1. Field of the Invention
The present invention relates to a method for forming organic layers of electronic devices and, more particularly, to a method for forming organic layers of electronic devices by a contact printing process, which can be used to prepare the large-area organic layers of the electronic devices quickly.
2. Description of Related Art
Currently, electronic devices are used widely in daily lives. Organic materials are inexpensive and easily available. So, various researches and studies are trying to fabricate the electronic devices by using organic materials, for the sake of reducing the production cost. Nowadays, the organic electronic devices, such as organic thin film transistors (OTFTs), organic memories, and organic radical batteries, are being developed.
Conventional methods used for forming organic layers of the electronic devices are vacuum evaporation, spin coating, or inkjet printing. However, there are still some disadvantages about these methods.
When the vacuum evaporation is performed, vacuum equipment has to be used to generate a vacuum condition. However, the vacuum equipment is very expensive, which results in the increase of the production cost. Also, it is difficult to prepare large-area organic layers by using the vacuum evaporation. Although the large-area organic layers can be formed in a low-cost way through the spin coating, only the substrate with a plane surface can be coated. Hence, the spin coating cannot be used on the substrate with curved surfaces, or the substrate with patterns.
Therefore, it is desirable to provide a method, which can prepare the organic layers of the electronic devices in a rapid and inexpensive way, in order to reduce the production cost of the electronic devices. Also, it is desirable to provide a method to accomplish the purpose of forming large-area and patterned organic layers.
The object of the present invention is to provide a method for forming organic layers of electronic devices, to prepare the large-area organic layers of the electronic devices in a simple and rapid way.
To achieve the object, the method for forming organic layers of an electronic device of the present invention comprises the following steps: (A) providing a substrate with a first electrode formed thereon; (B) coating a first mold with a first organic material ink; (C) applying the first mold coated with the first organic material ink onto the substrate, to transfer the first organic material ink onto the first electrode of the substrate to form an organic layer; and (D) forming a second electrode on the organic layer.
The method of the present invention can prepare the organic layer of the electronic device in a rapid, simple and low-cost way, through a contact printing process. Also, the mold used in the method of the present invention can be reused and easily mass-produced, so the production cost can be reduced. Furthermore, large-area electronic devices can be fabricated through the method of the present invention because the contact printing process is capable of production in large area. In addition, not only the substrate with a plane surface but also the substrate with a curved surface or a flexible substrate can be used in the method of the present invention. Hence, it is possible to form organic layers on the patterned substrate.
The method of the present invention may further comprise a step (C1) and a step (C2) after the step (C). (C1) coating a second mold with a second organic material ink; and (C2) applying the second mold coated with the second organic material ink onto the substrate, to form another organic layer. In addition, the method of the present invention may also comprise a step (C′) after the step (C2): repeating the step (C1) and the step (C2) sequentially, to form plural organic layers.
According to the method of the present invention, the first mold can be coated with the first organic material ink by spin coating, dip coating, roll coating, or printing in the step (B). In addition, the second mold may be coated with the second organic material ink by spin coating, dip coating, roll coating, or printing in the step (C1).
Furthermore, according to the method of the present invention, the first mold and the following molds can be the same mold or different molds. The first mold and the following molds may have its own patterns formed thereon, respectively. In addition, the material of the first mold or the following molds can be any mold material generally used in a contact printing process. Preferably, the material of the first mold or the following molds is poly(dimethyl siloxane) (PDMS). The free energy of the surface of the mold made from PDMS is extremely low, so the organic material ink can chemically/physically adhere to the substrate, when the organic material ink comes into contact with the substrate.
According to the method of the present invention, the substrate may be a Si substrate, a glass substrate, a quartz substrate, or a plastic substrate.
When the method of the present invention is applied to form the organic layer of an organic thin film transistor, the first organic material ink and the following organic material inks can be the same organic material or different organic materials. In addition, each of the first organic material ink and the following organic material inks are respectively selected from the group consisting of P3HT, pentacene, a combination thereof, and other electric conducting materials.
When the method of the present invention is applied to form the organic layer of an organic memory, the first organic material ink and the following organic material inks can be the same organic material or different organic materials. In addition, each of the first organic material ink and the following organic material inks can be respectively selected from the group consisting of polyvinylidene, polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene and polyvinylidene fluoride, trifluorothylene (TrFE), porphyrin, 2-amino-1H-imidazole-4,5-dicarbonitrile (AIDCN), AIDCN derivatives, a combination thereof, and other electric conducting materials.
When the method of the present invention is applied to form the organic layer of an organic battery, the first organic material ink and the following organic material inks can be the same organic material or different organic materials. In addition, each of the first organic material ink and the following organic material inks can be respectively selected from the group consisting of nitrogen oxide, nitrogen oxide derivatives, graphite, a combination thereof, and other electric conducting materials.
The method of the present invention can apply to form organic layers of electronic devices, such as organic thin film transistors, organic memories, and organic batteries. The method of the present invention can form the large-area organic layers of the electronic devices rapidly and inexpensively, compared to the conventional method such as a vacuum evaporation process. Also, the present invention can form patterned organic layers or form organic layers on curved substrates, which cannot be accomplished by use of the spin coating process.
Hereinbelow, the present invention will be described in detail with reference to the Embodiments. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the Embodiments set forth herein. Rather, these Embodiments are provided to fully convey the concept of the invention to those skilled in the art.
First, as shown in
As shown in
When a contact printing process was performed with the first mold 17 made from PDMS, the pattern on the first mold 17 can contact the printed surface closely because PDMS is a soft material.
As shown in
After completion of the aforementioned process, a bottom contact OTFT of the present invention was obtained. Compared to the method using a spray coating process or an evaporation process to form the organic layer, the organic layer of the present embodiment can be manufactured rapidly and inexpensively through a contact printing process. Also, it is possible to manufacture the organic layer with large area by use of the contact printing process.
First, as shown in
As shown in
Then, as shown in
Finally, a source 13 and a drain 14 were formed on the organic layer, to obtain a top contact OTFT of the present embodiment.
First, as shown in
As shown in
Then, the first mold 37 coated with the first organic material ink 371 was pressed onto the substrate 30, and the first organic material ink 371 was transferred onto the first electrode 31 of the substrate 30 to obtain an organic layer 32, as shown in
As shown in
After the metal layer 33 was formed, the first mold 37 was coated with the first organic material ink 371 again. Then, a contact printing process was performed to form another organic layer 34, as shown in
After the aforementioned process was finished, the organic memory of the present embodiment was obtained. In the present embodiment, each of the organic layers was formed through the contact printing process, and the same first mold was used to form each organic layer. In addition, the method for forming the organic layer of the present embodiment can prepare the organic layers rapidly and inexpensively, compared to the method using an evaporation process to form the organic layers. Also, the problem that organic layers with large area cannot be prepared through the evaporation process, can be solved by using the method of the present embodiment. Hence, not only the same mold can be reused, but also the large-area organic layers of the organic memory can be obtained rapidly and inexpensively, according to the process of the present embodiment.
Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the scope of the invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
098138359 | Nov 2009 | TW | national |