Method for forming perforated graphene with uniform aperture size

Information

  • Patent Grant
  • 10201784
  • Patent Number
    10,201,784
  • Date Filed
    Wednesday, March 8, 2017
    7 years ago
  • Date Issued
    Tuesday, February 12, 2019
    5 years ago
Abstract
A method of forming a filter with uniform pore sizes includes synthesizing a moiety so as to form a plurality of like platelets having a precisely sized pore extending therethrough, distributing the plurality of like platelets about a membrane having apertures therethrough, and bonding the plurality of platelets around the apertures to form precisely sized pores through the membrane. A filtration membrane is also disclosed which provides a porous membrane having a plurality of apertures therethrough, and a plurality of platelets, wherein each platelet has a pore therethrough. The platelets are positioned over or in the apertures.
Description
TECHNICAL FIELD

The present invention is directed to forming atomically thin membranes with apertures therethrough. In particular, the present invention is directed to a method of forming apertures through atomically thin membranes, such as graphene, with uniform size and spacing.


BACKGROUND ART

A graphene membrane is a single-atomic-layer-thick layer of carbon atoms, bound together to define a sheet. The thickness of a single graphene membrane, which may be referred to as a layer or a sheet, is approximately 0.2 to 0.3 nanometers (nm). In some embodiments, multiple graphene layers can be formed, having greater thickness and correspondingly greater strength. Multiple graphene sheets can be provided in multiple layers as the membrane is grown or formed. Or multiple graphene sheets can be achieved by layering or positioning one graphene layer on top of another. For all the embodiments disclosed herein, a single layer of graphene or multiple graphene layers may be used. Testing reveals that multiple layers of graphene maintain their integrity and function as a result of self-adhesion. This improves the strength of the membrane and in some cases flow performance. In most embodiments, the graphene membrane having 2 or more layers is 0.5 to 2 nanometers thick. The carbon atoms of the graphene layer define a repeating pattern of hexagonal ring structures (similar to benzene rings constructed of six carbon atoms), which form a honeycomb lattice of carbon atoms. An interstitial aperture is formed by each hexagonal ring structure in the sheet and this interstitial aperture is less than one nanometer across. Indeed, skilled artisans will appreciate that the interstitial aperture is believed to be about 0.23 nanometers across at its longest dimension. Accordingly, the dimension and configuration of the interstitial aperture and the electron nature of the graphene precludes transport of any molecule across the graphene's thickness unless there are perforations. This dimension is much too small to allow the passage of either water or ions.


Currently, perforated graphene is considered a promising material for achieving molecular filtration. A perforated graphene high-flux throughput material provides significantly improved filtration properties, as opposed to polyimide or other polymeric material filtration materials.


Molecular filtration requires pores to be sized at the molecular level. It is desired for the relevant pore size to range from sub-nanometer (about 0.5 nm) to approximately 20 nanometers in size. However, it has been found to be very difficult to obtain such a size range with conventional tools, especially when trying to obtain perforated graphene over large areas (greater than mm2) needed for filtration. Indeed, for filtration applications, pore size must be tightly controlled to achieve proper rejection of the target species. When using graphene as the filter medium, the density of and the size of the holes in the graphene must be such that the material is not significantly weakened. But neither should the flow through the graphene material be significantly reduced. It has also become apparent that controlling the chemistry of the pores is important, especially in filtration applications where transit through the pores will be affected by the functional groups lining the edge of the pores or apertures.


One method attempted to obtain perforated graphene is referred to as a subtractive method. The subtractive method makes a periodic array of uniform holes in graphene by using a block co-polymer that can be developed to form an etching mask with a periodic array of holes. This is sometimes referred to as a top-down perforation methodology. In such an embodiment, an etch mask of anodic aluminum oxide (AAO) membrane or block copolymer (BCP) film is utilized wherein O2 plasma is directed through the mask so as to etch a sheet of graphene material. Another approach is template-free energy bombardment. This can be done by ion bombardment of highly ordered pyrolitic graphite (HOPG) or with atmospheric plasma. These methods are problematic in that the length scale of the holes and their spacing is on the tens of nanometers (i.e., greater than 20 nm) scale. This precludes use of the material for molecular filtration of small molecules and limits the use of electronics and optics to applications requiring a band gap of approximately 0.1 eV.


Another approach to forming perforated graphene is referred to as a bottom-up solution. This methodology requires surface-assisted condensation of small molecules, such as in Ullman-type synthesis. Assemblies at interfaces utilizing a solvent and HOPG interface have also been attempted, along with cylco-proparene. However, such approaches have not been found to be conducive for manufacturing processes.


Perforated graphene has a number of possible applications including, for example, use as a molecular filter, use as a defined band gap material, and use as an electrically conductive filler material with tunable electrical properties within polymer composites. Although a number of potential uses for perforated graphene exist, as discussed above, there is no reliable way of introducing holes, or pores, to graphene in the size range of about ten nanometers (10 nm) and under, and particularly about five nanometers (5 nm) and under. Multi-step but laborious lithography techniques can be used to fabricate holes greater than about twenty nanometers in size. However, no techniques are presently suitable for fabrication of perforated graphene on the scale of square meters per minute or more.


In summary, the prior art has not been able to provide a methodology for creating uniformly sized and spaced perforations in graphene. Overcoming such a problem can enable a variety of applications in filtration, optics, electronics and structural and thermal materials. Therefore, there is clearly a need in the art for a way to generate a perforated material of the correct pore size and the number of pores in a given area for use in molecular filtration and other applications.


SUMMARY OF THE INVENTION

In light of the foregoing, it is a first aspect of the present invention to provide a method for forming perforated graphene with uniform aperture size.


It is another aspect of the present invention to provide a method of forming a filter with uniform pore sizes, comprising synthesizing a moiety so as to form a plurality of like platelets having a precisely sized pore extending therethrough, distributing the plurality of like platelets about a membrane having apertures therethrough, and bonding the plurality of platelets around the apertures to form precisely sized pores through the membrane.


Yet another aspect of the present invention is to provide a filtration membrane, comprising a porous membrane having a plurality of apertures therethrough, and a plurality of platelets, each platelet having a pore therethrough, wherein the plurality of platelets are positioned over or in the apertures.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings. The drawings are not drawn to scale and proportions of certain parts may be exaggerated for convenience of illustration.



FIG. 1 is a schematic representation of the methodology for forming perforated graphene apertures with a desired pore size and density according to the concepts of the present invention; and



FIG. 2 is a schematic drawing of a filtration membrane utilizing graphene platelets with uniform pore sizes made in accordance with the concepts of the present invention.





BEST MODE FOR CARRYING OUT THE INVENTION

Referring now to the drawings, and in particular to FIG. 1, a schematic representation of a methodology for forming perforated atomically thin materials, such as graphene, with uniform aperture or pore size is designated generally by the numeral 10. As seen in FIG. 1, a generally planar, multi-functional salt moiety designated generally by the numeral 12 is utilized. Such a moiety 12 is used as a reactant with either copper or silver in an Ullman-type synthesis based upon, for example, the following chemical equations:

2Cu+R—X→R—R+2CuX   (1)
or
2Ag+R—X→R—R+2AgX,   (2)

where R is the generally planar, multi-functional moiety (described below) and X is a halide such as Cl, Br, or I, or other functional leaving group, such as CF3SO3, or CF3CF2SO3, such that R—X is a salt.


In the present methodology, either of the above equations or similar equations utilizing Ullman-type synthesis can be employed. Indeed, such a synthesis or any similar type synthesis with a surface reaction generates platelets 14 which have a precisely sized pore 16 therethrough. It is believed that these pores formed in the manner disclosed can have a diameter size of less than one nanometer to about 20 nanometers.


As used in the equations above, R is essentially any metal mediated C—C bond formation that is suitably generally planar and functionalized. In one or more embodiments, R is a generally planar core moiety having multiple functional groups, such as X, as noted above, in at least three bonding locations and wherein those bonding locations are spaced about 120° from one another. In other embodiments, there may be four or even six or more functional groups, with spacing at 90° and 60°, respectively. In most embodiments, the monomer R can be any number of organic molecules and may be selected from an aryl group or a combination of aryl groups. In the same or other embodiments, R may be selected from one of the following formulas.




embedded image



where each A is a point of attachment, i.e., is either the X functional leaving group, another monomer R, where the Ullman-type synthesis is complete, or a spacer group as defined below; and where each Rr is CA, C., CH, N, CCOOR′ (where R′ is a linear or branched hydrocarbon having up to sixteen carbon atoms) or combinations thereof. In some embodiments, proximal Rr may also be connected via ethylidyl, phenyldiyl and/or naphthdiyl groups.


It will be appreciated that, in one or more embodiments, A may, as one alternative, be a spacer group such that there is an additional moiety spaced between the R's, so as to provide an R-A-R formation. In such embodiments, A may be selected from any one of the following formulas:




embedded image



where A is attached to another R (a carbon atom) or X, n is an integer from 1 to 5, and Rr is C., CH, N, CCOOR′ (where R′ is a linear or branched hydrocarbon having up to sixteen carbon atoms) or combinations thereof, and wherein proximal Rr may be connected via butadiendiyl or xylylidyl groups.


It will be appreciated that, because these molecules may have three or more bonding locations, they remain generally planar when reacted or polymerized. The topology of the moiety is selected so that it can polymerize into a two-dimensional network such as provided by an atomically thin material. And as will be appreciated by skilled artisans, the reaction occurs at the solution-metal interface.


Selection of the moiety R thus controls the dimensional size of the pore 16 extending through the platelet 14. In other words, selection of the moiety or monomer R in turn controls the size of the pore 16. As a result, most any precisely sized hole can be obtained. In some embodiments, the hole or pore size can be less than 1 nm. In other embodiments the pore size can be between 0.5 nm and 1.0 nm. Some embodiments provide a hole size of less than 5 nm. And in other embodiments, the pore sizes can be within any number of selected sub-ranges between 0.5 nm and 20 nm. In essence, the platelet 14 is an ordered array of carbon atoms such as for example an aryl ring or combination of aryl rings, which has an outer diameter in the range of 1 to 20 microns. Upon formation of the platelets, the other components of the synthesis process, namely the halide such as iodine, and metal such as copper or silver are discarded.


The platelets 14 are then utilized in combination with a porous membrane 18. The primary application is to place the platelets 14 directly onto the porous membrane. The membrane 18 has a plurality of apertures 20 which may be sized randomly with diameters of two nanometers or more. In most embodiments the apertures 20 are in the range of 50 nm-5 μm (5000 nm) for polymeric membranes. In the embodiments shown, the apertures have a diameter of about 1 μm (1000 nm). Skilled artisans will appreciate that these apertures are made utilizing techniques known to those skilled in the art. Depending upon the end application or other factors, the platelets 14 are poured onto, into or otherwise distributed about a surface of the membrane 18. Exemplary membranes can be such materials as polycarbonate, polyimide, or others. The platelets 14 cover the apertures 20 so as to provide the precisely sized pores 16 on the membrane 18. As a result, the precise desired nano-scale porosity membrane with desirable strength properties and desirable filtering properties can be obtained.


In relative terms, it is beneficial for the membrane to be “smooth.” In other words, it is desirable for the membrane and the areas of the membrane around the apertures to have a relatively flat topography so as to receive and properly position the platelets and their corresponding pore 16. As a result, the outer periphery of the platelets 14 effectively seals the apertures 20. In the present embodiment, it is believed that Van der Waals forces bond the platelets 14 to the membrane 18. In other embodiments, it is believed that the outer periphery of the platelets 14 can be chemically functionalized to assist in bonding the platelets to the membrane surface.


In some embodiments, one method of assembling the platelets to the membrane is to prepare a dilute solution of platelets—platelets mixed with a solvent. The solvent is selected so that the platelets are “open” or “relax” so as to present themselves in a substantially two-dimensional configuration. The solution is then forced, by pressure or otherwise, through the membrane. As a result, the platelets effectively clog the apertures 20. As such, although the platelets are schematically represented as being positioned on a surface of the membrane for some embodiments, in some embodiments the platelets may also position themselves into or within the receiving aperture itself. The solvent then proceeds through the apertures 20 and/or the pores 16 or otherwise evaporates.


In the embodiment described above, a single layer configuration is provided. However, repeated pouring of the above-described solution will result in multiple platelets 14 associated with a single aperture 18. In other words, the platelets will form a loose lamellar structure with channels parallel to the plates and nano-size pore 16 therethrough.


In either single layer platelet or multi-layer platelets, the platelets 14 are supported by the membrane 18 in the apertures 20 so as to form a filter 22.


In summary, the molecules or compound 14 controls the pore size and density of holes while their polymerization yields a sufficient large area (>1 um2) for use in molecular filtration applications. In one embodiment a filter 22 can be formed by polymerization at an interface between the platelet and the membrane by utilizing a liquid-liquid polymerization, a liquid-gas polymerization, a solid-gas polymerization, or a solid-liquid polymerization. Moreover, polymerization in solution as described above can provide for a three-dimensional methodology so as to form a three-dimensional monolith with a pore diameter distribution controlled by the dimensions and chemistry of the precursor small-molecule platelet 14.


Referring now to FIG. 2, which is an enlarged not-to-scale schematic diagram, the graphene filter 22 may be utilized in a filtration membrane designated generally by the numeral 30. The filter 22 can be supported by a backing filter 32 which may be a grid-like material having openings 34 that are relatively larger in diameter than the pores 16 provided by the filter 22. As a result, the filter 22 utilized to cover the pores of the backing filter 32 are of a size formed by the processes described above, thereby imparting the filtration capabilities of the filter 22 to the backing filter. Skilled artisans will appreciate that a filter element is not limited to a two-dimensional material—a single perforated graphene filter—but could be, in fact, utilized in a three-dimensional structure of multiple perforated plates or a polymerized monolith as described above.


From the foregoing description, it will be appreciated that there are numerous advantages to the disclosed methodology and resulting graphene filter. In particular, the disclosed method allows for uniform (identically sized) holes which may be sized from 0.5 nanometers to 20 nanometers. The method also allows for uniform spacing within the two-dimensional membrane matrix. Such a methodology enables molecular filters that could ultimately discriminate helium from other molecules and the hole size can be tailored for any size cut-off from 0.5 nanometers to 20 nanometers based on appropriate choice of the starting materials and, in particular, the moiety 12 and resulting platelet 14. As a result, the selected materials allow for filtration of numerous molecular analytes. The same two-dimensional materials have a well-defined band gap between 0 and approximately 6 eV. Indeed, utilization of uniform smaller size holes will allow larger bandgaps, which in turn open up new electronic applications. For comparison, silicon has an intrinsic bandgap of 1.1 eV, and all of the electronics built on silicon platforms depend on this energy band separation for the observed performance. Higher band gaps also allow operation at higher temperatures and correspond to the energies of visible light, enabling photonics applications.


Thus, it can be seen that the objects of the invention have been satisfied by the structure and its method for use presented above. While in accordance with the Patent Statutes, only the best mode and preferred embodiment has been presented and described in detail, it is to be understood that the invention is not limited thereto or thereby. Accordingly, for an appreciation of the true scope and breadth of the invention, reference should be made to the following claims.

Claims
  • 1. A method of forming a filter with uniform pore sizes, comprising: synthesizing a moiety so as to form a plurality of platelets having a precisely sized pore extending therethrough;distributing said plurality of platelets about a membrane, said membrane having apertures therethrough; andbonding said plurality of platelets around said apertures to form precisely sized pores through said membrane,
  • 2. The method according to claim 1, further comprising: forming said precisely sized pores through said membrane with a size of about 0.5 nm to about 20 nm.
  • 3. The method according to claim 1, further comprising: providing said membrane having apertures therethrough with apertures sized 50 nm to 5000 nm.
  • 4. The method according to claim 1, further comprising: providing said membrane having apertures therethrough with apertures sized 50 nm to 5000 nm; andproviding said platelets with an outer diameter of 1 to 20 microns.
  • 5. The method according to claim 4, further comprising: sealing said apertures with said outer diameter of said platelets.
  • 6. The method according to claim 1, further comprising: chemically functionalizing an outer periphery of said platelets to assist in bonding said platelets to said membrane.
  • 7. The method according to claim 1, wherein said moiety is any metal mediated C—C bond formation.
  • 8. The method according to claim 1, further comprising: selecting said moiety from the group consisting of a multi-functional aryl group and a combination of multi-functional aryl groups.
  • 9. A filtration membrane, comprising a porous graphene membrane having a plurality of apertures therethrough; anda plurality of platelets, wherein said plurality of platelets are positioned in said apertures,
  • 10. The filtration membrane according to claim 9, wherein each said plurality of platelets comprises an Ullmann type reaction product of silver and copper and a multi-functional moiety comprising a metal mediated C—C bond formation.
  • 11. The filtration membrane according to claim 10, wherein said moiety has an outer diameter between 1 to 20 microns.
  • 12. The filtration membrane according to claim 10, wherein said moiety has a diameter between 0.5 nm to 20 nm.
  • 13. The filtration membrane according to claim 10, wherein said porous membrane has apertures sized between 50 nm to 5000 nm.
  • 14. The filtration membrane according to claim 10, further comprising a backing filter positioned on a side of said porous membrane opposite a side on which said plurality of platelets are disposed.
  • 15. The filtration membrane according to claim 10, wherein an outer periphery of said platelets bond to said porous membrane in said apertures.
  • 16. A filtration membrane, comprising a porous graphene membrane having a two-dimensional network and a plurality of apertures therethrough, anda plurality of platelets that comprise a combination of aryl rings,wherein the platelets have been polymerized into the apertures of the graphene two-dimensional network.
  • 17. The filtration membrane according to claim 16, wherein the porous graphene membrane comprises one or two graphene layers.
  • 18. The filtration membrane according to claim 9, wherein the platelets are graphene platelets.
CROSS REFERENCE TO RELATED APPLICATION

This application is a Continuation of U.S. patent application Ser. No. 14/203,655, filed Mar. 11, 2014, which claims the benefit of priority under 35 U.S.C. § 119 from U.S. Provisional Patent Application No. 61/777,099, filed Mar. 12, 2013, which are incorporated herein by reference in their entirety.

US Referenced Citations (637)
Number Name Date Kind
2187417 Doble Jan 1940 A
3024153 Kennedy Mar 1962 A
3303085 Price et al. Feb 1967 A
3501831 Gordon Mar 1970 A
3593854 Swank Jul 1971 A
3692059 Ice, Jr. Sep 1972 A
3701433 Krakauer et al. Oct 1972 A
3802972 Fleischer et al. Apr 1974 A
4073732 Lauer et al. Feb 1978 A
4159954 Gangemi Jul 1979 A
4162220 Servas Jul 1979 A
4277344 Cadotte Jul 1981 A
4303530 Shah et al. Dec 1981 A
4743371 Servas et al. May 1988 A
4855058 Holland et al. Aug 1989 A
4880440 Perrin Nov 1989 A
4889626 Browne Dec 1989 A
4891134 Vcelka Jan 1990 A
4925560 Sorrick May 1990 A
4935207 Stanbro et al. Jun 1990 A
4976858 Kadoya Dec 1990 A
5052444 Messerly et al. Oct 1991 A
5080770 Culkin Jan 1992 A
5082476 Kahlbaugh et al. Jan 1992 A
5156628 Kranz Oct 1992 A
5182111 Aebischer et al. Jan 1993 A
5185086 Kaali et al. Feb 1993 A
5201767 Caldarise et al. Apr 1993 A
5244981 Seidner et al. Sep 1993 A
5314492 Hamilton et al. May 1994 A
5314960 Spinelli et al. May 1994 A
5314961 Anton et al. May 1994 A
5331067 Seidner et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5371147 Spinelli et al. Dec 1994 A
5425858 Farmer Jun 1995 A
5480449 Hamilton et al. Jan 1996 A
5514181 Light et al. May 1996 A
5516522 Peyman et al. May 1996 A
5549697 Caldarise Aug 1996 A
5562944 Kafrawy Oct 1996 A
5565210 Rosenthal et al. Oct 1996 A
5580530 Kowatsch et al. Dec 1996 A
5595621 Light et al. Jan 1997 A
5636437 Kaschmitter et al. Jun 1997 A
5639275 Baetge et al. Jun 1997 A
5641323 Caldarise Jun 1997 A
5658334 Caldarise et al. Aug 1997 A
5662158 Caldarise Sep 1997 A
5665118 Lasalle et al. Sep 1997 A
5671897 Ogg et al. Sep 1997 A
5679232 Fedor et al. Oct 1997 A
5679249 Fendya et al. Oct 1997 A
5687788 Caldarise et al. Nov 1997 A
5700477 Rosenthal et al. Dec 1997 A
5713410 Lasalle et al. Feb 1998 A
5716412 Decarlo et al. Feb 1998 A
5716414 Caldarise Feb 1998 A
5725586 Sommerich Mar 1998 A
5731360 Pekala et al. Mar 1998 A
5733503 Kowatsch et al. Mar 1998 A
5746272 Mastrorio et al. May 1998 A
5782286 Sommerich Jul 1998 A
5782289 Mastrorio et al. Jul 1998 A
5788916 Caldarise Aug 1998 A
5800828 Dionne et al. Sep 1998 A
5808312 Fukuda Sep 1998 A
5868727 Barr et al. Feb 1999 A
5897592 Caldarise et al. Apr 1999 A
5902762 Mercuri et al. May 1999 A
5906234 Mastrorio et al. May 1999 A
5910172 Penenberg Jun 1999 A
5910173 Decarlo et al. Jun 1999 A
5913998 Butler et al. Jun 1999 A
5922304 Unger Jul 1999 A
5925247 Huebbel Jul 1999 A
5932185 Pekala et al. Aug 1999 A
5935084 Southworth Aug 1999 A
5935172 Ochoa et al. Aug 1999 A
5954937 Farmer Sep 1999 A
5974973 Tittgemeyer Nov 1999 A
5976555 Liu et al. Nov 1999 A
5980718 Van Konynenburg et al. Nov 1999 A
6008431 Caldarise et al. Dec 1999 A
6013080 Khalili Jan 2000 A
6022509 Matthews et al. Feb 2000 A
6052608 Young et al. Apr 2000 A
6080393 Liu et al. Jun 2000 A
6093209 Sanders Jul 2000 A
6139585 Li Oct 2000 A
6152882 Prutchi Nov 2000 A
6156323 Verdicchio et al. Dec 2000 A
6193956 Liu et al. Feb 2001 B1
6209621 Treacy Apr 2001 B1
6213124 Butterworth Apr 2001 B1
6228123 Dezzani May 2001 B1
6264699 Noiles et al. Jul 2001 B1
6292704 Malonek et al. Sep 2001 B1
6309532 Tran et al. Oct 2001 B1
6346187 Tran et al. Feb 2002 B1
6375014 Garcera et al. Apr 2002 B1
6426214 Butler et al. Jul 2002 B1
6454095 Brisebois et al. Sep 2002 B1
6455115 Demeyer Sep 2002 B1
6461622 Liu et al. Oct 2002 B2
6462935 Shiue et al. Oct 2002 B1
6521865 Jones et al. Feb 2003 B1
6532386 Sun et al. Mar 2003 B2
6544316 Baker et al. Apr 2003 B2
6580598 Shiue et al. Jun 2003 B2
6654229 Yanagisawa et al. Nov 2003 B2
6659298 Wong Dec 2003 B2
6660150 Conlan et al. Dec 2003 B2
6661643 Shiue et al. Dec 2003 B2
6686437 Buchman et al. Feb 2004 B2
6692627 Russell et al. Feb 2004 B1
6695880 Roffman et al. Feb 2004 B1
6699684 Ho et al. Mar 2004 B2
6719740 Burnett et al. Apr 2004 B2
6905612 Dorian et al. Jun 2005 B2
6924190 Dennison Aug 2005 B2
7014829 Yanagisawa et al. Mar 2006 B2
7071406 Smalley et al. Jul 2006 B2
7092753 Darvish et al. Aug 2006 B2
7138042 Tran et al. Nov 2006 B2
7171263 Darvish et al. Jan 2007 B2
7175783 Curran Feb 2007 B2
7179419 Lin et al. Feb 2007 B2
7190997 Darvish et al. Mar 2007 B1
7267753 Anex et al. Sep 2007 B2
7306768 Chiga Dec 2007 B2
7357255 Ginsberg et al. Apr 2008 B2
7374677 McLaughlin et al. May 2008 B2
7381707 Lin et al. Jun 2008 B2
7382601 Yoshimitsu Jun 2008 B2
7434692 Ginsberg et al. Oct 2008 B2
7452547 Lambino et al. Nov 2008 B2
7459121 Liang et al. Dec 2008 B2
7460907 Darvish et al. Dec 2008 B1
7476222 Sun et al. Jan 2009 B2
7477939 Sun et al. Jan 2009 B2
7477940 Sun et al. Jan 2009 B2
7477941 Sun et al. Jan 2009 B2
7479133 Sun et al. Jan 2009 B2
7505250 Cho et al. Mar 2009 B2
7531094 McLaughlin et al. May 2009 B2
7600567 Christopher et al. Oct 2009 B2
7631764 Ginsberg et al. Dec 2009 B2
7650805 Nauseda et al. Jan 2010 B2
7674477 Schmid et al. Mar 2010 B1
7706128 Bourcier Apr 2010 B2
7761809 Bukovec et al. Jul 2010 B2
7786086 Reches et al. Aug 2010 B2
7866475 Doskoczynski et al. Jan 2011 B2
7875293 Shults et al. Jan 2011 B2
7935331 Lin May 2011 B2
7935416 Yang et al. May 2011 B2
7943167 Kulkarni et al. May 2011 B2
7960708 Wolfe et al. Jun 2011 B2
7998246 Liu et al. Aug 2011 B2
8109893 Lande Feb 2012 B2
8147599 McAlister Apr 2012 B2
8262943 Meng et al. Sep 2012 B2
8278106 Martinson et al. Oct 2012 B2
8308702 Batchvarova et al. Nov 2012 B2
8316865 Ochs et al. Nov 2012 B2
8329476 Pitkanen et al. Dec 2012 B2
8354296 Dimitrakopoulos et al. Jan 2013 B2
8361321 Stetson et al. Jan 2013 B2
8449504 Carter et al. May 2013 B2
8471562 Knizhnik Jun 2013 B2
8475689 Sun et al. Jul 2013 B2
8506807 Lee et al. Aug 2013 B2
8512669 Hauck Aug 2013 B2
8513324 Scales et al. Aug 2013 B2
8535726 Dai et al. Sep 2013 B2
8592291 Shi et al. Nov 2013 B2
8617411 Singh Dec 2013 B2
8666471 Rogers et al. Mar 2014 B2
8686249 Whitaker et al. Apr 2014 B1
8697230 Ago et al. Apr 2014 B2
8698481 Lieber et al. Apr 2014 B2
8715329 Robinson et al. May 2014 B2
8721074 Pugh et al. May 2014 B2
8734421 Sun et al. May 2014 B2
8744567 Fassih et al. Jun 2014 B2
8751015 Frewin et al. Jun 2014 B2
8753468 Caldwell et al. Jun 2014 B2
8759153 Elian et al. Jun 2014 B2
8808257 Pugh et al. Aug 2014 B2
8828211 Garaj et al. Sep 2014 B2
8840552 Brauker et al. Sep 2014 B2
8857983 Pugh et al. Oct 2014 B2
8861821 Osumi Oct 2014 B2
8894201 Pugh et al. Nov 2014 B2
8940552 Pugh et al. Jan 2015 B2
8950862 Pugh et al. Feb 2015 B2
8974055 Pugh et al. Mar 2015 B2
8975121 Pugh et al. Mar 2015 B2
8979978 Miller et al. Mar 2015 B2
8986932 Turner et al. Mar 2015 B2
8993234 Turner et al. Mar 2015 B2
8993327 McKnight et al. Mar 2015 B2
9014639 Pugh et al. Apr 2015 B2
9017937 Turner et al. Apr 2015 B1
9023220 Graphenea May 2015 B2
9028663 Stetson et al. May 2015 B2
9035282 Dimitrakopoulos et al. May 2015 B2
9045847 Batchvarova et al. Jun 2015 B2
9050452 Sun et al. Jun 2015 B2
9052533 Pugh et al. Jun 2015 B2
9056282 Miller et al. Jun 2015 B2
9062180 Scales et al. Jun 2015 B2
9067811 Bennett et al. Jun 2015 B1
9070615 Elian et al. Jun 2015 B2
9075009 Kim et al. Jul 2015 B2
9080267 Batchvarova et al. Jul 2015 B2
9095823 Fleming Aug 2015 B2
9096050 Bedell et al. Aug 2015 B2
9096437 Tour et al. Aug 2015 B2
9102111 Pugh et al. Aug 2015 B2
9108158 Yu et al. Aug 2015 B2
9110310 Pugh et al. Aug 2015 B2
9125715 Pugh et al. Sep 2015 B2
9134546 Pugh et al. Sep 2015 B2
9170646 Toner et al. Oct 2015 B2
9185486 Pugh Nov 2015 B2
9193587 Bennett Nov 2015 B2
9195075 Pugh et al. Nov 2015 B2
9225375 Pugh et al. Dec 2015 B2
9388048 Zhou et al. Jul 2016 B1
9425709 Hayashi et al. Aug 2016 B2
9437370 Chen et al. Sep 2016 B2
9463421 Fleming Oct 2016 B2
9505192 Stoltenberg et al. Nov 2016 B2
9567224 Bedworth Feb 2017 B2
9572918 Bachmann et al. Feb 2017 B2
9592475 Stoltenberg Mar 2017 B2
9610546 Sinton et al. Apr 2017 B2
9708640 Wu et al. Jul 2017 B2
9713794 Choi et al. Jul 2017 B2
9742001 Zhamu et al. Aug 2017 B2
9870895 Bedworth Jan 2018 B2
20010036556 Jen Nov 2001 A1
20010047157 Burnett et al. Nov 2001 A1
20010055597 Liu et al. Dec 2001 A1
20020079004 Sato et al. Jun 2002 A1
20020079054 Nakatani Jun 2002 A1
20020104435 Baker et al. Aug 2002 A1
20020115957 Sun et al. Aug 2002 A1
20020117659 Lieber et al. Aug 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20020183686 Darvish et al. Dec 2002 A1
20030052354 Dennison Mar 2003 A1
20030134281 Evans Jul 2003 A1
20030138777 Evans Jul 2003 A1
20030146221 Lauer et al. Aug 2003 A1
20030159985 Siwy et al. Aug 2003 A1
20040018583 Ho et al. Jan 2004 A1
20040035787 Tanga et al. Feb 2004 A1
20040061253 Kleinmeyer et al. Apr 2004 A1
20040063097 Evans Apr 2004 A1
20040099324 Fraser et al. May 2004 A1
20040111968 Day et al. Jun 2004 A1
20040112865 McCullough et al. Jun 2004 A1
20040121488 Chang et al. Jun 2004 A1
20040142463 Walker et al. Jul 2004 A1
20040185730 Lambino et al. Sep 2004 A1
20040193043 Duchon et al. Sep 2004 A1
20040199243 Yodfat Oct 2004 A1
20040208796 Chiga Oct 2004 A1
20040217036 Ginsberg et al. Nov 2004 A1
20040241214 Kirkwood et al. Dec 2004 A1
20040251136 Lean et al. Dec 2004 A1
20050004508 Sun et al. Jan 2005 A1
20050004509 Sun et al. Jan 2005 A1
20050004550 Sun et al. Jan 2005 A1
20050010161 Sun et al. Jan 2005 A1
20050010192 Sun et al. Jan 2005 A1
20050015042 Sun et al. Jan 2005 A1
20050053563 Manissier et al. Mar 2005 A1
20050112078 Boddupalli et al. May 2005 A1
20050126966 Tanida et al. Jun 2005 A1
20050129633 Lin Jun 2005 A1
20050148996 Sun et al. Jul 2005 A1
20050170089 Lashmore et al. Aug 2005 A1
20050189673 Klug et al. Sep 2005 A1
20050226834 Lambino et al. Oct 2005 A1
20050238730 Le Fur et al. Oct 2005 A1
20060005381 Nishi et al. Jan 2006 A1
20060036332 Jennings Feb 2006 A1
20060073370 Krusic et al. Apr 2006 A1
20060093885 Krusic et al. May 2006 A1
20060121279 Petrik Jun 2006 A1
20060151382 Petrik Jul 2006 A1
20060166347 Faulstich et al. Jul 2006 A1
20060180604 Ginsberg et al. Aug 2006 A1
20060222701 Kulkarni et al. Oct 2006 A1
20060253078 Wu et al. Nov 2006 A1
20070004640 Lin et al. Jan 2007 A1
20070032054 Ramaswamy et al. Feb 2007 A1
20070056894 Connors, Jr. Mar 2007 A1
20070060862 Sun et al. Mar 2007 A1
20070062856 Pahl et al. Mar 2007 A1
20070099813 Luizzi et al. May 2007 A1
20070131646 Donnelly et al. Jun 2007 A1
20070284279 Doskoczynski et al. Dec 2007 A1
20080017564 Hammond Jan 2008 A1
20080035484 Wu et al. Feb 2008 A1
20080035541 Franzreb et al. Feb 2008 A1
20080045877 Levin et al. Feb 2008 A1
20080061477 Capizzo Mar 2008 A1
20080063585 Smalley et al. Mar 2008 A1
20080081323 Keeley et al. Apr 2008 A1
20080081362 Keeley et al. Apr 2008 A1
20080149561 Chu et al. Jun 2008 A1
20080156648 Dudziak et al. Jul 2008 A1
20080170982 Zhang et al. Jul 2008 A1
20080185293 Klose et al. Aug 2008 A1
20080188836 Weber et al. Aug 2008 A1
20080190508 Booth et al. Aug 2008 A1
20080241085 Lin et al. Oct 2008 A1
20080268016 Fang et al. Oct 2008 A1
20080290020 Marand et al. Nov 2008 A1
20080290111 Ginsberg et al. Nov 2008 A1
20090023572 Backes et al. Jan 2009 A1
20090032475 Ferrer et al. Feb 2009 A1
20090039019 Raman Feb 2009 A1
20090048685 Frigstad et al. Feb 2009 A1
20090075371 Keeley et al. Mar 2009 A1
20090078640 Chu et al. Mar 2009 A1
20090087395 Lin et al. Apr 2009 A1
20090117335 Iyoda et al. May 2009 A1
20090148495 Hammer et al. Jun 2009 A1
20090176159 Zhamu et al. Jul 2009 A1
20090222072 Robinson et al. Sep 2009 A1
20090236295 Braun et al. Sep 2009 A1
20090241242 Beatty et al. Oct 2009 A1
20090283475 Hylton et al. Nov 2009 A1
20090291270 Zettl et al. Nov 2009 A1
20090294300 Kanzius et al. Dec 2009 A1
20090306364 Beer et al. Dec 2009 A1
20100000754 Mann et al. Jan 2010 A1
20100016778 Chattopadhyay Jan 2010 A1
20100021708 Kong et al. Jan 2010 A1
20100024722 Ochs et al. Feb 2010 A1
20100024838 Ochs et al. Feb 2010 A1
20100025330 Ratto et al. Feb 2010 A1
20100055464 Sung Mar 2010 A1
20100059378 Elson et al. Mar 2010 A1
20100072643 Pugh et al. Mar 2010 A1
20100076553 Pugh et al. Mar 2010 A1
20100105834 Tour et al. Apr 2010 A1
20100110372 Pugh et al. May 2010 A1
20100124564 Martinson et al. May 2010 A1
20100127312 Grebel et al. May 2010 A1
20100161014 Lynch et al. Jun 2010 A1
20100167551 Dedontney Jul 2010 A1
20100196439 Beck et al. Aug 2010 A1
20100209330 Golzhauser et al. Aug 2010 A1
20100209515 Chantalat et al. Aug 2010 A1
20100213079 Willis Aug 2010 A1
20100224555 Hoek et al. Sep 2010 A1
20100228204 Beatty et al. Sep 2010 A1
20100233781 Bangera et al. Sep 2010 A1
20100249273 Scales et al. Sep 2010 A1
20100258111 Shah et al. Oct 2010 A1
20100323177 Ruoff et al. Dec 2010 A1
20100327847 Leiber et al. Dec 2010 A1
20110014217 Fahmy et al. Jan 2011 A1
20110037033 Green et al. Feb 2011 A1
20110041519 McAlister Feb 2011 A1
20110041687 Diaz et al. Feb 2011 A1
20110045523 Strano et al. Feb 2011 A1
20110054418 Pugh et al. Mar 2011 A1
20110054576 Robinson et al. Mar 2011 A1
20110056892 Lancaster Mar 2011 A1
20110073563 Chang et al. Mar 2011 A1
20110092054 Seo et al. Apr 2011 A1
20110092949 Wang Apr 2011 A1
20110100921 Heinrich May 2011 A1
20110112484 Carter et al. May 2011 A1
20110118655 Fassih et al. May 2011 A1
20110120970 Joo et al. May 2011 A1
20110124253 Shah et al. May 2011 A1
20110132834 Tomioka et al. Jun 2011 A1
20110138689 Wismans Jun 2011 A1
20110139707 Siwy et al. Jun 2011 A1
20110152795 Aledo et al. Jun 2011 A1
20110189440 Appleby et al. Aug 2011 A1
20110201201 Arnold et al. Aug 2011 A1
20110202201 Matsubara Aug 2011 A1
20110253630 Bakajin et al. Oct 2011 A1
20110258791 Batchvarova et al. Oct 2011 A1
20110258796 Batchvarova et al. Oct 2011 A1
20110262645 Batchvarova et al. Oct 2011 A1
20110263912 Miller et al. Oct 2011 A1
20110269920 Min et al. Nov 2011 A1
20120000845 Park et al. Jan 2012 A1
20120031833 Ho et al. Feb 2012 A1
20120048804 Stetson et al. Mar 2012 A1
20120115243 Pitkanen et al. May 2012 A1
20120116228 Okubo May 2012 A1
20120145548 Sivan et al. Jun 2012 A1
20120148633 Sun et al. Jun 2012 A1
20120162600 Pugh et al. Jun 2012 A1
20120183738 Zettl et al. Jul 2012 A1
20120186850 Sugiyama et al. Jul 2012 A1
20120211367 Vecitis Aug 2012 A1
20120218508 Pugh et al. Aug 2012 A1
20120219203 Adachi Aug 2012 A1
20120220053 Lee et al. Aug 2012 A1
20120234453 Pugh et al. Sep 2012 A1
20120234679 Garaj et al. Sep 2012 A1
20120235277 Pugh et al. Sep 2012 A1
20120236254 Pugh et al. Sep 2012 A1
20120236524 Pugh et al. Sep 2012 A1
20120241371 Revanur et al. Sep 2012 A1
20120242953 Pugh et al. Sep 2012 A1
20120255899 Choi et al. Oct 2012 A1
20120267337 Striemer et al. Oct 2012 A1
20120292245 Saito Nov 2012 A1
20120298396 Hong et al. Nov 2012 A1
20120301707 Kinloch et al. Nov 2012 A1
20130015136 Bennett Jan 2013 A1
20130034760 Otts et al. Feb 2013 A1
20130045523 Leach et al. Feb 2013 A1
20130056367 Martinez et al. Mar 2013 A1
20130071941 Miller Mar 2013 A1
20130096292 Brahmasandra et al. Apr 2013 A1
20130100436 Jackson et al. Apr 2013 A1
20130105417 Stetson et al. May 2013 A1
20130108839 Arnold et al. May 2013 A1
20130116541 Gracias et al. May 2013 A1
20130131214 Scales et al. May 2013 A1
20130135578 Pugh et al. May 2013 A1
20130146221 Kolmakov et al. Jun 2013 A1
20130146480 Garaj et al. Jun 2013 A1
20130152386 Pandojirao-S et al. Jun 2013 A1
20130174968 Vlassiouk et al. Jul 2013 A1
20130174978 Pugh et al. Jul 2013 A1
20130176030 Simon Jul 2013 A1
20130190476 Lancaster et al. Jul 2013 A1
20130192460 Miller et al. Aug 2013 A1
20130192461 Miller et al. Aug 2013 A1
20130194540 Pugh et al. Aug 2013 A1
20130213568 Pugh et al. Aug 2013 A1
20130215377 Pugh et al. Aug 2013 A1
20130215378 Pugh et al. Aug 2013 A1
20130215380 Pugh et al. Aug 2013 A1
20130216581 Fahmy et al. Aug 2013 A1
20130240355 Ho et al. Sep 2013 A1
20130240437 Rodrigues et al. Sep 2013 A1
20130248097 Ploss, Jr. Sep 2013 A1
20130248367 Stetson et al. Sep 2013 A1
20130249147 Bedworth Sep 2013 A1
20130256118 Meller et al. Oct 2013 A1
20130256139 Peng Oct 2013 A1
20130256154 Peng Oct 2013 A1
20130256210 Fleming Oct 2013 A1
20130256211 Fleming Oct 2013 A1
20130261568 Martinson et al. Oct 2013 A1
20130269819 Ruby et al. Oct 2013 A1
20130270188 Karnik et al. Oct 2013 A1
20130273288 Luo et al. Oct 2013 A1
20130277305 Stetson et al. Oct 2013 A1
20130284665 Lee et al. Oct 2013 A1
20130295150 Chantalat et al. Nov 2013 A1
20130309776 Drndic et al. Nov 2013 A1
20130317131 Scales et al. Nov 2013 A1
20130317132 Scales et al. Nov 2013 A1
20130317133 Scales et al. Nov 2013 A1
20130323295 Scales et al. Dec 2013 A1
20130335092 Wu Dec 2013 A1
20130338611 Pugh et al. Dec 2013 A1
20130338744 Frewin et al. Dec 2013 A1
20140002788 Otts et al. Jan 2014 A1
20140005514 Pugh et al. Jan 2014 A1
20140015160 Kung et al. Jan 2014 A1
20140017322 Dai et al. Jan 2014 A1
20140030482 Miller et al. Jan 2014 A1
20140048411 Choi et al. Feb 2014 A1
20140066958 Priewe Mar 2014 A1
20140079936 Russo et al. Mar 2014 A1
20140093728 Shah et al. Apr 2014 A1
20140128891 Astani-Matthies et al. May 2014 A1
20140141521 Peng et al. May 2014 A1
20140151288 Miller et al. Jun 2014 A1
20140151631 Duesberg et al. Jun 2014 A1
20140154464 Miller et al. Jun 2014 A1
20140170195 Fassih et al. Jun 2014 A1
20140171541 Scales et al. Jun 2014 A1
20140174927 Bashir et al. Jun 2014 A1
20140190004 Riall et al. Jul 2014 A1
20140190550 Loh et al. Jul 2014 A1
20140190676 Zhamu et al. Jul 2014 A1
20140190833 Lieber et al. Jul 2014 A1
20140192313 Riall et al. Jul 2014 A1
20140192314 Riall et al. Jul 2014 A1
20140199777 Ruiz et al. Jul 2014 A2
20140209539 El Badawi et al. Jul 2014 A1
20140212596 Jahangiri-Famenini Jul 2014 A1
20140230653 Yu et al. Aug 2014 A1
20140230733 Miller Aug 2014 A1
20140231351 Wickramasinghe et al. Aug 2014 A1
20140248621 Collins Sep 2014 A1
20140253131 Liu et al. Sep 2014 A1
20140257348 Priewe et al. Sep 2014 A1
20140257515 So et al. Sep 2014 A1
20140257517 Deichmann et al. Sep 2014 A1
20140259657 Riall et al. Sep 2014 A1
20140261999 Stetson et al. Sep 2014 A1
20140263035 Stoltenberg et al. Sep 2014 A1
20140263178 Sinton et al. Sep 2014 A1
20140264977 Pugh et al. Sep 2014 A1
20140268015 Riall et al. Sep 2014 A1
20140268020 Pugh et al. Sep 2014 A1
20140268021 Pugh et al. Sep 2014 A1
20140268026 Pugh et al. Sep 2014 A1
20140272286 Stoltenberg et al. Sep 2014 A1
20140272522 Pugh et al. Sep 2014 A1
20140273315 Pugh et al. Sep 2014 A1
20140273316 Pugh et al. Sep 2014 A1
20140276481 Pugh et al. Sep 2014 A1
20140276999 Harms et al. Sep 2014 A1
20140306361 Pugh et al. Oct 2014 A1
20140308681 Strano et al. Oct 2014 A1
20140311967 Grossman et al. Oct 2014 A1
20140315213 Nagrath et al. Oct 2014 A1
20140318373 Wood et al. Oct 2014 A1
20140322518 Addleman et al. Oct 2014 A1
20140333892 Pugh et al. Nov 2014 A1
20140335661 Pugh et al. Nov 2014 A1
20140343580 Priewe Nov 2014 A1
20140346081 Sowden et al. Nov 2014 A1
20140346631 Karim et al. Nov 2014 A1
20140349892 Van Der Zaag et al. Nov 2014 A1
20140350372 Pugh et al. Nov 2014 A1
20140377651 Kwon et al. Dec 2014 A1
20140377738 Bachmann et al. Dec 2014 A1
20150015843 Pugh et al. Jan 2015 A1
20150017918 Pugh et al. Jan 2015 A1
20150053627 Silin et al. Feb 2015 A1
20150057762 Harms et al. Feb 2015 A1
20150061990 Toner et al. Mar 2015 A1
20150062533 Toner et al. Mar 2015 A1
20150063605 Pugh Mar 2015 A1
20150066063 Priewe Mar 2015 A1
20150075667 McHugh et al. Mar 2015 A1
20150077658 Pugh et al. Mar 2015 A1
20150077659 Pugh et al. Mar 2015 A1
20150077660 Pugh et al. Mar 2015 A1
20150077661 Pugh et al. Mar 2015 A1
20150077662 Pugh et al. Mar 2015 A1
20150077663 Pugh et al. Mar 2015 A1
20150077699 De Sio et al. Mar 2015 A1
20150077702 Pugh et al. Mar 2015 A9
20150079683 Yager et al. Mar 2015 A1
20150087249 Pugh et al. Mar 2015 A1
20150096935 Mitra et al. Apr 2015 A1
20150098910 Mordas et al. Apr 2015 A1
20150101931 Garaj et al. Apr 2015 A1
20150105686 Vasan Apr 2015 A1
20150118318 Fahmy et al. Apr 2015 A1
20150122727 Karnik et al. May 2015 A1
20150137817 Wilson et al. May 2015 A1
20150138454 Pugh et al. May 2015 A1
20150142107 Pugh et al. May 2015 A1
20150145155 Pugh et al. May 2015 A1
20150146162 Pugh et al. May 2015 A1
20150147474 Batchvarova et al. May 2015 A1
20150170788 Miller et al. Jun 2015 A1
20150174253 Sun et al. Jun 2015 A1
20150174254 Sun et al. Jun 2015 A1
20150182473 Bosnyak et al. Jul 2015 A1
20150185180 Ruhl et al. Jul 2015 A1
20150196579 Ferrante et al. Jul 2015 A1
20150202351 Kaplan et al. Jul 2015 A1
20150212339 Pugh et al. Jul 2015 A1
20150217219 Sinsabaugh et al. Aug 2015 A1
20150218210 Stetson et al. Aug 2015 A1
20150221474 Bedworth Aug 2015 A1
20150231557 Miller et al. Aug 2015 A1
20150231577 Nair et al. Aug 2015 A1
20150247178 Mountcastle et al. Sep 2015 A1
20150258254 Simon et al. Sep 2015 A1
20150258498 Simon et al. Sep 2015 A1
20150258502 Turowski Sep 2015 A1
20150258503 Sinton et al. Sep 2015 A1
20150258506 Mi et al. Sep 2015 A1
20150258525 Westman et al. Sep 2015 A1
20150268150 Newkirk et al. Sep 2015 A1
20150272834 Sun et al. Oct 2015 A1
20150272896 Sun et al. Oct 2015 A1
20150273401 Miller et al. Oct 2015 A1
20150309337 Flitsch et al. Oct 2015 A1
20150321147 Fleming et al. Nov 2015 A1
20150321149 McGinnis Nov 2015 A1
20150323811 Flitsch et al. Nov 2015 A1
20150336202 Bedworth et al. Nov 2015 A1
20150342900 Putnins Dec 2015 A1
20150346382 Bliven et al. Dec 2015 A1
20150351887 Peters Dec 2015 A1
20150359742 Fassih et al. Dec 2015 A1
20150378176 Flitsch et al. Dec 2015 A1
20160009049 Stoltenberg et al. Jan 2016 A1
20160038885 Hogen-Esch et al. Feb 2016 A1
20160043384 Zhamu et al. Feb 2016 A1
20160058932 Stetson et al. Mar 2016 A1
20160059190 Yoo et al. Mar 2016 A1
20160067390 Simon et al. Mar 2016 A1
20160074814 Park et al. Mar 2016 A1
20160074815 Sinton et al. Mar 2016 A1
20160084008 Faircloth et al. Mar 2016 A1
20160084981 Kayano et al. Mar 2016 A1
20160116237 Alsadah et al. Apr 2016 A1
20160256805 Grein et al. Sep 2016 A1
20160272499 Graphenea Sep 2016 A1
20160282326 Waduge et al. Sep 2016 A1
20160284811 Yu et al. Sep 2016 A1
20160339160 Bedworth Nov 2016 A1
20170000937 Gottschalk Jan 2017 A1
20170032962 Graphenea Feb 2017 A1
20170035943 Simon et al. Feb 2017 A1
20170036916 Bedworth et al. Feb 2017 A1
20170037356 Simon et al. Feb 2017 A1
20170057812 Graphenea Mar 2017 A1
20170065939 Kim et al. Mar 2017 A1
20170144107 Garaj et al. May 2017 A1
20170202885 Agulnick Jul 2017 A1
20170216923 Babenko et al. Aug 2017 A1
20170217777 Hong et al. Aug 2017 A1
20170239623 Stoltenberg et al. Aug 2017 A1
20170296972 Sinton et al. Oct 2017 A1
20170296976 Liu et al. Oct 2017 A1
20170296979 Swett et al. Oct 2017 A1
20180207591 Yu et al. Jul 2018 A1
Foreign Referenced Citations (110)
Number Date Country
2037988 Sep 1992 CA
2411935 Dec 2002 CA
1128501 Aug 1996 CN
101108194 Jan 2008 CN
101243544 Aug 2008 CN
101428198 May 2009 CN
101489653 Jul 2009 CN
101996853 Mar 2011 CN
102242062 Nov 2011 CN
102344132 Feb 2012 CN
102423272 Apr 2012 CN
102592720 Jul 2012 CN
101996853 Aug 2012 CN
102637584 Aug 2012 CN
103153441 Jun 2013 CN
103182249 Jul 2013 CN
203235358 Oct 2013 CN
103480281 Jan 2014 CN
103585891 Feb 2014 CN
103603706 Feb 2014 CN
19536560 Mar 1997 DE
10 2005 049 388 Apr 2007 DE
0 364 628 Apr 1990 EP
1 034 251 Jan 2004 EP
1 777 250 Apr 2007 EP
1 872 812 Jan 2008 EP
2 060 286 May 2009 EP
2 107 120 Oct 2009 EP
2 230 511 Sep 2010 EP
1 603 609 May 2011 EP
2 354 272 Aug 2011 EP
2 450 096 May 2012 EP
2 489 520 Aug 2012 EP
2 511 002 Oct 2012 EP
2 586 473 May 2013 EP
2 679 540 Jan 2014 EP
2 937 313 Oct 2015 EP
3 070 053 Sep 2016 EP
3 084 398 Oct 2016 EP
1 538 2430.5 Mar 2017 EP
3 135 631 Mar 2017 EP
59-102111 Jul 1984 JP
10-510471 May 1995 JP
7504120 May 1995 JP
H09-232293 Sep 1997 JP
2001-232158 Aug 2001 JP
2002-126510 May 2002 JP
2004-179014 Jun 2004 JP
2005-126966 May 2005 JP
2006-188393 Jul 2006 JP
2009-291777 Dec 2009 JP
2011-168448 Sep 2011 JP
2011-241479 Dec 2011 JP
2012-500708 Jan 2012 JP
2004-202480 Jul 2014 JP
2015-503405 Feb 2015 JP
2016-175828 Oct 2016 JP
1020110084110 Jul 2011 KR
10-2012-0022164 Mar 2012 KR
1020120022164 Mar 2012 KR
1020140002570 Jan 2014 KR
WO-9333901 Mar 1993 WO
WO-9312859 Aug 1993 WO
WO-9500231 Jan 1995 WO
WO-9712664 Apr 1997 WO
WO-9830501 Jul 1998 WO
WO-0070012 Nov 2000 WO
WO-02055539 Jul 2002 WO
WO-2013115762 Aug 2003 WO
WO-2004009840 Jan 2004 WO
WO-2004082733 Sep 2004 WO
WO-2005047857 May 2005 WO
WO-2007103411 Sep 2007 WO
WO-2007140252 Dec 2007 WO
WO-2008008533 Jan 2008 WO
WO-2009129984 Oct 2009 WO
WO-2010006080 Jan 2010 WO
WO-2010115904 Oct 2010 WO
WO-2011019686 Feb 2011 WO
WO-2011046706 Apr 2011 WO
WO-2011001674 Jun 2011 WO
WO-2011063458 Jun 2011 WO
WO-2011075158 Jun 2011 WO
WO-2011094204 Aug 2011 WO
WO-2011100458 Aug 2011 WO
WO-2011138689 Nov 2011 WO
WO-2012006657 Jan 2012 WO
WO-2012021801 Feb 2012 WO
WO-2012027148 Mar 2012 WO
WO-2012028695 Mar 2012 WO
WO-2012030368 Mar 2012 WO
WO-2012125770 Sep 2012 WO
WO-2012138671 Oct 2012 WO
WO-2012142852 Oct 2012 WO
WO-2013016445 Jan 2013 WO
WO-2013048063 Apr 2013 WO
WO-2013138137 Sep 2013 WO
WO-2013138698 Sep 2013 WO
WO-2013151799 Oct 2013 WO
WO-2013152179 Oct 2013 WO
WO-2014084856 Jun 2014 WO
WO-2014084861 Jun 2014 WO
WO-2014168629 Oct 2014 WO
WO-2015030698 Mar 2015 WO
WO-2015110277 Jul 2015 WO
WO-2015138736 Sep 2015 WO
WO-2015138752 Sep 2015 WO
WO-20151138771 Sep 2015 WO
WO-2015197217 Dec 2015 WO
WO-2016102003 Jun 2016 WO
Non-Patent Literature Citations (434)
Entry
Bai (Jingwei) et al., Graphene nanomesh, Nature Nanotechnology; Feb. 14, 2010; whole document.
Bieri et al.; Two-dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity; JACS, 2010, vol. 132, pp. 16669-16676.
Childres et al., Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements, New Journal of Physics; Feb. 2011, vol. 13.
International Preliminary Report on Patentability for PCT Application No. PCT/US2014/023027 dated Sep. 15, 2015.
Jiang et al., Porous graphene as the ultimate membrane for gas separation; Nano Letters; America Chemical Society, USA; Dec. 9, 2009; vol. 9, No. 12; pp. 4019-4024.
Khun et al.; From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic reorganization of Porous Polymer Networks; JACS, 2008; vol. 130; pp. 13333-13337.
Kim et al., The structural and electrical evolution of graphene by oxygen plasma-induced disorder; Nanotechnology IOP Publishing Ltd, UK; vol. 20, No. 37; Sep. 16, 2009.
Kim et al.; Fabrication and Characterization of Large Area, Semiconducting Nanopeiforated Graphene Materials; Nano Letters; American Chemical Society; vol. 10, No. 4; Apr. 14, 2010; p. 1125, col. 2, line 25—p. 1126, col. 1, line 11.
MacLeod et al; Supramolecular Orderinng in Oligothiophene-Fullerene Monolayers; JACS, 2009, vol. 131, pp. 16844-16850.
Morse, Scalable Synthesis of Semiconducting Nanopatterned Graphene Materials, InterNano Resources for Nanomanufacturing; Apr. 30, 2010.
Zhang et al.; Method for anisotropic etching of graphite or graphene; Institute of Physics, Chinese Academy of Sciences; PEOP. Rep. China; Mar. 30, 2011.
Chen et al., “Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance”, Journal of Materials Chemistry A: Materials for Energy and Sustainability, vol. 1, No. 33, Jan. 1, 2013, pp. 9409-9413.
Chinese Office Action in Application No. 201580006829.5 dated Jan. 23, 2018 (with English translation) (13 pages).
European Extended Search Report in Application No. 15786691.4 dated Dec. 1, 2017 (10 pages).
European Extended Search Report in Application No. 15789852.9 dated Dec. 6, 2017 (8 pages).
Japanese Office Action in Application No. 2017-042023 dated Jan. 9, 2018 (with English translation) (9 pages).
Singapore Search Report and Written Opinion in Application No. 11201701654U dated Dec. 6, 2017 (6 pages).
Taiwanese Office Action in Application No. 102146079 dated Dec. 12, 2017 (with English translation) (4 pages).
U.S. Notice of Allowance in U.S. Appl. No. 14/843,944 dated Feb. 9, 2018 (9 pages).
U.S. Office Action for U.S. Appl. No. 15/099,482 dated Feb. 23, 2018 (9 pages).
U.S. Office Action in U.S. Appl. No. 14/609,325 dated Jan. 16, 2018 (11 pages).
U.S. Office Action in U.S. Appl. No. 14/656,190 dated Jan. 10, 2018 (14 pages).
U.S. Office Action in U.S. Appl. No. 14/856,471 dated Jan. 11, 2018 (36 pages).
U.S. Office Action in U.S. Appl. No. 15/099,099 dated Feb. 15, 2018 (13 pages).
U.S. Office Action in U.S. Appl. No. 15/099,588 dated Feb. 1, 2018 (6 pages).
Wang et al., “Preparation of high-surface-area carbon nanoparticle/graphene composites”, Carbon, Elsevier, Oxford, GB, vol. 50, No. 10, Apr. 8, 2012, pp. 3845-3853.
Adiga et al., “Nanoporous Materials for Biomedical Devices,” JOM 60: 26-32 (Mar. 25, 2008).
AE Search and Examination Report for United Arab Emirates Application No. P186/13 dated Oct. 4, 2016.
Agenor et al., “Renal tubular dysfunction in human visceral leishmaniasis (Kala-azar),” Clinical Nephrology 71(5): 492-500 (May 2009) (available online Mar. 21, 2011).
Albert et al., “Ringer's lactate is compatible with the rapid infusion of AS-3 preserved packed red blood cells,” Can. J. Anaesth. 56(5): 352-356 (May 2009) (available online Apr. 2, 2009).
Allen et al., “Craters on silicon surfaces created by gas cluster ion impacts,” Journal of Applied Physics, 92(7): 3671-3678 (Oct. 1, 2002).
Aluru et al. “Modeling electronics on the nanoscale.” Handbook of nanoscience, engineering and technology Goddard W, Brenner D, Lyshevski S, lafrate GJ (2002): 11-1.
Alvarenga, “Carbon nanotube materials for aerospace wiring” Rochester Institute of Technology, 2010.
AMI Applied Membranes Inc. (undated). FilmTec Nanofiltration Membrane Elements. Retrieved Jun. 1, 2016, from http://www.appliedmembranes.com/filmtec-nanofiltration-membrane-elements.html.
AMI Applied Membranes Inc., “Filmtec Nanofiltration Membrane Elements”, Retrieved from appliedmembranes.com/nanofiltration_elements.htm, accessed Apr. 28, 2015 (2 Pages).
Apel, P. “Track etching technique in membrane technology.” Radiation Measurements 34.1 (2001): 559-566.
Aso et al., “Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin,” Diabetes 55(7): 1954-1960 (Jul. 2006).
Atmeh et al., “Albumin Aggregates: Hydrodynamic Shape and Physico-Chemical Properties,” Jordan Journal of Chemistry, 2(2): 169-182 (Accepted Jul. 29, 2007).
AU Examination Report for Australian Patent Application No. 2013235234, dated Jan. 13, 2017, 4 pages.
AU Examination Report for Australian Patent Application No. 2013363283, dated Jun. 20, 2017, 4 pages.
AU Notice of Acceptance for Australian Application No. 2011293742 dated Jan. 13, 2016.
Axelsson et al., “Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats,” AM. J. Physiol. Renal Physiol. 298(6): F1306-F1312 (Jun. 2010) (available online Mar. 17, 2010).
Bae et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology 5: 574-578 (Jun. 20, 2010).
Bai et al., “Graphene nanomesh,” Nature Nanotechnology 5: 190-194 (Feb. 14, 2010).
Bains et al., “Novel lectins from rhizomes of two Acorus species with mitogenic activity and inhibitory potential towards murine cancer cell lines,” Int'l Immunopharmacol. 5(9): 1470-1478 (Aug. 2005) (available online May 12, 2005).
Baker, “Membrane Technology and Applications”, Membrane Technology and Applications; Apr. 14, 2004; pp. 92-94.
Baker, “Track-etch Membranes,” Membrane Technology and Applications 2: 92-9 (published online Dec. 2004).
Barreiro et al. “Transport properties of graphene in the high-current limit.” Physical review letters 103.7 (2009): 076601.
Barreiro et al. “Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing,” Scientific Reports, 3 (Article 1115): 1-6 (Jan. 23, 2013).
Bazargani et al. “Low molecular weight heparin improves peritoneal ultrafiltration and blocks complement and coagulation,” Peritoneal Dialysis Int'l 25(4): 394-404 (Jul. 2005-Aug. 2005).
Bazargani, “Acute inflammation in peritoneal dialysis: experimental studies in rats. Characterization of regulatory mechanisms,” Swedish Dental J. Supp. 171: 1-57, i (2005).
Beppu et al., “Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice: investigation on hypoglycemic action and systemic absorption dynamics of aloe components,” J. Ethnopharmacol. 103(3): 468-77 (Feb. 20, 2006) (available online Jan. 6, 2006).
Bieri et al. “Two-dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity” JACS, 2010, vol. 132, pp. 16669-16676.
Botari et al., “Graphene healing mechanisms: A theoretical investigation,” Carbon, 99: 302-309 (Apr. 2016) (published online Dec. 12, 2015).
Bruin et al., “Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice”, Diabetologia (2013), vol. 56: 1987-1998 (Jun. 16, 2013).
Butler et al. “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene”, Materials Review 7(4): 2898-2926 (Mar. 6, 2013).
Chen et al., “Defect Scattering in Graphene,” Physical Review Letters, 102: 236805-1-236805-4 (Jun. 12, 2009).
Chen et al., “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper,” Adv. Mater., 20(18): 3557-3561 (Sep. 2008) (available online Jul. 23, 2008).
Chen et al., “Self-healing of defected graphene,” Applied Physics Letters, 102(10): 103107-1-103107-5 (Mar. 13, 2013).
Cheng et al., “Ion Transport in Complex Layered Graphene-Based Membranes with Tuneable Interlayer Spacing,” Science Advances 2(2): 1501272 (Feb. 12, 2016).
Chhowalla et al., “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry 5: 263-275 (Mar. 20, 2013).
Childres et al., “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New Journal of Physics 13, 1-12 (Feb. 10, 2011).
Chu Ju, et al. “Modern Biotechnology” East China University of Technology Press, (Sep. 2007), vol. 1; pp. 306-307, ISBN 978-7-5628-2116-8.
Clochard, “Radiografted track-etched polymer membranes for research and application” [Scholarly project], In Laboratoire Des Solides Irradiés, (undated), Retrieved Jun. 2, 2016, from http://iramis.cea.fr/radiolyse/5juin2015/Clochard.pdf.
Clochard, “Track-Etched Polymer Membranes,” Laboratory of Irradiated Solids, Ecole Polytechnique, retrieved from http://www.lsi.polytechnique.fr/home/research/physics-and-chemistry-of-nano-objects/trac . . . , Accessed Jul. 30, 2015 (2 pages).
CN Notification of Grant for Chinese Application No. 201180049184.5 dated Jun. 6, 2016.
CN Office Action for Chinese Application No. 201380014845.X dated Jul. 8, 2016.
CN Office Action for Chinese Application No. 201380014845.X dated Sep. 2, 2015.
CN Office Action for Chinese Application No. 201380019165.5 dated Aug. 25, 2015.
CN Office Action for Chinese Application No. 201380073141.X dated Jun. 8, 2016.
CN Office Action for Chinese Application No. 201380073141.X dated Mar. 21, 2017.
CN Office Action for Chinese Application No. 201480015372.X dated Aug. 2, 2016.
CN Office Action for Chinese Application No. 20118004918.5 dated Jun. 15, 2015.
CN Office Action for Chinese Application No. 201180049184.5 dated Jul. 30, 2014.
CN Office Action for Chinese Application No. 201180049184.5 dated Mar. 4, 2016.
CN Office Action for Chinese Application No. 201380014845.X dated Dec. 23, 2016.
CN Office Action for Chinese Application No. 201380017644.5 dated Feb. 7, 2017.
CN Office Action for Chinese Application No. 201380017644.5 dated May 26, 2016.
CN Office Action for Chinese Application No. 201380017644.5 dated Sep. 29, 2015.
CN Office Action in Chinese Application No. 201380013988.9 dated Aug. 18, 2016 (English translation not readily available).
CN Office Action in Chinese Application No. 201380013988.9 dated Oct. 27, 2015.
Cohen-Tanugi et al, “Water Desalination across Nanoporous Graphene,” ACS Nano Letters 12(7): 3602-3608 (Jun. 5, 2012).
Cohen-Tanugi, “Nanoporous graphene as a water desalination membrane,” (Ph.D. Thesis, Massachusetts Institute of Technology) (Jun. 2015).
Colton, “Implantable biohybrid artificial organs,” Cell Transplantation 4(4): 415-436 (Mar. 28, 1995).
Crock et al., “Polymer Nanocomposites with Graphene-Based Hierarchical Fillers as Materials for Multifunctional Water Treatment Membranes.” Water Research 47(12): 3984-3996 (Aug. 2013; first published online Mar. 29, 2013).
Daniel et al. “Implantable Diagnostic Device for Cancer Monitoring.” Biosens Bioelectricon. 24(11): 3252-3257 (Jul. 15, 2009).
Database WPI, Week 201238, Thomson Scientific, London, GB; AN 2012-D49442.
De Lannoy et al., “Aquatic Biofouling Prevention by Electrically Charged Nanocomposite Polymer Thin Film Membranes”, 2013 American Water Work Association membrane Technology Conference; Environmental science & technology 47.6 (2013): 2760-2768.
Deng et al., “Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade,” Am. J. Physiol. Renal Physiol. 299(6): F1365-F1373 (Dec. 2010) (available online Sep. 29, 2010).
Desai et al., “Nanoporous microsystems for islet cell replacement,” Advanced Drug Delivery Reviews 56: 1661-1673 (Jul. 23, 2004).
Dong et al., “Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure,” Carbon 49(11): 3672-3678 (May 7, 2011).
Edwards, “Large Sheets of Graphene Film Produced for Transparent Electrodes (w/ Video)”; (Jun. 21, 2010), PhysOrg.com, retrieved on May 15, 2017 from https://phys.org/news/2010-06-large-sheets-graphene-transparentelectrodes.html (2 pages).
EP Office Action for European Application No. 13715529.7 dated Jun. 24, 2016.
Fayerman, “Canadian scientists use stem cells to reverse diabetes in mice”, The Telegraph-Journal (New Brunswick), 1-2 (Jun. 29, 2012).
Fayerman, “Diabetes reversed in mice; University of B.C. scientists use embryonic stem cells to deal with Type 1 disease”, The Vancouver Sun (British Columbia), 1-2 (Jun. 28, 2012).
Fejes et al. “A review of the properties and CVD synthesis of coiled carbon nanotubes.” Materials 3.4 (2010): 2618-2642.
Fischbein et al., “Electron beam nanosculpting of suspended graphene sheets,” Applied Physics Letters 93(113107): 1-3, (Sep. 16, 2008).
Fissell et al., “High-Performance Silicon Nanopore Hemofiltration Membranes,” NIH-PA Author Manuscript, PMC, (Jan. 5, 2010), also published in J. Memb. Sci. 326(1): 1-15 (Jan. 5, 2009).
Franzen, C. “MIT Setting Up Industrial-Scale Graphene Printing Press” Sep. 23, 2011, retrieved from http://talkingpointsmemo.com/idealab/mit-setting-up-industrial-scale-graphene-printing-press (2 pages).
Freedman et al., “Genetic basis of nondiabetic end-stage renal disease,” Semin. Nephrol. 30(2): 101-110 (Mar. 2010).
Fuertes, “Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation,” Microporous and Mesoporous Materials, 33: 115-125 (Jun. 16, 1999).
Galashev, “Computer study of the removal of Cu from the graphene surface using Ar clusters,” Computational Materials Science, 98: 123-128 (Feb. 2015) (available online Nov. 3, 2014).
Garcia-Lopez et al., “Determination of high and low molecular weight molecules of icodextrin in plasma and dialysate, using gel filtration chromatography, in peritoneal dialysis patients,” Peritoneal Dialysis Int'l 25(2): 181-191 (Mar. 2005-Apr. 2005).
Georgakilas et al., “Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications,” Chem. Rev., (2012) 112(11), pp. 6156-6214.
Gimi et al., “A Nanoporous, Transparent Microcontainer for Encapsulated Islet Therapy,” J. Diabetes Sci. Tech. 3(2): 1-7 (Mar. 2009).
Gnudi “Molecular mechanisms of proteinuria in diabetes,” Biochem. Soc. Trans. 36(5): 946-949 (Oct. 2008).
Gotloib et al., “Peritoneal dialysis in refractory end-stage congestive heart failure: a challenge facing a no-win situation,” Nephrol. Dialysis. Transplant. 20(Supp. 7): vii32-vii36 (Jul. 2005).
Han et al., “Ultrathin Graphene Nanofiltration Membrane for Water Purification.” Advanced Functional Materials 23(29): 3693-3700 (Aug. 1, 2013).
Harvey “Carbon as conductor: a pragmatic view.” Proceedings of the 61st IWCS Conference, http://www. iwcs. org/archives/56333-iwcs-2012b-1.1584632. vol. 1. 2012.
Hashimoto et al. “Direct evidence for atomic defects in graphene layers.” Nature 430.7002 (2004): 870-873.
He, et al. “The attachment of Fe3 O4 nanoparticles to graphene oxide by covalent bonding.” Carbon 48.11 (2010): 3139-3144.
Hone et al. “Graphene has record-breaking strength” Physicsworld.com, Jul. 17, 2008.
Hong et al., “Graphene multilayers as gates for multi-week sequential release of proteins from surfaces,” NIH-PA Author Manuscript PMC (Jun. 1, 2014), also published in ACS Nano, 6(1): 81-88 (Jan. 24, 2012) (available online Dec. 2011).
Hu et al., “Enabling graphene oxide nanosheets as water separation membranes,” Environmental Science & Technology 47(8): 3715-3723 (Mar. 14, 2013).
Huang et al., “Gene expression profile in circulating mononuclear cells afterexposure to ultrafine carbon particles,” Inhalation Toxicol. 22(10): 835-846 (Aug. 2010).
Humplik, et al. “Nanostructured materials for water desalination.” Nanotechnology 22.29 (2011): 292001.
International Search Report and Written Opinion in PCT/US2015/028948 dated Jul. 16, 2015.
International Search Report and Written Opinion dated Dec. 20, 2016 from related PCT application PCT/US2016/052010.
International Search Report and Written Opinion dated Jan. 13, 2017 from related PCT application PCT/US2016/027583.
International Search Report and Written Opinion dated Jan. 13, 2017 from related PCT application PCT/US2016/027594.
International Search Report and Written Opinion dated Jan. 13, 2017 from related PCT application PCT/US2016/027631.
International Search Report and Written Opinion dated Jan. 5, 2012 for related International Application No. PCT/US11/47800.
International Search Report and Written Opinion dated Jan. 6, 2017 from related PCT application PCT/US2016/027590.
International Search Report and Written Opinion dated Jan. 9, 2017 from related PCT application PCT/US2016/027628.
International Search Report and Written Opinion dated Jul. 5, 2017 from related PCT application PCT/US2017/024147.
International Search Report and Written Opinion dated Mar. 12, 2014 for International Application No. PCT/US2013/074942.
International Search Report and Written Opinion for International Application No. PCT/US2011/047800 dated Jan. 5, 2012.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/023027 dated Jun. 26, 2014.
International Search Report and Written Opinion in International Application No. PCT/US2013/030344 dated Jun. 19, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2013/033035 dated Jun. 28, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2013/033400, dated Jun. 28, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2013/033403 dated Jun. 28, 2013.
International Search Report and Written Opinion in PCT/US2014/041766, dated Sep. 30, 2014.
International Search Report and Written Opinion in PCT/US2016/027632 dated Jan. 9, 2017.
International Search Report and Written Opinion dated Jun. 5, 2014 in International Application No. PCT/US2014/021677.
International Search Report and Written Opinion dated Jun. 6, 2014 in International Application No. PCT/US2014/023043.
International Search Report and Written Opinion dated Dec. 16, 2014, for International Application No. PCT/US2014/051011.
International Search Report and Written Opinion dated Jun. 19, 2015, in International Application No. PCT/US2015/020287.
International Search Report and Written Opinion of the International Searching Authority dated Apr. 30, 2015, from related PCT application PCT/US2015/013805.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 20, 2015, from related PCT application PCT/US15/13599.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027596.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027603.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027607.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027610.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027612.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027616.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 10, 2015, from related PCT application PCT/US2015/020246.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 17, 2015, from related PCT application PCT/US2015/020296.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 22, 2016, from related PCT application PCT/US2016/027637.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 3, 2015, from related PCT application in PCT/US 2015/018114.
International Search Report and Written Opinion of the International Searching Authority dated Oct. 6, 2015, from related PCT application in PCT/US2015/029932.
International Search Report dated Dec. 27, 2016 from related PCT application PCT/US2016/052007.
International Search Report dated Dec. 4, 2015, in related PCT application PCT/US2015/048205.
International Search Report dated Jun. 10, 2015, from related PCT application PCT/US2015/020201.
International Search Report dated Dec. 8, 2016 from related PCT application PCT/US2016/027629.
International Search Report for PCT Application No. PCT/US2015/018114 dated Jun. 3, 2015.
Inui et al. “Molecular dynamics simulations of nanopore processing in a graphene sheet by using gas cluster ion beam.” Applied Physics A: Materials Science & Processing 98.4 (2010): 787-794.
Inui et al., “Molecular dynamics simulations of nanopore processing in a graphene sheet by using gas cluster ion beam,” Appl. Phys. A, 98: 787-794 (available online Dec. 19, 2009).
Israelachvili, “Intermolecular and Surface Forces,” 3rd ed., Chap.7.1, Sizes of Atoms, Molecules, and Ions, 2011, 1 page.
Jiang et al., “Porous Graphene as the Ultimate Membrane for Gas Separation,” Nano Lett. 9(12): 4019-4024 (Dec. 9, 2009) (available online Sep. 23, 2009).
Jiao et al., “Castration differentially alters basal and leucine-stimulated tissue protein synthesis in skeletal muscle and adipose tissue,” Am. J. Physiol. Endocrinol. Metab. 297(5): E1222-1232 (Nov. 2009) (available online Sep. 15, 2009).
Joshi et al., “Precise and ultrafast molecular sieving through graphene oxide membranes”, Science 343(6172): 752-754 (Feb. 14, 2014).
JP Office Action in Japanese Application No. 2015-501729 dated Dec. 9, 2016 (English translation).
JP Office Action in Japanese Application No. 2015-501729 dated Jun. 20, 2017 (English translation).
JP Office Action in Japanese Application No. 2015-501867 dated Oct. 11, 2016 (English translation).
JP Office Action in Japanese Application No. 2015-503405 dated Nov. 14, 2016 (English translation).
JP Office Action in Japanese Application No. 2015-503406 dated Dec. 6, 2016(English translation).
JPH09232293 Machine Translation JAP to ENG.
Kanani et al., “Permeability—Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry,” NIH-PA Author Manuscript, PMC, (Mar. 1, 2011), also published in J. Memb. Sci. 349(1-2): 1-13(Mar. 1, 2010).
Kang et al., “Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats,” Nephrol. Dialysis Transplant. 24(1): 73-84 (Jan. 2009).
Kang et al., “Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing,” American Chemical Society Nano, 6(6): 5360-5365(May 28, 2012).
Kar et al., “Effect of glycation of hemoglobin on its interaction with trifluoperazine,” Protein J. 25(3): 202-211 (Apr. 2006) (available online Jun. 6, 2006).
Karan et al., “Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets,” Science 335: 444-447 (Jan. 27, 2012).
Kawamoto et al., “Serum high molecular weight adiponectin is associated with mild renal dysfunction in Japanese adults,” J. Atherosclerosis Thrombosis 17(11): 1141-1148 (Nov. 27, 2011).
Khun et al. “From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic reorganization of Porous Polymer Networks” JACS, 2008; vol. 130; pp. 13333-13337.
Kim et al., “Fabrication and Characterization of Large Area, Semiconducting Nanoperforated Graphene Materials,” Nano Letters 10(4): 1125-1131 (Mar. 1, 2010).
Kim et al., “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology IOP 20(375703): 1-8 (Aug. 26, 2009).
Kjeldsen, T., “Yeast secretory expression of insulin precursors,” Appl Microbiol Biotechnol, 54: 277-286 (May 2, 2000).
Koh et al., “Sensitive NMR Sensors Detect Antibodies to Influenza,” NIH PA Author Manuscript PMC (Apr. 13, 2009), also published in Angew. Chem. Int'l. Engl, 47(22): 4119-4121 (May 19, 2008) (available online Apr. 21, 2008).
Koski et al., “The New Skinny in Two-Dimensional Nanomaterials”, ACS Nano 7(5): 3739-3743 (May 16, 2013).
Krupka et al., “Measurements of the Sheet Resistance and Conductivity of Thin Epitaxial Graphene and SiC Films” Applied Physics Letters 96, 082101-I; Feb. 23, 2010.
Kumar et al., “Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin,” Molecular Vision 11: 561-568 (Jul. 26, 2005).
Kurapati et al., “Graphene oxide based multilayer capsules with unique permeability properties: facile encapsulation of multiple drugs,” Chemical Communications 48: 6013-6015 (Apr. 25, 2012).
Lathuiliere et al., “Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System,” Journal of Applied Physics, Int. J. Mol. Sci., 16: 10578-10600 (May 8, 2015).
Lee, et al. “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” science 321.5887 (2008): 385-388.
Lehtinen et al., “Cutting and controlled modification of graphene with ion beams,” Nanotechnology, 22: 175306 1-13 (Feb. 3, 2011).
Li et al., “3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release,” Advanced Materials 25: 6737-6743 (Dec. 2014) (available online Oct. 7, 2013).
Lin et al., “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate,” ACSNANO, 8(2): 1784-1791 (Jan. 28, 2014).
Liu et al. “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition,” Carbon, 49(13): 4122-4130 (Nov. 2011) (published online May 30, 2011).
Liu et al., “Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation,” ACS Nano 8(3): 2504-2511 (Feb. 18, 2014).
Liu et al., “Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping,” Nano Letters 8(7): 1965-1970 (published online Jun. 19, 2008).
Lucchese et al. “Quantifying ion-induced defects and Raman relaxation length in graphene.” Carbon 48.5 (2010): 1592-1597.
MacLeod et al. “Supramolecular Orderinng in Oligothiophene-Fullerene Monolayers” JACS, 2009, vol. 131, pp. 16844-16850.
Marquardt et al., “Hybrid materials of platinum nanoparticles and thiol-functionalized graphene derivatives,” Carbon 66: 285-294 (Jan. 2014) (available online Sep. 12, 2013).
Matteucci et al., “Transport of gases and Vapors in Glass and Rubbery Polymers,” in Materials Science of Membranes for Gas and Vapor Separation. (Yampolskii et al., eds. 2006) (available online Jun. 2006).
Mattevi et al. “A review of chemical vapour deposition of graphene on copper.” Journal of Materials Chemistry 21.10 (2011): 3324-3334.
Miao et al. “Chemical vapor deposition of grapheme” INTECH Open Access Publisher, 2011.
Mishra et al., “Functionalized Graphene Sheets for Arsenic Removal and Desalination of Sea Water,” Desalination 282: 39-45 (Jan. 13, 2011)(available online Feb. 11, 2011).
MIT/MTL Center for Graphene Devices and 2D Systems, retrieved from: http://www-mtl.mit.edu/wpmu/graphene/ [retrieved from Aug. 21, 2014 archive] (3 pages).
MIT/MTL Center for Graphene Devices and 2D Systems, retrieved from: http://www-mtl.mit.edu/wpmu/graphene/ [retrieved from Mar. 4, 2015 archive] (3 pages).
Morse, “Scalable Synthesis of Semiconducting Nanopatterned Graphene Materials,” InterNano Resources for Nanomanufacturing; Apr. 30, 2010.
Nafea, et al. “Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels.” J Control Release. 154(2): 110-122 (Sep. 5, 2011).
Nair et al., “Unimpeded Permeation of Water Through Helium-Leak-tight Graphene-Based Membranes,” Science 335: 442-444 (Jan. 27, 2012).
Nam et al., “Monodispersed PtCo nanoparticles on hexadecyltrimethylammonium bromide treated graphene as an effective oxygen reduction reaction catalyst for proton exchange membrane fuel cells,” Carbon, 50: 3739-3747 (Aug. 2012) (available online Apr. 2012).
Nandamuri et al., “Chemical vapor deposition of graphene films,” Nanotechnology 21(14): 145604 (4 pages) (Apr. 2010) (available online Mar. 10, 2010).
Nayini et al., “Synthesis and characterization of functionalized carbon nanotubes with different wetting behaviors and their influence on the wetting properties of carbon nanotubes/polymethylmethacrylate coatings,” Progress in Organic Coatings 77(6): 1007-1014 (Feb. 25, 2014).
Nezlin, “Circulating non-immune IgG complexes in health and disease,” Immunol. Lett. 122(2); 141-144 (Feb. 21, 2009) (available online Feb. 2, 2009).
Norata et al., “Plasma adiponectin levels in chronic kidney disease patients: relation with molecular inflammatory profile and metabolic status,” Nutr. Metab. Cardiovasc. Dis. 20(1): 56-63 (Jan. 2010) (available online Apr. 9, 2009).
Notice of Allowance dated Oct. 7, 2016, from related U.S. Appl. No. 13/795,276.
Ogawa et al., “Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom,” Toxicon 51(6): 984-993 (May 2008) (available online Feb. 19, 2008).
O'Hern et al. “Selective Molecular Transport through Intrinsic Defects in a Single Layer of CVD Graphene,” ACS Nano, 6(11): 10130-10138 (Oct. 2, 2012).
O'Hern et al., “Development of process to transfer large areas of LPCVD graphene from copper foil to a porous support substrate,” 1-62 (M.S. Thesis, Massachusetts Institute of Technology, Thesis) (Sep. 2011).
O'Hern et al., “Nanofiltration across defect-sealed nanoporous monolayer graphene,” Nano Letters, 15(5): 3254-3260 (published Apr. 27, 2015).
O'Hern et al., “Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes,” Nano Letters 14(3): 1234-1241 (Feb. 3, 2014).
Ohgawara et al. “Assessment of pore size of semipermeable membrane for immunoisolation on xenoimplatntation of pancreatic B cells using a diffusion chamber.” Transplant Proc. (6): 3319-3320. 1995.
Oki et al., “Combined acromegaly and subclinical Cushing disease related to high-molecular-weight adrenocorticotropic hormone,” J. Neurosurg. 110(2): 369-73 (Feb. 2009).
Osorio et al., “Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats,” Diabetes Res. Clin. Pract. 86(3): e46-e49 (Dec. 2009) (available online Oct. 2, 2009).
Osorio et al., “Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats,” J. Nephrol. 23(5): 541-546 (Sep.-Oct. 2010).
Padidela et al., “Elevated basal and post-feed glucagon-like peptide 1 (GLP-1) concentrations in the neonatal period,” Eur. J. Endocrinol. 160(1): 53-58 (Jan. 2009) (available online Oct. 24, 2008).
Pall Corporation, “Pall Water Processing Disc-Tube Filter Technology”, Retrieved on Feb. 10, 2015, Retrieved from http://www.pall.com /pdfs/Fuels-and-Chemicals/Disc-Tube_Filter_Technology-DT100b.pdF (15 Pages).
Paul, “Creating New Types of Carbon-Based Membranes,” Science 335: 413-414 (Jan. 27, 2012).
Plant et al. “Size-dependent propagation of Au nanoclusters through few-layer grapheme,” The Royal Society of Chemistry 2013, Nanoscale.
Plant et al. “Size-dependent propagation of Au nanoclusters through few-layer graphene,” Nanoscale, 6: 1258-1263 (2014) (available online Oct. 27, 2013).
Pollard, “Growing Graphene via Chemical Vapor” Department of Physics, Pomona College; May 2, 2011.
Popok. “Cluster Ion Implantation in Graphite and Diamond: Radiation Damage and Stopping of Cluster Constituents,” Reviews on Advanced Materials Science, 38(1): 7-16 (Jan. 21, 2014).
Rafael et al. “Cell Transplantation and Immunoisolation: Studies on a macroencapsultaion device.” From the Departments of Transplantation Pathology: Stockholm, Sweden (1999).
Rezania et al., “Enrichment of Human Embryonic Stem Cell-Derived NKX6.1-Expressing Pancreatic Progenitor Cells Accelerates the Maturation of Insulin-Secreting Cells in Vivo”, Stem Cells Regenerative Medicine, vol. 31: 2432-2442 (Jul. 29, 2013).
Rezania et al., “Maturation of Human Embryonic Stem Cell-Derived Pancreatic Progenitors Into Functional Islets Capable of Treating Pre-existing Diabetes in Mice”, Diabetes Journal, vol. 61: 2016-2029 (Aug. 1, 2012).
Ribeiro et al., “Binary Mutual Diffusion Coefficients of Aqueous Solutions of Sucrose, Lactose, Glucose, and Fructose in the Temperature Range from (298.15 to 328.15) K,” J. Chem. Eng. Data 51(5): 1836-1840 (Sep. 2006) (available online Jul. 20, 2006).
Rippe et al., “Size and charge selectivity of the glomerular filter in early experimental diabetes in rats,” Am. J. Physiol. Renal Physiol. 293(5): F1533-F1538 (Nov. 2007)(available online Aug. 15, 2007).
Russo et al., “Atom-by-atom nucleation and growth of graphene nanopores,” PNAS 109(16): 5953-5957 (Apr. 17, 2012).
SA Final Rejection for Saudi Arabia Application No. 113340400 dated Jan. 28, 2016.
SA First Examination Report for Saudi Arabia Application No. 113340401 dated Apr. 28, 2015.
SA First Examination Report for Saudi Arabia Application No. 113340424 dated May 10, 2015.
SA First Examination Report for Saudi Arabia Application No. 113340426 dated May 12, 2015.
SA First Examination Report in Saudi Arabia Application No. 113340400 dated Apr. 13, 2015.
SA Second Examination Report for Saudi Arabia Application No. 113340400 dated Aug. 11, 2015.
Sanchez, et al. “Biological Interactions of Graphene-Family Nanomaterials—An Interdisciplinary Review.” Chem Res Toxicol. 25(1): 15-34 (Jan. 13 2012).
Schweicher et al., “Membranes to achieve immunoprotection of transplanted islets,” NIH-PA Author Manuscript, PMC, (Nov. 13, 2014), also published in Frontiers in Bioscience (Landmark Ed) 19: 49-76 (Jan. 1, 2014).
Sethna et al., “Serum adiponectin levels and ambulatory blood pressure monitoring in pediatric renal transplant recipients,” Transplantation 88(8): 1030-1037 (Oct. 27, 2009).
Sint et al., “Selective Ion Passage through Functionalized Graphene Nanopores,” JACS 130: 16448-16449 (Nov. 14, 2008).
Suk et al., “Water Transport Through Ultrathin Graphene,” Journal of Physical Chemistry Letters 1(10): 1590-1594 (Apr. 30, 2010).
Sullivan et al., “Microarray analysis reveals novel gene expression changes associated with erectile dysfunction in diabetic rats,” Physiol. Genom. 23(2): 192-205 (Oct. 17, 2005) (available online Aug. 23, 2005).
Sun et al., “Growth of graphene from solid carbon sources,” Nature 468(7323): 549-552 (Nov. 25, 2010; including corrigendum in Nature 471(7336): 124 (Mar. 3, 2011).
Swett et al, “Imagining and Sculpting Graphene on the atomic scale” Oak Ridge National Laboratory's (ORNL) Center for Nanophase Materials Sciences (CNMS) Biannual Review. 1 pages.
Swett et al, “Supersonic Nanoparticle Interaction with Suspended CVD Graphene”, Microsc. Microanal. 22 (Suppl 3): 1670-1671 (Jul. 25, 2016).
Takata et al., “Hyperresistinemia is associated with coexistence of hypertension and type 2 diabetes,” Hypertension 51. 2 (Feb. 2008): 534-9.
Tamborlane et al., “Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes” N Engl J Med 359;14: 1464-1476 (Oct. 2, 2008).
Tan et al., “Beta-cell regeneration and differentiation: how close are we to the ‘holy grail’?” J. Mol. Encodrinol. 53(3): R119-R129 (Oct. 9, 2014).
Tang et al., “Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications,” Small 8(3): 423-431 (Feb. 2012) (available online Dec. 13, 2011).
Tanugi et al., “Nanoporous Graphene Could Outperform Best Commercial Water Desalination Techniques,” ; ACS 2012; Jun. 25, 2012; Weftec 2012; Sep. 29-Oct. 3.
Totani et al. “Gluten binds cytotoxic compounds generated in heated frying oil.” Journal of oleo science 57.12 (2008): 683-690.
Tsukamoto et al. “Purification, characterization and biological activities of a garlic oliqosaccharide,” Journal of UOEH 30. 2 (Jun. 1, 2008): 147-57.
TW Office Action in Taiwanese Application No. 102146079 dated Apr. 14, 2017. 9 Pages.(English translation).
TW Search Report in Taiwanese Application No. 102146079 dated Apr. 14, 2017.1 page.
UMEA Universitet “Graphene nanoscrolls are formed by decoration of magnetic nanoparticles.” ScienceDaily. Aug. 15, 2013. https://www.sciencedaily.com/releases/2013/08/130815084402.htm (3 pages).
United Arab Emirates Search and Exam Report.
U.S. Notice of Allowance for U.S. Appl. No. 12/868,150 dated Sep. 25, 2012.
U.S. Notice of Allowance for U.S. Appl. No. 13/548,539 dated Aug. 18, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/548,539 dated Jul. 23, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/719,579 dated May 20 ,2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/795276 dated Oct. 7, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/802,896 dated Apr. 1, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/803,958 dated Aug. 29, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/803,958 dated Jun. 2, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/803,958 dated Sep. 12, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/804,085 dated Jan. 15, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/804,085 dated Mar. 12, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/923,503 dated Oct. 14, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/923,503 dated Oct. 5, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 14/200,195 dated Jul. 5, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 14/200,530 dated Aug. 1, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 14/203,655 dated Dec. 9, 2016.
U.S. Notice of Allowance in U.S. Appl. No. 12/868,150 dated Sep. 25, 2012.
U.S. Notice of Allowance in U.S. Appl. No. 13/795,276 dated Jan. 19, 2017.
U.S. Notice of Allowance in U.S. Appl. No. 13/803,958 dated Aug. 29, 2016.
U.S. Notice of Allowance in U.S. Appl. No. 13/803,958 dated Sep. 12, 2016.
U.S. Notice of Allowance in U.S. Appl. No. 14/610,770 dated May 5, 2017.
U.S. Notice of Allowance in U.S. Appl. No. 14/656,580 dated May 8, 2017.
U.S. Notice of Allowance in U.S. Appl. No. 14/819,273 dated Jun. 9, 2017.
U.S. Notice of Allowance in U.S. Appl. No. 15/099,464 dated Jun. 16, 2017.
U.S. Notice of Allowance in U.S. Appl. No. 13/480,569 dated Feb. 27, 2015.
U.S. Notice of Allowance in U.S. Appl. No. 14/610,770 dated Apr. 25, 2016.
U.S. Notice of Allowance in U.S. Appl. No. 14/610,770 dated Aug. 12, 2016.
U.S. Notice of Allowance in U.S. Appl. No. 14/610,770 dated Jan. 23, 2017.
U.S. Notice of Allowance in U.S. Appl. No. 14/819,273 dated Dec. 14, 2016.
U.S. Notice of Allowance in U.S. Appl. No. 14/819,273 dated Oct. 28, 2016.
U.S. Notice of Allowance in U.S. Appl. No. 14/856,198 dated Feb. 10, 2017.
U.S. Office Action for U.S. Appl. No. 13/548,539 dated Feb. 6, 2015.
U.S. Office Action for U.S. Appl. No. 13/719,579 dated Jul. 8, 2015.
U.S. Office Action for U.S. Appl. No. 13/719,579 dated May 4, 2016.
U.S. Office Action for U.S. Appl. No. 13/795,276 dated Apr. 22, 2016.
U.S. Office Action for U.S. Appl. No. 13/795,276 dated Oct. 6, 2015.
U.S. Office Action for U.S. Appl. No. 13/802,896 dated Sep. 24, 2014.
U.S. Office Action for U.S. Appl. No. 13/803,958 dated Aug. 11, 2014.
U.S. Office Action for U.S. Appl. No. 13/803,958 dated May 28, 2015.
U.S. Office Action for U.S. Appl. No. 13/803,958 dated Nov. 18, 2015.
U.S. Office Action for U.S. Appl. No. 13/923,503 dated Mar. 22, 2016.
U.S. Office Action for U.S. Appl. No. 14/031,300 dated Jan. 20, 2016.
U.S. Office Action for U.S. Appl. No. 14/031,300 dated Jul. 7, 2015.
U.S. Office Action for U.S. Appl. No. 14/200,195 dated Mar. 21, 2016.
U.S. Office Action for U.S. Appl. No. 14/200,195 dated Nov. 4, 2015.
U.S. Office Action for U.S. Appl. No. 14/200,530 dated Feb. 29, 2016.
U.S. Office Action for U.S. Appl. No. 14/203,655 dated Aug. 10, 2016.
U.S. Office Action for U.S. Appl. No. 14/656,190 dated May 18, 2017.
U.S. Office Action for U.S. Appl. No. 14/656,657 dated Jul. 7, 2017.
U.S. Office Action for U.S. Appl. No. 14/686,452 dated Jun. 9, 2017.
U.S. Office Action for U.S. Appl. No. 14/843,944 dated Jun. 23, 2017.
U.S. Office Action for U.S. Appl. No. 14/856,471 dated May 31, 2017.
U.S. Office Action for U.S. Appl. No. 14/858,741 dated Dec. 1, 2016.
U.S. Office Action for U.S. Appl. No. 15/289,944 dated Feb. 9, 2017.
U.S. Office Action for U.S. Appl. No. 15/336,545 dated Dec. 19, 2016.
U.S. Office Action in U.S. Appl. No. 14/193,007 dated Apr. 24, 2017.
U.S. Office Action in U.S. Appl. No. 14/656,617 dated Apr. 4, 2017.
U.S. Office Action in U.S. Appl. No. 14/609,325 dated Feb. 16, 2017.
U.S. Office Action in U.S. Appl. No. 13/480,569 dated Jul. 30, 2014.
U.S. Office Action in U.S. Appl. No. 14/193,007 dated Dec. 21, 2015.
U.S. Office Action in U.S. Appl. No. 14/193,007 dated Jul. 1, 2016.
U.S. Office Action in U.S. Appl. No. 14/193,007 dated Oct. 21, 2016.
U.S. Office Action in U.S. Appl. No. 14/193,007 dated Mar. 23, 2017.
U.S. Office Action in U.S. Appl. No. 14/656,190 dated Aug. 29, 2016.
U.S. Office Action in U.S. Appl. No. 14/656,580 dated Jun. 2, 2016.
U.S. Office Action in U.S. Appl. No. 14/656,580 dated Feb. 9, 2017.
U.S. Office Action in U.S. Appl. No. 14/819,273 dated Jul. 6, 2016.
U.S. Office Action in U.S. Appl. No. 14/843,944 dated Jan. 6, 2017.
U.S. Office Action in U.S. Appl. No. 14/856,198 dated Jun. 3, 2016.
U.S. Office Action in U.S. Appl. No. 14/856,471 dated Dec. 1, 2016.
U.S. Office Action in U.S. Appl. No. 15/099,464 dated Mar. 10, 2017.
U.S. Office Action on U.S. Appl. No. 14/656,335 dated Apr. 25, 2017.
U.S. Office Action on U.S. Appl. No. 15/332,982 dated Jan. 30, 2017.
U.S. Restriction Requirement in U.S. Appl. No. 14/193,007 dated Jul. 17, 2015.
U.S. Supplemental Notice of Allowance for U.S. Appl. No. 13/795,276 dated Nov. 29, 2016.
Vallon,“Micropuncturing the nephron,” Pflugers Archiv : European journal of physiology 458. 1 (May 2009): 189-201.
Van Der Zande et al. “Large-scale arrays of single-layer graphene resonators.” Nano letters 10.12 (2010): 4869-4873.
Verdonck, P., “Plasma Etching”, in Oficina de Microfabricao: Projeto e Construcao de CI's MOS, Swart, J.W., Ed., Campinas (Sao Paulo, Brazil): UNICAMP, 2006, ch. 10, p. 9.
Vlassiouk et al. “Large scale atmospheric pressure chemical vapor deposition of graphene.” Carbon 54 (2013): 58-67.
Vlassiouk et al., “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. USA 106(50): 21039-21044 (Dec. 15, 2009).
Vriens et al. “Methodological considerations in quantification of oncological FDG PET studies.” European journal of nuclear medicine and molecular imaging 37.7 (2010): 1408-1425.
Wadvalla, “Boosting agriculture through seawater,” Nature Middle East, 1-4 (Jul. 2, 2012). Retrieved Jun. 1, 2016 from: natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2012.92?WT.mc_id=FBK NatureMEast].
Wang et al., “Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene,” Nano Lett., 2014, pp. A-F.
Wang et al., “Graphene Oxide Membranes with Tunable Permeability due to Embedded Carbon Dots.” Chemical Communications 50(86): 13089-13092 (Nov. 2014; first published online Sep. 3, 2014).
Wang et al., “Porous Nanocarbons: Molecular Filtration and Electronics,” Advances in Graphene Science, Edited by Mahmood Aliofkhazraei, (2013) ISBN 978-953-51-1182-5, Publisher: InTech; Chapter 6, pp. 119-160.
Wang et al., “What is the role of the second “structural” NADP+-binding site in human glucose 6-phosphate dehydrogenase?,”Protein science a publication of the Protein Society 17. 8 (Aug. 2008): 1403-11.
Wei et al., “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Lett. 2009 9 1752-58.
Wikipedia, “Ion track.” 1-12. Jun. 1, 2016. Retrieved Jun. 1, 2016 from: en.Wikipedia.org/wiki/ion_track.
Xiaogan Liang et al., Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10nm Ribbon Width Fabricated via Nanoimprint Lithography., Nano Letters, Jun. 11, 2010, pp. 2454-2460.
Xie et al., “Fractionation and characterization of biologically-active polysaccharides from Artemisia tripartite,” Phytochemistry 69. 6 (Apr. 2008): 1359-71.
Xie, et al. “Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene.” Nano letters 9.7 (2009): 2565-2570.
Xu et al., “Graphene Oxide-TiO2 Composite Filtration Membranes and their Potential Application for Water Purification.” Carbon 62: 465-471 (Oct. 2013; first published online Jun. 21, 2013).
Xu et al., “Graphene-like Two-Dimensional Materials”, Chemical Reviews 113: 3766-3798 (Jan. 3, 2013).
Yagil et al. “Nonproteinuric diabetes-associated nephropathy in the Cohen rat model of type 2 diabetes” Diabetes 54. 5 (May 2005): 1487-96.
Yoon, “Simulations show how to turn graphene's defects into assets,” Sciencedaily (Oct. 4, 2016), www.sciencedaily.com/releases/2016/10/161004120428.htm.
Zabihi et al., “Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: A molecular dynamics simulation study,” Nuclear Instruments and Methods in Physics Research B, 343: 48-51: (available online Nov. 26, 2014).
Zan et al. “Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy”, J. Phys. Chem. Lett., Mar. 8, 2012, 3, 953-958.
Zan et al., “Graphene Reknits Its Holes,” Nano Lett. 12(8): 3936-3940 (Jul. 5, 2012).
Zhang et al. “Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes”, J. Phys. Chem., Feb. 12, 2003, B 107 3712-8.
Zhang et al. “Method for anisotropic etching of graphite or graphene” Institute of Physics, Chinese Academy of Sciences; PEOP. Rep. China; Mar. 30, 2011.
Zhang et al. “Production of Graphene Sheets by Direct Dispersion with Aromatic Healing Agents”, Small, May 6, 2010, vol. 6, No. 10, 1100-1107.
Zhang et al. “Isolation and activity of an alpha-amylase inhibitor from white kidney beans,” Yao xue xue bao =Acta pharmaceutica Sinica 42. 12 (Dec. 2007): 1282-7.
Zhang et al., “Method for Anisotropic Etching of Graphite or Graphene,” English Abstract Only, Institute of Physics, Chinese Academy of Sciences, Apr. 4, 2011, (2 pages).
Zhang et al., “Modern Thin-Film Technology” 284-285 (Metallurgical Industry Press, 1st ed. 2009) (English translation not readily available).
Zhao et al. “Two-Dimensional Material Membranes: An Emerging Platform for Controllable Mass Transport Applications,” Small 10(22): 4521-4542 (Sep. 10, 2014).
Zhao et al. (2012), “Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study,” Nanotechnology 23(28): 285703 (Jul. 2012) (available online Jun. 25, 2012).
Zhao et al., “Drilling Nanopores in Graphene with Clusters: A Molecular Dynamics Study,” J. Phys. Chem. C, 116(21): 11776-11782 (May 9, 2012).
Zhao et al., “A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles,” Chem. Commun., 47: 9459-9461 (Jun. 15, 2011).
Zhao, et al. “Efficient preparation of large-area graphene oxide sheets for transparent conductive films.” ACS nano 4.9 (2010): 5245-5252.
Zhou, K., et al., “One-pot preparation of graphene/ Fe304 composites by a solvothermal reaction,” New J. Chem., 2010, 34, 2950.
Zhu et al. “Carbon Nanotubes in Biomedicine and Biosensing”, Carbon Nanotubes-Growth and Applications, InTech, (Aug. 9, 2011) Chapter 6: pp. 135-162. Available from: https://www.intechopen.com/books/carbon-nanotubes-growth-and-applications/carbon-nanotubes-in-biomedicine-and-biosensing.
Ziegelmeier et al. “Adipokines influencing metabolic and cardiovascular disease are differentially regulated in maintenance hemodialysis,” Metabolism: clinical and experimental 57. 10 (Oct. 2008): 1414-21.
Zirk et al. “A refractometry-based glucose analysis of body fluids,” Medical engineering & physics 29. 4 (May 2007): 449-58.
Zyga “Nanoporous Graphene Could Outperform Best Commercial Water Desalination Techniques,” Phys.org., Jun. 22, 2012, Retrieved from http://www.phys.org/pdf259579929.pdf [Last Accessed Dec. 3, 2014] (3 pages).
Australian Office Action in Application No. 2013235234 dated Dec. 19, 2017 (5 pages).
Chu, L., et al., “Porous graphene sandwich/poly(vinylidene fluoride) composites with high dielectric properties,” Composites Science and Technology, 86, (2013), pp. 70-75.
EPO Extended Search Report for European Application No. 171684883.5 dated Jul. 25, 2017 (8 pages).
EPO Supplementary Search Report for European Application No. 15762019.6 dated Aug. 9, 2017 (16 pages).
European Extended Search Report in Application No. 15743307.9 dated Nov. 15, 2017 (14 pages).
European Extended Search Report in Application No. 15755350.4 dated Oct. 30, 2017 (9 pages).
European Extended Search Report in Application No. 15762019.6 dated Nov. 20, 2017 (12 pages).
European Extended Search Report in Application No. 15762213.5 dated Oct. 10, 2017 (8 pages).
Gu et al., “One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery”, Royal Society of Chemistry (RSC), vol. 4, No. 7, Jan. 1, 2014, pp. 3211-3218.
Japanese Office Action in Application No. 2015-549508 dated Nov. 7, 2017 (with English translation) (2 pages).
Japanese Office Action in Application No. 2017-002652 dated Nov. 24, 2017 (with English translation) (7 pages).
Kim et al., “Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes”, Science, vol. 342, Oct. 4, 2013, pp. 91-95 (6 total pages).
Singapore Search Report and Written Opinion in Application No. 11201609272T dated Oct. 5, 2017 (11 pages).
U.S. Notice of Allowance in U.S. Appl. No. 14/610,770 dated Sep. 26, 2017. (12 pages).
U.S. Notice of Allowance in U.S. Appl. No. 15/099,464 dated Nov. 16, 2017 (5 pages).
U.S. Notice of Allowance in U.S. Appl. No. 15/332,982 dated Nov. 1, 2017 (9 pages).
U.S. Notice of Allowance in U.S. Appl. No. 15/332,982 dated Sep. 21, 2017. (5 pages).
U.S. Office Action in U.S. Appl. No. 14/707,808 dated Nov. 6, 2017 (27 pages).
U.S. Office Action in U.S. Appl. No. 15/099,099 dated Oct. 5, 2017 (11 pages).
U.S. Office Action in U.S. Appl. No. 15/099,193 dated Dec. 28, 2017 (25 pages).
U.S. Office Action in U.S. Appl. No. 15/099,304 dated Nov. 24, 2017 (23 pages).
U.S. Office Action in U.S. Appl. No. 15/099,447 dated Oct. 3, 2017 (21 pages).
Wang, M., et al., “Interleaved Porous Laminate Composed of Reduced Graphene Oxide Sheets and Carbon Black Spacers by In-Situ Electrophoretic Deposition,” The Royal Society of Chemistry (2014), pp. 1-3.
Weisen, et al., “Fabrication of nanopores in a graphene sheet with heavy ions: A molecular dynamics study”, Journal of Applied Physics 114, 234304 (2013), pp. 234304-1 to 234304-6.
Wimalasiri, Y., et al., “Carbon nanotube/graphene composite for enhanced capacitive deionization performance,” Carbon 59 (2013), pp. 464-471.
CN Office Action in Chinese Application No. 201580006829.5 dated Aug. 1, 2017. (English translation) (8 pages).
EP Office Action for European Application No. 15743307.9 dated Aug. 8, 2017. (17 pages).
European Search Report dated Aug. 28, 2017 from related EP application 15743750.0. (7 pages).
International Search Report and Written Opinion dated Aug. 14, 2017 from related PCT application PCT/US2017/031537. (12 pages).
Jiang, L. et al., Design of advanced porous grapheme materials: from grapheme nanomesh to 3D architectures. Nanoscale, Oct. 16, 2013, vol. 6, pp. 1922-1945.
JP Office Action in Japanese Application No. 2015-503405 dated Jun. 28, 2017. (English translation) (6 pages).
JP Office Action in Japanese Application No. 2015-549508 dated Jun. 27, 2017 (English translation).
Li, R.H. “Materials for immunoisolated cell transplantation”. Adv. Drug Deliv. Rev. 33, 87-109 (1998).
Schweitzer, Handbook of Separation Techniques for Chemical Engineers, 1979, McGraw-Hill Book Company, pp. 2-5 to 2-8.
Search Report and Written Opinion dated Aug. 14, 2017 for Singapore Application No. 11201606287V. (10 pages).
Search Report and Written Opinion dated Aug. 22, 2017 for Singapore Application No. 11201607584P. (7 pages).
Sears et al., “Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation” Materials, vol. 3 (Jan. 4, 2010), pp. 127-149.
U.S. Notice of Allowance in U.S. Appl. No. 14/193,007 dated Sep. 6, 2017. (9 pages).
U.S. Notice of Allowance in U.S. Appl. No. 14/656,580 dated Sep. 5, 2017. (8 pages).
U.S. Office Action for U.S. Appl. No. 14/609,325 dated Aug. 25, 2017. (7 pages).
U.S. Office Action for U.S. Appl. No. 15/099,193 dated Jul. 19, 2017. (13 pages).
U.S. Office Action for U.S. Appl. No. 15/289,944 dated Jul. 13, 2017. (18 pages).
U.S. Office Action for U.S. Appl. No. 15/332,982 dated Aug. 18, 2017. (9 pages).
Office Action for Indian Appl. Ser. No. 1566/DELNP/2013 dated Feb. 2, 2018 (7 pages).
Office Action for Japanese Appl. Ser. No. 2016-521448 dated Mar. 16, 2018 (5 pages).
U.S. Notice of Allowance for U.S. Appl. No. 15/099,464 dated Feb. 28, 2018 (5 pages).
U.S. Office Action for U.S. Appl. No. 15/099,276 dated Mar. 22, 2018 (13 pages).
European Extended Search Report in Application No. 15837617.8 dated Mar. 22, 2018 (9 pages).
Singapore Written Opinion for Appl. Ser. No. 11201607584P dated Jun. 8, 2018 (7 pages).
U.S. Non-Final Office Action for U.S. Appl. No. 15/099,410 dated Jun. 13, 2018 (15 pages).
U.S. Office Action for U.S. Appl. No. 15/099,056 dated May 29, 2018 (33 pages).
U.S. Office Action for U.S. Appl. No. 15/099,289 dated Jun. 7, 2018 (16 pages).
Bose et al.,“ Microfabricated immune-isolating devices for transplanting therapeutic cells in vivo”, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Undated (1 page).
Indian Office Action for Appl. Ser. No. 7731/DELNP/2014 dated Jul. 26, 2018 (6 pages).
Japanese Office Action for Appl. No. 2017-002652 dated Jul. 3, 2018 (8 pages).
Linnert, “Welding Metallurgy—Carbon and Alloy Steels”, vol. I—Fundamentals (4th Edition), Chapter 2—The Structure of Metals, GML Publications, American Welding Society (AWS), Year: 1994, pp. 17-74. Retrieved from app.knovel.com/hotlink/pdf/id:kt0095RCL3/welding-metallurgy-carbon/structure-metals.
U.S. Final Office Action for U.S. Appl. No. 14/707,808 dated Jun. 27, 2018 (28 pages).
U.S. Final Office Action for U.S. Appl. No. 15/099,482 dated Aug. 27, 2018 (10 pages).
U.S. Non-Final Office Action for U.S. Appl. No. 15/099,239 dated Jul. 12, 2018 (31 pages).
U.S. Non-Final Office Action for U.S. Appl. No. 15/099,304 dated Aug. 27, 2018 (22 pages).
U.S. Notice of Allowance for U.S. Appl. No. 15/099,420 dated Aug. 8, 2018 (8 pages).
Vatanpour et al., “Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite”, Journal of Membrane Science, vol. 375, Elsevier, Apr. 6, 2011, pp. 284-294.
Zhang et al., “Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes”, Journal of Membrane Science, vol. 448, Elsevier, Aug. 7, 2013, pp. 81-92.
Related Publications (1)
Number Date Country
20170239623 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
61777099 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14203655 Mar 2014 US
Child 15453441 US