Abdominal Aortic Aneurysms (AAA) are weakened areas in the aorta that form balloon-like bulges, or sacs, in approximately the abdominal area. As blood flows through the aorta, the pressure of the blood pushes against the weakened wall, causing it to enlarge and often rupture. Ruptured AAA is a major cause of death in the United States.
In the past, clips and open surgery were the traditional interventional treatments for AAA. More recently, endografts, sometimes with stents for added stability, have been placed across the aneurysm to reduce the pressure on the aneurysm wall and prevent its enlargement and rupture.
Most recently, there have been described systems wherein an expandable member of a device is introduced into the aneurysmal sac by means of minimally invasive surgical (MIS) techniques, e.g., guidance through the vasculature of a human patient using a guidewire introduced into the patient for that purpose. Flowable precursor materials are introduced into the expandable member, the precursor materials undergo chemical reaction and cause the expandable member to expand and conform to the shape of the aneurysmal sac. As the materials harden, they lock the expandable member in place in the patient and stabilize the aneurysm. See for example, U.S. Pat. Nos. 7,872,068; 8,044,137; and U.S. 2006/0222596, the contents of which are hereby incorporated by reference herein in their entirety. The expandable member may be, for example, a single-walled or double-walled balloon or an inflatable cuff. Other examples of devices having an inflatable or expandable member are provided, for example, in PCT Application Pub. No. WO 00/51522, U.S. Pat. Nos. 5,334,024; 5,330,528, 6,1312,462; 6,964,667; 7,001,431; 2004/0204755; and 2006/0025853A1, the contents of which are hereby incorporated by reference herein in their entirety. The flowable precursor materials are typically polymer precursors which polymerize and cross-link to form hydrogels. One preferred type of polymer precursor is a material that can be polymerized by free radical polymerization. Typically this involves the polymerization/cross-linking of two prepolymers, each having terminal reactive groups that are susceptible to free radical polymerization, such as acrylates and methacrylates.
The polymerization is effected by combining both prepolymers with a thermally activated low temperature free radical initiator and an initiator catalyst at physiological temperature.
In order to avoid premature polymerization, i.e., prior to mixing all the components and allowing them to polymerize in situ in the expandable device, the components are typically stored in two separate aqueous solutions, one solution comprising one polymer precursor and the free radical initiator, and the other solution comprising the other polymer precursor and the initiator catalyst. In this way, the two polymer precursors are kept apart, as are the free radical initiator and the initiator catalyst.
In practice, the two solutions are concomitantly delivered and then mixed, either ex vivo in a manifold, or in the expandable device itself.
Because of the instability of thermally activated low temperature free radical initiators, the solutions containing the components must necessarily be kept frozen, i.e., at zero degrees Celsius or lower, until needed. Even so, the useful shelf life of the device or kit comprising such solutions is only 12 to 18 months.
The necessity that the solutions be kept frozen is a serious practical disadvantage, inasmuch as the solutions cannot easily be thawed and be ready for use as soon as a patient presents with an AAA that needs immediate treatment, particularly since rapid thawing by conventional techniques using large temperature differentials, e.g., hot water or microwave defrosting, cannot be used because of the thermal activation of the initiator.
It would be desirable to have materials and methods for using such materials, such that storage of the aqueous solutions used for treatment could be at or near ambient temperature, allowing for immediate use when required, and having a useful shelf life of at least 2 years.
It would further be desirable to be able to administer only one solution, rather than two, thus avoiding the necessity for mixing in a manifold or other device, and ensuring homogeneity of the material being polymerized.
What is needed is an improved method for stabilizing AAA-treating devices. These methods are described herein, including materials and methods of stabilizing implanted medical devices by introducing flowable precursor materials that expand an expandable member of the device to set the device in place, with the precursors then hardening to keep the device in place. Previous devices and methods have been described in detail in, e.g., U.S. Pat. No. 8,044,137, cited above, the contents of which are hereby incorporated by reference herein in their entirety.
Embodiments described herein provide methods that allow for simpler and more practical stabilization of implanted medical devices, in particular, elimination of the need to keep the materials frozen until use, increased shelf life, and the ability to use only one solution to initiate the process.
This method allows for the free radical initiator to be absent from the source solutions being introduced and, instead, to be kept in powder form and introduced into the flowable aqueous solution only at the time the polymerization is desired. This material in powder form may be present in a filter upstream from the expandable member, in the expandable member itself, or in a container in communication with the expandable member. As a result of the free radical initiator not being present in the source solution(s), it is now possible and desirable to combine both polymer precursors into one source solution, and thereby administer a single source solution to initiate the polymerization process.
The drawings are intended to depict various components and their relationship to each other. The components are not drawn to scale.
As discussed above, previous methods for treating AAA have included forming a material in situ by increasing the volume of an expandable member of a medical device. The expandable member when expanded by flowable material conforms to the shape of the aneurysm in which it is contained, and once allowed to harden, fixes the medical device in place. The material is formed by the free radical polymerization of two polymer precursors in an aqueous solution in the presence of a thermally activated free radical initiator and an initiator catalyst. The polymerization is carried out, for example, inside an endograft comprising a single-walled or double-walled balloon.
The presence of the initiator in one of the solutions being introduced is problematic in that it necessitates that the solutions and, therefore, the entire apparatus, be kept frozen, and thawed only immediately before delivering into a catheter for treating a patient. Thawing by traditional means involving large temperature differentials such as hot water or microwave treatment is not possible due to the thermal activation of the initiator. At ambient temperature the initiator in the solution is unstable and can result in degradation of the polymer precursor, such as and including premature polymerization, resulting in an unacceptable shelf life.
It has now been found that, surprisingly, by eliminating the initiator from the solution, and introducing it in powder form later in the process, (i) one can avoid having to store the apparatus containing the solutions at freezer temperature, (ii) overall shelf life can be improved, (iii) both polymer precursors can be combined into one solution for delivery, greatly simplifying the procedure, and (iv) the resulting hydrogel is of a quality substantially the same as that prepared by previous methodologies.
Thus, in its broadest aspect, a method described includes a method of forming a material in situ by increasing the volume of an expandable member of a medical device in a patient by:
Particularly preferred polymer precursors are those that, upon polymerization and cross-linking, will result in a hydrogel having certain desired properties, most notably being a solid and nonbiodegradable material having a swellability of less than about 20% v/v and having a Young's modulus of at least about 100 kiloPascals. To minimize the time required for the MIS (minimally invasive surgical) procedure, but allow sufficient time for the removal of filling tubes from the expandable member, it is preferred that the time for forming the finished hydrogel be from about 30 seconds to about 30 minutes from initiating the polymerization reaction. The polymerization reaction is initiated by the mixture of both polymer precursors, the initiator and the catalyst in solution.
It is preferred that the polymer precursors be water soluble, be soluble with each other, have similar polymerization reactivity to ensure the hydrogel is a random copolymer, and have terminal functional groups. Polymer precursors comprising polyethyleneoxide units, i.e., polyethylene glycols (PEGs), with terminal acrylate or methacrylate functional groups, are particularly preferred. It is also preferred that there be a first polymer precursor that is linear and a second polymer precursor that is branched. The linear polymer precursor provides a long-chain, durable and flexible base for the hydrogel, and the branched polymer precursor provides a high degree of cross-linking for the hydrogel with a network structure having the desired swellability and hardness. A particularly preferred linear polymer precursor is polyethylene glycol terminally derivatized with two acrylate groups and having a molecular weight between about 20 and 50 kiloDaltons, most preferably about 35 kiloDaltons. A particularly preferred branched polymer precursor is an oligomeric branched polyethylene glycol terminally derivatized with three acrylate groups and having a molecular weight of between about 800 Daltons and 1.2 kiloDaltons, most preferably about 1 kiloDalton. The molar ratio of branched polymer precursor to linear polymer is preferably between about 200:1 and about 1000:1, most preferably about 400:1.
Thermally activated low temperature free radical initiators will initiate free radical crosslinking reactions at or near physiological body temperatures. Particularly preferred initiators are sodium persulfate, potassium persulfate and ammonium persulfate. Ammonium persulfate is particularly preferred because of its high water solubility, thereby assuring its complete solubility during the processes described.
Initiator catalysts are used to initiate the polymerization reaction by reaction with the initiator. Preferred catalysts include triethanolamine and tetramethylethylenediamine. Triethanolamine is particularly preferred. It is generally preferred that the initiator and catalyst be present in about equimolar amounts and that the molar ratio of branched polymer precursor to initiator be from about 2:1 to about 15:1, preferably about 7:1.
The aforementioned components (both polymer precursors and, optionally, catalyst) are dissolved in one or two source solutions, preferably in buffered aqueous solutions such as phosphate buffered solutions having a pH desirable for stability of the ester linkages, preferably neutral to slightly acidic, pH 4-7, and providing a hydrogel having a neutral osmolarity with respect to physiological conditions. The initiator as a powder is dissolved later. Sufficient buffered source solution is used to reduce viscosity and ensure that the source solution(s) is flowable. If two source solutions are employed, the first source solution comprises the first polymer precursor and the second source solution comprises the second polymer precursor. The catalyst may be present in one of the source solutions or it may be added later, either before or after introduction of the initiator. Preferably, the catalyst is present in one of the source solutions. In addition, one of the source solutions typically also comprises a radio-opaque agent such as sodium diatrizoate for fluoroscopic visualization. For ease of delivery it is preferable that about equal volumes of the two source solutions be employed. If only one source solution is employed, both polymer precursors, optionally the catalyst, and a radio-opaque agent are present. Preferably the catalyst is present in the source solution.
In one embodiment depicted in
In another embodiment the initiator in powder form 17B is immobilized on the upstream side of the filter 18. This is depicted in
In yet another embodiment depicted in
In the aforementioned embodiments in
In another embodiment depicted in
One embodiment of an apparatus 40 used to practice the method described is depicted in
Another embodiment of an apparatus 50 used to practice the method described is depicted in
Another embodiment of an apparatus 60 used to practice the method described is depicted in
As described above, the catalyst may be incorporated in a source solution or introduced later in the process, either before or after introduction of the initiator.
The following Examples are illustrative only and are not intended to limit the scope of other embodiments described in any way.
A first source solution is prepared by mixing approximately equal weights of 0.01M pH 7.0 phosphate buffer and ethoxylated (20) trimethylolpropane triacrylate (PEG-T) (Sartomer Co., Exton, Pa.). A second source solution is prepared containing 4% (w/w) polyethylene glycol diacrylate 35,000 Da (PEG-D) (JenKem Technology, Allen, Tex.) in 0.01M pH 7.0 phosphate buffer. 22-23 ml of each of these source solutions was transferred to individual parallel chambers of a capped dual barrel syringe. 38 mg of ammonium persulfate powder (APS) was placed on the inlet side of a 33 mm Millex GP 0.22 μm filter disk and the disk was tapped to better distribute the powder. 55 mg of triethanolamine liquid (TEA) was placed on the inlet side of a second 33 mm Millex GP 0.22 μm disk. A multiple element static mixer was attached to the end of the dual barrel syringe. The dual barrel syringe was placed into a dispensing apparatus capable of dispensing equal volumes of the two solutions through the mixer. The filter containing the APS was attached to the mixer and the filter containing the TEA was attached in series to the outlet of the APS filter. Approximately 15 ml of each source solution (30 ml total) was dispensed, over 10-20 seconds, through the mixer and both filters sequentially into 3 glass vials placed in a 37° Celsius water bath, approximately 10 ml in each vial. Polymerization was observed in the first vial after seven minutes, resulting in a white solid hydrogel.
Equal volumes (approximately 25 ml each) of the first and second source solutions from Example 1 were mixed to form a single source solution. Because only a capped dual barrel syringe was available, the resulting single source solution was transferred to both parallel chambers of the syringe, approximately 22-23 ml each, and a mixing tube was connected to the syringe, not for mixing purposes, but to provide an appropriate connector. A 33 mm Millex GP 0.22 μm filter disk containing 27 mg of TEA liquid was attached to the end of the mixing tube and a second 33 mm Millex GP 0.22 μm filter disk containing 32 mg of APS powder was attached in series to the outlet of the first filter. The dual barrel syringe was placed into a dispensing apparatus capable of dispensing equal volumes of the two solutions. Approximately 15 ml from each barrel (30 ml total) was dispensed, over 10-20 seconds, through the filters sequentially into 3 glass vials placed in a 37° Celsius water bath, approximately 10 ml in each vial. Polymerization was observed in the first vial after nine minutes, resulting in a white solid hydrogel.
Example 1 is repeated, except that the filters are reversed so that the filter with the TEA is attached to the end of the mixer and the filter with the APS is attached in series to the outlet of the first filter. Polymerization is observed, resulting in a white solid hydrogel.
Example 2 is repeated, except that the filters are reversed so that the filter with the APS is attached to the end of the mixing tube and the filter with the TEA is attached in series to the outlet of the first filter. Polymerization is observed, resulting in a white solid hydrogel.
Example 1 is repeated, except that 92 mg of TEA is dissolved in the first source solution instead of being contained in a filter. Polymerization is observed, resulting in a white solid hydrogel.
Example 2 is repeated, except that 45 mg of TEA is dissolved in the single source solution instead of being contained in a filter. Polymerization is observed, resulting in a white solid hydrogel.
A first source solution was prepared by dissolving 4.8 g of PEG-D and 2.4 g of sodium diatrizoate in 112.8 g of 0.01M pH 5.0 phosphate buffer. A second source solution was prepared by dissolving 64.2 g of PEG-T and 1.128 g of triethanolamine in 64.8 g of 0.01M pH 5.0 phosphate buffer. 2.009 g ammonium persulfate was placed inside a polyurethane endobag. 60 ml each of the source solutions were mixed for 15 minutes to form a single source solution. That source solution was placed in a syringe and injected into the endobag at 21° Celsius without agitation to cure the hydrogel. Complete polymerization was observed after 22 minutes and 24 seconds, resulting in a solid white hydrogel.
The aforementioned embodiments according to the invention and apparatus used to practice such embodiments are illustrative only and are not intended to limit the scope of the claims hereinafter. Variations, modifications and combinations of the above embodiments will be apparent to the skilled practitioner and are included herein.
This application claims the benefit of priority from U.S. Provisional Patent Application No. 61/785,445 filed on Mar. 14, 2013 and entitled “Method for Forming Materials In Situ Within a Medical Device,” the full disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4565738 | Purdy | Jan 1986 | A |
4638803 | Rand | Jan 1987 | A |
4641653 | Rockey | Feb 1987 | A |
4704126 | Baswell | Nov 1987 | A |
4710192 | Liotta | Dec 1987 | A |
4728328 | Hughes et al. | Mar 1988 | A |
4731073 | Robinson | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4743258 | Ikada | May 1988 | A |
4763654 | Jang | Aug 1988 | A |
4856516 | Hillstead | Aug 1989 | A |
4858264 | Reinhart | Aug 1989 | A |
4892544 | Frisch | Jan 1990 | A |
4936057 | Rhoades | Jun 1990 | A |
4976692 | Atad | Dec 1990 | A |
5002532 | Gaiser | Mar 1991 | A |
5074845 | Miraki | Dec 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5122154 | Rhodes | Jun 1992 | A |
5133732 | Wiktor | Jul 1992 | A |
5139480 | Hickle | Aug 1992 | A |
5156620 | Pigott | Oct 1992 | A |
5195984 | Schatz | Mar 1993 | A |
5199226 | Rose | Apr 1993 | A |
5217484 | Marks | Jun 1993 | A |
5222970 | Reeves | Jun 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5242399 | Lau | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5292331 | Boneau | Mar 1994 | A |
5314444 | Gianturco | May 1994 | A |
5316023 | Palmaz et al. | May 1994 | A |
5330528 | Lazim | Jul 1994 | A |
5334024 | Niznick | Aug 1994 | A |
5334217 | Das | Aug 1994 | A |
5350397 | Palermo | Sep 1994 | A |
5352199 | Tower | Oct 1994 | A |
5375612 | Cottenceau | Dec 1994 | A |
5383892 | Cardon | Jan 1995 | A |
5421955 | Lau | Jun 1995 | A |
5423849 | Engelson | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5425744 | Fagan | Jun 1995 | A |
5441510 | Simpson | Aug 1995 | A |
5441515 | Khosravi | Aug 1995 | A |
5443477 | Marin | Aug 1995 | A |
5443496 | Schwartz | Aug 1995 | A |
5449373 | Pinchasik | Sep 1995 | A |
5485667 | Kleshinski | Jan 1996 | A |
5494029 | Lane | Feb 1996 | A |
5496277 | Termin | Mar 1996 | A |
5507767 | Maeda | Apr 1996 | A |
5507769 | Marin et al. | Apr 1996 | A |
5507771 | Gianturco | Apr 1996 | A |
5514115 | Frantzen | May 1996 | A |
5514154 | Lau | May 1996 | A |
5522882 | Gaterud | Jun 1996 | A |
5530528 | Houki et al. | Jun 1996 | A |
5531741 | Barbacci | Jul 1996 | A |
5534024 | Rogers et al. | Jul 1996 | A |
5545210 | Hess | Aug 1996 | A |
5549662 | Fordenbacher | Aug 1996 | A |
5549663 | Cottone, Jr. | Aug 1996 | A |
5554181 | Das | Sep 1996 | A |
5562641 | Flomenblit | Oct 1996 | A |
5562698 | Parker | Oct 1996 | A |
5562728 | Lazarus | Oct 1996 | A |
5569295 | Lam | Oct 1996 | A |
5578074 | Mirigian | Nov 1996 | A |
5578149 | De Scheerder | Nov 1996 | A |
5591195 | Taheri | Jan 1997 | A |
5591223 | Lock | Jan 1997 | A |
5591226 | Trerotola | Jan 1997 | A |
5591228 | Edoga | Jan 1997 | A |
5591230 | Horn | Jan 1997 | A |
5593417 | Rhodes | Jan 1997 | A |
5601600 | Ton | Feb 1997 | A |
5603721 | Lau | Feb 1997 | A |
5605530 | Fischell | Feb 1997 | A |
5607442 | Fischell | Mar 1997 | A |
5607445 | Summers | Mar 1997 | A |
5607468 | Rogers | Mar 1997 | A |
5609605 | Marshall | Mar 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5618299 | Khosravi | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5630840 | Mayer | May 1997 | A |
5632760 | Sheiban | May 1997 | A |
5632762 | Myler | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632771 | Boatman | May 1997 | A |
D380266 | Boatman | Jun 1997 | S |
5634941 | Winston | Jun 1997 | A |
5636641 | Fariabi | Jun 1997 | A |
D380831 | Kavteladze | Jul 1997 | S |
5662614 | Edoga | Sep 1997 | A |
5665117 | Rhodes | Sep 1997 | A |
5674241 | Bley | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5683449 | Marcade | Nov 1997 | A |
5690643 | WiJay | Nov 1997 | A |
5693038 | Suzuki et al. | Dec 1997 | A |
5693067 | Purdy | Dec 1997 | A |
5693088 | Lazarus | Dec 1997 | A |
5697971 | Fischell | Dec 1997 | A |
5709707 | Lock | Jan 1998 | A |
5718713 | Frantzen | Feb 1998 | A |
5723004 | Dereume | Mar 1998 | A |
5725568 | Hastings | Mar 1998 | A |
5725572 | Lam | Mar 1998 | A |
5728068 | Leone | Mar 1998 | A |
5728131 | Frantzen | Mar 1998 | A |
5728158 | Lau | Mar 1998 | A |
5733303 | Israel et al. | Mar 1998 | A |
5735892 | Myers | Apr 1998 | A |
5735893 | Lau | Apr 1998 | A |
5741327 | Frantzen | Apr 1998 | A |
5741333 | Frid | Apr 1998 | A |
5746691 | Frantzen | May 1998 | A |
5755769 | Richard | May 1998 | A |
5755773 | Evans et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5766238 | Lau | Jun 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5776114 | Frantzen | Jul 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5782907 | Frantzen | Jul 1998 | A |
5785679 | Abolfathi et al. | Jul 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5797953 | Tekulve | Aug 1998 | A |
5800393 | Sahota | Sep 1998 | A |
5800512 | Lentz et al. | Sep 1998 | A |
5800514 | Nunez | Sep 1998 | A |
5800525 | Bachinski | Sep 1998 | A |
5807404 | Richter | Sep 1998 | A |
5810872 | Kanesaka | Sep 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5824037 | Fogarty et al. | Oct 1998 | A |
5824040 | Cox | Oct 1998 | A |
5824049 | Ragheb | Oct 1998 | A |
5824054 | Khosravi et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5827321 | Roubin | Oct 1998 | A |
5836966 | St. Germain | Nov 1998 | A |
5843160 | Rhodes | Dec 1998 | A |
5843175 | Frantzen | Dec 1998 | A |
5846246 | Dirks | Dec 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5849037 | Frid | Dec 1998 | A |
5860998 | Robinson | Jan 1999 | A |
5863627 | Szycher | Jan 1999 | A |
5867762 | Rafferty et al. | Feb 1999 | A |
5868685 | Powell et al. | Feb 1999 | A |
5868708 | Hart | Feb 1999 | A |
5868782 | Frantzen | Feb 1999 | A |
5871537 | Holman | Feb 1999 | A |
5873907 | Frantzen | Feb 1999 | A |
5876448 | Thompson et al. | Mar 1999 | A |
5879381 | Moriuchi | Mar 1999 | A |
5888660 | Landoni et al. | Mar 1999 | A |
5902332 | Schatz | May 1999 | A |
5919224 | Thompson | Jul 1999 | A |
5928279 | Shannon et al. | Jul 1999 | A |
5931866 | Frantzen | Aug 1999 | A |
5944750 | Tanner | Aug 1999 | A |
5947991 | Cowan | Sep 1999 | A |
5948184 | Frantzen | Sep 1999 | A |
5976178 | Goldsteen et al. | Nov 1999 | A |
5984955 | Wisselink | Nov 1999 | A |
5994750 | Yagi | Nov 1999 | A |
6007573 | Wallace | Dec 1999 | A |
6015431 | Thornton | Jan 2000 | A |
6022359 | Frantzen | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6056776 | Lau | May 2000 | A |
6066167 | Lau | May 2000 | A |
6066168 | Lau | May 2000 | A |
6083259 | Frantzen | Jul 2000 | A |
6093199 | Brown | Jul 2000 | A |
6099548 | Taheri | Aug 2000 | A |
6110198 | Fogarty et al. | Aug 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6123722 | Fogarty | Sep 2000 | A |
6124523 | Banas et al. | Sep 2000 | A |
6132457 | Chobotov | Oct 2000 | A |
6152144 | Lesh | Nov 2000 | A |
6152943 | Sawhney | Nov 2000 | A |
6168592 | Kupiecki et al. | Jan 2001 | B1 |
6187033 | Schmitt | Feb 2001 | B1 |
6187034 | Frantzen | Feb 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6193745 | Fogarty et al. | Feb 2001 | B1 |
6196230 | Hall et al. | Mar 2001 | B1 |
6203732 | Clubb | Mar 2001 | B1 |
6214022 | Taylor et al. | Apr 2001 | B1 |
6231562 | Khosravi et al. | May 2001 | B1 |
6235050 | Quiachon et al. | May 2001 | B1 |
6241761 | Villafana | Jun 2001 | B1 |
6254633 | Pinchuk et al. | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6280466 | Kugler | Aug 2001 | B1 |
6283991 | Cox et al. | Sep 2001 | B1 |
6290722 | Wang | Sep 2001 | B1 |
6290731 | Solovay et al. | Sep 2001 | B1 |
6293960 | Ken | Sep 2001 | B1 |
6296603 | Turnlund et al. | Oct 2001 | B1 |
6299597 | Buscemi et al. | Oct 2001 | B1 |
6299604 | Ragheb | Oct 2001 | B1 |
6312462 | McDermott et al. | Nov 2001 | B1 |
6312463 | Rourke et al. | Nov 2001 | B1 |
6325816 | Fulton, III | Dec 2001 | B1 |
6325819 | Pavcnik et al. | Dec 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6331191 | Chobotov | Dec 2001 | B1 |
6334869 | Leonhardt et al. | Jan 2002 | B1 |
6344056 | Dehdashtian | Feb 2002 | B1 |
6375675 | Dehdashtian et al. | Apr 2002 | B2 |
6395019 | Chobotov | May 2002 | B2 |
6409757 | Trout, III et al. | Jun 2002 | B1 |
6432131 | Ravenscroft | Aug 2002 | B1 |
6451047 | McCrea | Sep 2002 | B2 |
6463317 | Kucharczyk et al. | Oct 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6527799 | Shanley | Mar 2003 | B2 |
6544276 | Azizi | Apr 2003 | B1 |
6547804 | Porter et al. | Apr 2003 | B2 |
6554858 | Dereume et al. | Apr 2003 | B2 |
6576007 | Dehdashtian et al. | Jun 2003 | B2 |
6579301 | Bales | Jun 2003 | B1 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6613037 | Khosravi et al. | Sep 2003 | B2 |
6645242 | Quinn | Nov 2003 | B1 |
6656214 | Fogarty et al. | Dec 2003 | B1 |
6656220 | Gomez et al. | Dec 2003 | B1 |
6663607 | Slaikeu et al. | Dec 2003 | B2 |
6663667 | Dehdashtian et al. | Dec 2003 | B2 |
6679300 | Sommer et al. | Jan 2004 | B1 |
6682546 | Amplatz | Jan 2004 | B2 |
6692486 | Jaafar et al. | Feb 2004 | B2 |
6695833 | Frantzen | Feb 2004 | B1 |
6729356 | Baker et al. | May 2004 | B1 |
6730119 | Smalling | May 2004 | B1 |
6733521 | Chobotov | May 2004 | B2 |
6761733 | Chobotov | Jul 2004 | B2 |
6773454 | Wholey et al. | Aug 2004 | B2 |
6776771 | Van Moorlegem et al. | Aug 2004 | B2 |
6827735 | Greenberg | Dec 2004 | B2 |
6843803 | Ryan et al. | Jan 2005 | B2 |
6878161 | Lenker | Apr 2005 | B2 |
6878164 | Kujawski | Apr 2005 | B2 |
6887268 | Butaric et al. | May 2005 | B2 |
6918926 | Letort | Jul 2005 | B2 |
6945989 | Betelia et al. | Sep 2005 | B1 |
6958051 | Hart et al. | Oct 2005 | B2 |
6960227 | Jones et al. | Nov 2005 | B2 |
6964667 | Shaolian et al. | Nov 2005 | B2 |
7001431 | Bao et al. | Feb 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7105012 | Trout, III | Sep 2006 | B2 |
7112217 | Kugler | Sep 2006 | B1 |
7122052 | Greenhalgh | Oct 2006 | B2 |
7131991 | Zarins et al. | Nov 2006 | B2 |
7147661 | Chobotov et al. | Dec 2006 | B2 |
7175651 | Kerr | Feb 2007 | B2 |
7229472 | DePalma et al. | Jun 2007 | B2 |
7238364 | Sawhney et al. | Jul 2007 | B2 |
7314483 | Landau et al. | Jan 2008 | B2 |
7326237 | Depalma et al. | Feb 2008 | B2 |
7435253 | Hartley et al. | Oct 2008 | B1 |
7530988 | Evans et al. | May 2009 | B2 |
7666220 | Evans et al. | Feb 2010 | B2 |
7682383 | Robin | Mar 2010 | B2 |
7708773 | Pinchuk et al. | May 2010 | B2 |
7790273 | Lee et al. | Sep 2010 | B2 |
7828838 | Bolduc et al. | Nov 2010 | B2 |
7872068 | Khosravi et al. | Jan 2011 | B2 |
7951448 | Lee et al. | May 2011 | B2 |
8044137 | Khosravi et al. | Oct 2011 | B2 |
8048145 | Evans et al. | Nov 2011 | B2 |
8182525 | Herbowy et al. | May 2012 | B2 |
20010020184 | Dehdashtian et al. | Sep 2001 | A1 |
20010027337 | Di Caprio | Oct 2001 | A1 |
20010027338 | Greenberg | Oct 2001 | A1 |
20010044655 | Patnaik et al. | Nov 2001 | A1 |
20020019665 | Dehdashtian et al. | Feb 2002 | A1 |
20020026217 | Baker et al. | Feb 2002 | A1 |
20020045848 | Jaafar et al. | Apr 2002 | A1 |
20020045931 | Sogard et al. | Apr 2002 | A1 |
20020052643 | Wholey et al. | May 2002 | A1 |
20020077594 | Chien et al. | Jun 2002 | A1 |
20020151953 | Chobotov | Oct 2002 | A1 |
20020151956 | Chobotov | Oct 2002 | A1 |
20020151958 | Chuter | Oct 2002 | A1 |
20020156518 | Tehrani | Oct 2002 | A1 |
20020165521 | Cioanta et al. | Nov 2002 | A1 |
20020169497 | Wholey et al. | Nov 2002 | A1 |
20020183629 | Fitz | Dec 2002 | A1 |
20030004560 | Chobotov | Jan 2003 | A1 |
20030009132 | Schwartz et al. | Jan 2003 | A1 |
20030014075 | Rosenbluth et al. | Jan 2003 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030036745 | Khosravi et al. | Feb 2003 | A1 |
20030051735 | Pavcnik et al. | Mar 2003 | A1 |
20030074056 | Killion et al. | Apr 2003 | A1 |
20030078647 | Vallana et al. | Apr 2003 | A1 |
20030093145 | Lawrence-Brown et al. | May 2003 | A1 |
20030130720 | DePalma et al. | Jul 2003 | A1 |
20030130725 | DePalma et al. | Jul 2003 | A1 |
20030135269 | Swanstrom | Jul 2003 | A1 |
20030204242 | Zarins et al. | Oct 2003 | A1 |
20030204249 | Letort | Oct 2003 | A1 |
20030216802 | Chobotov et al. | Nov 2003 | A1 |
20030225446 | Hartley | Dec 2003 | A1 |
20040016997 | Ushio | Jan 2004 | A1 |
20040044358 | Khosravi et al. | Mar 2004 | A1 |
20040082989 | Cook et al. | Apr 2004 | A1 |
20040091543 | Bell et al. | May 2004 | A1 |
20040098096 | Eton | May 2004 | A1 |
20040116997 | Taylor et al. | Jun 2004 | A1 |
20040147811 | Diederich et al. | Jul 2004 | A1 |
20040153025 | Seifert et al. | Aug 2004 | A1 |
20040167607 | Frantzen | Aug 2004 | A1 |
20040193245 | Deem et al. | Sep 2004 | A1 |
20040204755 | Robin | Oct 2004 | A1 |
20040215172 | Chu et al. | Oct 2004 | A1 |
20040215316 | Smalling | Oct 2004 | A1 |
20040220522 | Briscoe et al. | Nov 2004 | A1 |
20040243057 | Vinten-Johansen et al. | Dec 2004 | A1 |
20050004660 | Rosenbluth et al. | Jan 2005 | A1 |
20050027238 | Fago et al. | Feb 2005 | A1 |
20050028484 | Littlewood | Feb 2005 | A1 |
20050065592 | Holzer | Mar 2005 | A1 |
20050090804 | Chobotov et al. | Apr 2005 | A1 |
20050096731 | Looi et al. | May 2005 | A1 |
20050215989 | Abboud et al. | Sep 2005 | A1 |
20050245891 | McCormick et al. | Nov 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20060015173 | Clifford et al. | Jan 2006 | A1 |
20060025853 | Evans et al. | Feb 2006 | A1 |
20060074481 | Vardi et al. | Apr 2006 | A1 |
20060135942 | Fernandes et al. | Jun 2006 | A1 |
20060142836 | Hartley et al. | Jun 2006 | A1 |
20060155369 | Edwin et al. | Jul 2006 | A1 |
20060161244 | Seguin | Jul 2006 | A1 |
20060184109 | Gobel | Aug 2006 | A1 |
20060206197 | Morsi | Sep 2006 | A1 |
20060222596 | Askari et al. | Oct 2006 | A1 |
20060265043 | Mandrusov et al. | Nov 2006 | A1 |
20060292206 | Kim et al. | Dec 2006 | A1 |
20070032850 | Ruiz et al. | Feb 2007 | A1 |
20070043420 | Lostetter | Feb 2007 | A1 |
20070050008 | Kim et al. | Mar 2007 | A1 |
20070055355 | Kim et al. | Mar 2007 | A1 |
20070061005 | Kim et al. | Mar 2007 | A1 |
20070150041 | Evans et al. | Jun 2007 | A1 |
20070162109 | Davila et al. | Jul 2007 | A1 |
20070208416 | Burpee et al. | Sep 2007 | A1 |
20070276477 | Lee et al. | Nov 2007 | A1 |
20080039923 | Taylor et al. | Feb 2008 | A1 |
20080154368 | Justis et al. | Jun 2008 | A1 |
20080228259 | Chu | Sep 2008 | A1 |
20080294237 | Chu | Nov 2008 | A1 |
20090099649 | Chobotov et al. | Apr 2009 | A1 |
20090209855 | Drilling et al. | Aug 2009 | A1 |
20090216125 | Lenker | Aug 2009 | A1 |
20090318949 | Ganpath et al. | Dec 2009 | A1 |
20090319029 | Evans et al. | Dec 2009 | A1 |
20100004728 | Rao et al. | Jan 2010 | A1 |
20100036360 | Herbowy et al. | Feb 2010 | A1 |
20100106087 | Evans et al. | Apr 2010 | A1 |
20100217383 | Leonhardt et al. | Aug 2010 | A1 |
20120016456 | Herbowy et al. | Jan 2012 | A1 |
20120046684 | Evans et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
4010975 | Oct 1991 | DE |
0679372 | Nov 1995 | EP |
1325717 | Jul 2003 | EP |
1903985 | Apr 2008 | EP |
2834199 | Jul 2003 | FR |
H4-322665 | Nov 1992 | JP |
2003-525692 | Sep 2003 | JP |
2004-537353 | Dec 2004 | JP |
2005-505380 | Feb 2005 | JP |
2005-532120 | Oct 2005 | JP |
2008-510502 | Apr 2008 | JP |
9717912 | May 1997 | WO |
9719653 | Jun 1997 | WO |
9853761 | Dec 1998 | WO |
9900073 | Jan 1999 | WO |
9944539 | Sep 1999 | WO |
0029060 | May 2000 | WO |
0051522 | Sep 2000 | WO |
0121108 | Mar 2001 | WO |
0166038 | Sep 2001 | WO |
02078569 | Oct 2002 | WO |
02083038 | Oct 2002 | WO |
02102282 | Dec 2002 | WO |
03007785 | Jan 2003 | WO |
03032869 | Apr 2003 | WO |
03037222 | May 2003 | WO |
03053288 | Jul 2003 | WO |
2004004603 | Jan 2004 | WO |
2004026183 | Apr 2004 | WO |
2004037116 | May 2004 | WO |
2004045393 | Jun 2004 | WO |
2006012567 | Feb 2006 | WO |
2006116725 | Nov 2006 | WO |
2007008600 | Jan 2007 | WO |
2007014916 | Dec 2007 | WO |
Entry |
---|
Carmi et al., “Endovascular stent-graft adapted to the endoluminal environment: prototype of a new endoluminal approach,” J Endovasc Ther. Jun. 2002;9(3):380-381. |
Donayre et al., “Fillable Endovascular Aneurysm Repair,” Endovascular Today, pp. 64-66, Jan. 2009. |
Gilling-Smith, “Stent Graft Migration After Endovascular Aneurysm Repair,” presented at 25th International Charing Cross Symposium, Apr. 13, 2003 [Power Point Presentation and Transcript], 56 pages total. |
Journal of Endovascular Therapy; Apr. 2000; pp. 111, 114, 132-140; vol. 7′ No. 2; International Society of Endovascular Specialists; Phoenix, AZ. |
Patrick W. Serruys and Michael JB Kutryk; Handbook of Coronary Stents, Second Edition; 1998; pp. 45, 55, 78, 103, 112, 132, 158, 174, 185, 190, 207, 215, 230, 239; Martin Dunitz; UK. |
Shan-e-ali Haider et al. Sac behavior after aneurysm treatment with the Gore Excluder low-permeability aortic endoprosthesis: 12-month comparison to the original Excluder device. Journal of Vascular Surgery. vol. 44, No. 4. 694-700. Oct. 2006. |
Susan M. Trocciola et al. The development of endotension is associated with increased transmission of pressure and serous components in porous expanded polytetrafluoroethylene stent-grafts: Characterization using a canine model. Journal of Vascular Surgery. Jan. 2006. p. 109-116. |
William Tanski, Mark Fillinger. Outcomes of original and low-permeability Gore Excluder endoprosthesis for endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery. Feb. 2007. p. 243-249. |
U.S. Appl. No. 60/855,889, filed Oct. 31, 2006; first named inventor: Steven L. Herbowy. |
U.S. Appl. No. 61/052,059, filed May 9, 2008; first named inventor: Gwendolyn A. Watanabe. |
Examination report of EP Application No. 06751879.5, dated Mar. 24, 2014. 5 pages. |
Number | Date | Country | |
---|---|---|---|
20140277385 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61785445 | Mar 2013 | US |