. The maximum depth D


1


, D


2


and D


3


occurs vertically below point C where the major and minor axes meet. Although varying depths may be selected, in the example below, all depths are equal. The selected depth is one of the parameters which controls the height of the trajectory of the ball.




EXAMPLE I




One example of a specific ball, as shown in

FIG. 2

, is as follows. This ball has a total of 332 dimples with substantially all of the dimples having the configuration as shown in

FIGS. 4

,


4


A and


5


,


5


A. The outside diameter of the ball is substantially 1.68 inches.






















Number







Dimple




Minor Axis




Major Axis




of Dimples




Dimple Depth











2




0.074 in.




0.088 in.




220




0.0117 in.






3




0.074 in.




0.140 in.




100




0.0117 in.














As discussed above, there are ten (10) elliptical core dimples and two (2) circular polar vent dimples. This dimple pattern results in a ball having a surface dimple coverage of substantially 77%.





FIG. 6

is a perspective off-equator view of a modified basic elongated dimple pattern which comprises four different sizes of elongate dimples


4


,


5


,


6


, and


7


. Elongated dimples


4


and


5


are formed starting with a dimple depression having the same diameter. Elongated dimples


6


and


7


are formed starting with a dimple depression having a different diameter than the dimple depression used for elongated dimples


4


and


5


.




Using the basic illustrations of

FIGS. 4 and 5

as applied to

FIG. 6

, dimples


4


and


5


have a minor axis A


1


. Dimple


4


has a full dimple drag resulting in a major axis A


3


. Dimple


5


has a partial dimple drag resulting in a major axis A


2


. As shown in

FIGS. 7

,


7


A,


8


and


8


A, dimples


6


and


7


have a minor axis A


1


′. Dimple


6


has a full dimple drag resulting in major axis A


3


′. Dimple


7


has a partial dimple drag resulting in a major axis A


2


′<A


3


. Thus dimples


4


and


5


have a minor axis A


1


and dimples


6


and


7


have a minor axis A


1


′. Axis A


1


differs from axis A


1


′ since two different diameter dimple depressions are used. This forms a final pattern having four different size elongated dimples with substantially no dimple overlap wherein the sum of the major and minor axes differs in the four different elongated dimples. Again, the pattern of

FIG. 6

is repeated in each hemisphere


21


and


22


so as to provide the finished ball as shown in FIG.


9


.




EXAMPLE 2




One example of a specific ball using the pattern of

FIGS. 6 and 9

is as follows. This ball has a total of 332 dimples with substantially all of the dimples having an elongated configuration. This specific ball has an outside diameter of substantially 1.68 inches. Elongated dimples


4


and


6


are produced with a full dimple drag while dimples


5


and


7


are produced with a partial dimple drag, This ball provides a dimple coverage of substantially 75%.




















Major Axis




Number








Dimple




Length




of Dimples




Diameter




Depth



























4 Full




0.1403 in.




40




0.1400 in.




0.0117 in.






5 Partial




0.0846 in.




60




0.1400 in.




0.0117 in.






6 Full




0.1403 in.




60




0.1480 in.




0.0117 in.






7 Partial




0.0880 in.




160




0.1480 in.




0.0117 in.






P&X Ellip/Cir




0.0740 in.




12




0.1480 in.




0.0117 in.














The selected depth of the original dimple depression is directly related to the length of the longitudinal axis of the elongated dimple resulting from dimple drag. This relationship is illustrated in

FIG. 10

which shows an elongated view of the cross section of elongated dimples having different maximum depths. These dimples are produced with full dimple drag. Elongated dimple


23


has a maximum depth D


8


which is less than the maximum depth of dimple D


9


of dimple


24


. This results in a difference ΔA in the total axis length of the two dimples.




Although the golf ball of the present invention could be produced by drilling each ball, such a procedure is not economically feasible. A procedure which has become standard in the industry is disclosed in U.S. Pat. No. 3,831,423 to Brown et al, issued Aug. 27, 1994. In this procedure, a hob is made of approximately the same dimensions as half of the finished golf ball and then a mold is formed from the hob.




Referring now to

FIGS. 11-13

, alternate methods for drilling a hob


24


in accordance with further embodiments of the invention will now be described.




The hob has a hemispherical surface


26


which represents the outer surface of a golf ball. A cutting tool


28


is arranged adjacent the hob and includes a drill bit


30


having a first radius. In the embodiment of

FIG. 11

, the hob is fixed and the drill bit is displaced along a straight line represented by the arrows


32


. When the drill bit strikes the hob surface, it cuts a dimple therein as it traverses the surface. Such a dimple


34


is shown in FIG.


14


. It is elongated because of the curvature of the surface and includes a center C along a radius of the hob. The center is also equidistant from the opposite edge of the dimple. The dimple has equal major axes A″ which are co-linear with the straight line of movement of the cutting tool


28


. The depth D of the dimple (

FIG. 15

) is defined by the degree to which the cutting tool cuts into the hob along the radius thereof. The depth is adjustable by vertically displacing the cutting tool as shown by the arrows


36


. Because the cutting tool moves along a straight line, the deepest portion of the dimple is also defined by a straight line L


1


extending between the portions of the hob surface where the drill bit enters and leaves the same as shown in FIG.


15


.




In lieu of displacing the cutting tool relative to the fixed hob, the same results can be achieved by fixing the tool and displacing the hob in a straight line.





FIG. 12

represents a further embodiment for cutting a hemispherical surface on a hob. In this embodiment, the cutting tool moves along a curved path represented by the arrows


36


. Thus, during the period which the drill bit


30


engages the surface


26


of the hob


24


, the bit enters the hob with a lateral downward movement and exits the hob with a lateral upward movement as shown in FIG.


12


. The resulting elongated dimple


38


is shown in

FIGS. 16 and 17

. It is elongated but blunted at the ends thereof in comparison with the dimple


34


of

FIGS. 14 and 15

. This is because of the angle at which the drill bit enters and leaves the hob. Thus, as shown in

FIG. 17

, the deepest portion of the dimple defines a line L


2


which is curved at its opposite ends. The dimple


38


also has equal major axes A′″.





FIG. 13

shows an alternate embodiment for producing a dimple


38


configured as in

FIGS. 16 and 17

. The cutting tool


28


is stationary and the hob


24


is pivotable through an arc with respect to the drill bit.




The description of

FIGS. 11-13

above is for a cutting tool or hob being displaced within a plane in a first direction to produce the dimples


34


or


38


of

FIGS. 14 and 16

. It is also possible to displace the cutting tool or hob in a second plane during drilling to produce a dimple whose major axes are not co-linear. Such a dimple


40


is shown in

FIGS. 18 and 19

and has a kidney-shaped configuration.




By way of example only, the dimple


40


has first and second semi-elliptical portions


40




a


and


40




b


. The portion


40




a


has a major axis A″ and is formed in the same manner as the first half of the dimple


34


of FIG.


14


. However, when the center of the drill bit reaches the center C of the dimple (which is along a radius of the hob), so that the radius of the hob and the axis of the cutting tool are aligned, the cutting tool is redirected for movement in a second direction or plane to form the portion


40




b


which also has a major axis A″. Thus, the major axes intersect rather than being co-linear.




It will be appreciated by those skilled in the art that an infinite number of elongated dimple configurations are possible by using the drilling methods described above. Variable dimple depths—within a single dimple—are available by extending or retracting the cutting tool relative to the hob during the drilling step. Moreover, the direction of travel of the cutting tool relative to the hob can be reoriented through a number of planes during drilling.




While in accordance with the provisions of the patent statutes the preferred forms and embodiments have been illustrated and described, it will be apparent to those of ordinary skill in the art that various changes may be made without deviating from the inventive concepts set forth above.



Claims
  • 1. A method of forming elongated dimples in a spherical surface, comprising the steps of(a) drilling into the surface to a first depth with a drill bit having a first radius; (b) displacing one of the drill bit and the surface in a first direction during said drilling step to form an elongated dimple; (c) repeating steps (a) and (b) to form a plurality of elongated dimples.
  • 2. A method as defined in claim 1, wherein said first direction is straight.
  • 3. A method as defined in claim 1, wherein said first direction is curved.
  • 4. A method as defined in claim 1, wherein said drilling step includes drilling to a variable depth.
  • 5. A method as defined in claim 1, wherein one of the drill bit and the surface are further displaced in a second direction during said drilling step to form an elongated dimple with two axes.
  • 6. A method as defined in claim 5, wherein at least one of said first and second directions is straight.
  • 7. A method as defined in claim 5, wherein at least one of said first and second directions is curved.
  • 8. A method as defined in claim 5, wherein said drilling step includes drilling to a variable depth.
  • 9. A method as defined in claim 1, wherein said plurality of dimples are non-overlapping.
Parent Case Info

This application is a division of U.S. application Ser. No. 09/285,698 filed Apr. 5, 1999 which is a continuation-in-part of U.S. application Ser. No. 08/869,981 filed Jun. 5, 1991 now U.S. Pat. No. 5,890,975. This invention relates generally to the dimple configuration on the surface of a golf ball and more particularly to an elongated dimple configuration and the method of obtaining that configuration.

US Referenced Citations (6)
Number Name Date Kind
5356150 Lavallee et al. Oct 1994
5653648 Thurman Aug 1997
5722903 Moriyama et al. Mar 1998
5890975 Stiefel Apr 1999
6059671 Asakura May 2000
6206792 Tavares et al. Mar 2001
Continuation in Parts (1)
Number Date Country
Parent 08/869981 Jun 1997 US
Child 09/285698 US