One embodiment of the present invention relates to an object, a method, or a manufacturing method. The present invention relates to a process, a machine, manufacture, or a composition of matter. One embodiment of the present invention relates to a power storage device including a secondary battery, a semiconductor device, a display device, a light-emitting device, a lighting device, an electronic device, or a manufacturing method thereof.
Note that electronic devices in this specification mean all devices including power storage devices, and electro-optical devices including power storage devices, information terminal devices including power storage devices, and the like are all electronic devices.
In recent years, a variety of power storage devices such as lithium-ion secondary batteries, lithium-ion capacitors, air batteries, and all-solid-state batteries have been actively developed. In particular, demand for lithium-ion secondary batteries with high output and high capacity has rapidly grown with the development of the semiconductor industry. The lithium-ion secondary batteries are essential as rechargeable energy supply sources for today's information society.
Research and development of a positive electrode and a negative electrode have been variously conducted for improvement of capacity and charge and discharge cycle performance of a lithium-ion secondary battery. It is known that a silicon-based material has higher capacity than a graphite-based material as a negative electrode active material, and thus a negative electrode containing a silicon-based material has been examined (e.g., Patent Document 1 and Patent Document 2).
[Patent Document 1] Japanese Published Patent Application No. 2010-113870
[Patent Document 2] Japanese Published Patent Application No. 2019-165005
There is room for improvements in a variety of aspects of lithium-ion secondary batteries, such as charge and discharge capacity, charge and discharge cycle performance, reliability, safety, and cost.
Therefore, negative electrodes and negative electrode active materials that can improve charge and discharge capacity, charge and discharge cycle performance, reliability, safety, cost, and the like when used in lithium-ion secondary batteries are needed.
An object of one embodiment of the present invention is to provide a negative electrode with excellent charge and discharge capacity and charge and discharge cycle performance that can be used in a lithium-ion secondary battery. Another object is to provide a highly safe or highly reliable secondary battery.
Another object of one embodiment of the present invention is to provide a negative electrode active material, a negative electrode mixed agent, a negative electrode active material layer, and a secondary battery including them, or a formation method thereof.
Note that the description of these objects does not preclude the existence of other objects. In one embodiment of the present invention, there is no need to achieve all these objects. Other objects can be derived from the description of the specification, the drawings, and the claims.
In one embodiment of the present invention, carbon particles and a silicon-based material are mixed and used as a negative electrode active material. As a binder for them, a high molecular compound containing glutamic acid is used. Specifically, a polymer containing glutamic acid is used as the binder.
A lithium-ion secondary battery has a stacked-layer structure in which a positive electrode current collector on which a positive electrode active material layer is formed, a separator, and a negative electrode current collector on which a negative electrode active material layer is formed are stacked. The negative electrode active material layer is formed on one surface or both surfaces of the negative electrode current collector. Slurry is applied over the negative electrode current collector to form the negative electrode active material layer. The slurry is formed in such a manner that carbon particles, silicon particles, and a binder are mixed, and water is added to the mixture. When the carbon particles, the silicon particles, and the binder are mixed at the same time or at once, the process can be shortened.
Graphite, carbon having a layer structure like graphite, amorphous carbon, or hard carbon is used as the carbon particles. Furthermore, carbon fiber may be used instead of the carbon particles. The carbon particles used in this specification specifically refer to graphite particles and they are inexpensive because they abundantly exist in the nature; therefore, they are preferable as an active material of a negative electrode.
In a structure of the invention disclosed in this specification, a secondary battery includes a positive electrode, a negative electrode, a separator between the positive electrode and the negative electrode, and an ionic liquid or an organic solvent between the positive electrode and the negative electrode; and in the secondary battery, the negative electrode includes graphite particles, silicon particles with smaller particle diameters than the graphite particles, and a binder, and the binder contains glutamic acid.
The capacity of silicon is 4200 mAh/g, which is greater than or equal to ten times as large as the capacity of graphite, 372 mAh/g. In the case of a negative electrode using only silicon, there is a problem of drastic cycle deterioration caused by expansion and contraction of particles in charging and discharging. In order to decrease the cycle deterioration, miniaturized silicon particles is preferably used.
In the above structure, the silicon particles refer to silicon powders that are the negative electrode active material of the lithium-ion secondary battery, and an average diameter of the particle size distribution, i.e., an average particle diameter is around 100 nm; the silicon particles are referred to as nanosilicon particles in some cases. In order to obtain silicon particles to be used, it is preferable that a silicon source be ground and particle diameters be adjusted to be uniform. The silicon particles may contain at least one of silicon, silicon oxide, and silicon alloy.
In the above structure, it is preferable that an average particle diameter of the graphite particles mixed with the silicon particles be greater than or equal to 1 μm, preferably greater than or equal to 5 μm and less than or equal to 30 μm. Although laser diffraction particle size distribution measurement can be typically used for measurement of a particle size, the measurement is not limited thereto. A major diameter of a particle cross section may be measured by analysis using a SEM, a transmission electron microscope (TEM), or the like.
In this specification, a negative electrode active material contains both graphite particles and silicon particles. Since silicon particles are mixed and used in a negative electrode, a secondary battery with a high energy density can be achieved.
Note that the weight ratio (wt %) in this specification refers to the compounding ratio at the time of forming electrode slurry described later, i.e., the weight ratio of each of an active material, a conductive additive, and a binder in the total weight (the mixed powder). Therefore, each weight ratio may be different between before and after a secondary battery is formed.
Specifically, the silicon weight ratio in the total weight of the powder materials forming the negative electrode active material is greater than or equal to 7.5 wt % and less than or equal to 37.5 wt %. The negative electrode active material layer has a feature that the weight ratio of silicon particles is less than the weight ratio of graphite particles.
When the negative electrode active material layer is formed, a conductive additive may be added. A typical carbon material used as a conductive additive is acetylene black (also referred to as AB). Acetylene black refers to bulky particles with an average particle diameter of several tens of nanometers to several hundreds of nanometers; thus, the contact between acetylene black and another material hardly becomes surface contact and tends to be point contact. Hence, in the case where an active material and acetylene black are mixed, the contact resistance between the active material and the acetylene black is high. Using a large amount of acetylene black in order to decrease the contact resistance lowers the proportion of the active material in the whole electrode, thereby reducing the discharge capacity of a secondary battery.
In addition, acetylene black is a material that is likely to aggregate, and thus is preferably mixed and uniformly dispersed. The weight ratio of acetylene black is less than or equal to the weight ratio of silicon particles. Needless to say, a secondary battery can be formed without adding the conductive additive (acetylene black).
In the negative electrode of the secondary battery, a binder is mixed in order to fix the current collector such as metal foil and the active material. The binder is also referred to as a binding agent. Since the binder is a high molecular material, a large amount of binder lowers the proportion of the active material in the negative electrode, thereby reducing the discharge capacity of the secondary battery. Therefore, the amount of binder mixed at the time of forming slurry is reduced to a minimum conventionally.
In this specification, a material at least including a high molecular compound containing glutamic acid is preferably used as a binder used in a negative electrode. The high molecular compound containing glutamic acid has hydrophilicity and biodegradability. In a carboxy group included in the high molecular compound containing glutamic acid, oxygen has an unshared electron pair, and there is a possibility that the unshared electron pair helps lithium ions in an electrolyte solution be desolvated and enter the negative electrode active material.
As a binder used in the negative electrode, in particular, a material at least containing a high molecular compound including a carboxy group is preferably used, and polyglutamic acid is particularly preferable. There is a possibility that a polar substituent such as a carboxy group included in a high molecular compound containing glutamic acid helps lithium ions in an electrolyte solution be desolvated and enter the negative electrode active material. Note that the substituent such as a carboxy group can be analyzed by FT-IR or the like. The chemical formula of polyglutamic acid is shown below.
There is no particularly limitation on a method for forming polyglutamic acid. Polyglutamic acid is minute particulate matter and a material in which γ-glutamic acid is the main component. When polyglutamic acid is put into a solvent and the solvent is stirred, the polyglutamic acid can function as a flocculant. Depending on the formation method, polyglutamic acid can be referred to as γ-glutamic acid containing another element (e.g., Ca, Al, Na, Mg, Fe, Si, or S). As long as γ-glutamic acid functions as a flocculant, it may contain another element (e.g., Ca, Al, Na, Mg, Fe, Si, or S). Furthermore, polyglutamic acid may be a crosslinking substance. The weight average molecular weight of polyglutamic acid that is a crosslinking substance can be several tens of millions. Weight average molecular weight is average molecular weight in consideration of weight fraction measured by a viscosity method (in the method, intrinsic viscosity is obtained with a capillary viscometer and calculation is performed with a viscosity formula) or a gel permeation chromatography. Furthermore, in the case where a high molecular compound including a carboxy group is used as a binder in a negative electrode, the weight average molecular weight of the high molecular compound is greater than or equal to eight hundred thousand, preferably fifteen hundred thousand, further preferably twenty-five hundred thousand.
The weight ratio of the binder is preferably less than the weight ratio of graphite particles. When the weight ratio of the binder is too low, the effect becomes small; thus, the weight ratio of the binder to the sum of the graphite particles and the binder is preferably greater than 5 wt %.
Furthermore, a method for forming a negative electrode active material layer is one structure of the present invention. In the structure, a negative electrode active material layer is formed in such a manner that a binder, graphite particles, and silicon particles are mixed to form a mixture, the mixture and a solvent are mixed to prepare slurry, and the slurry is applied over a current collector.
The weight ratios of polyglutamic acid, graphite particles, silicon particles, and acetylene black are adjusted, they are mixed, and then a solvent (e.g., deionized water) is mixed with the mixture; whereby slurry is prepared. A negative electrode active material layer is formed in such a manner that slurry is applied over one or both surfaces of a negative electrode current collector and dried, and pressing is performed; whereby a secondary battery with excellent cycle performance can be provided.
Silicon particles are preferably used in a negative electrode without oxidation. A mixing process of the silicon particles and polyglutamic acid, graphite particles, and acetylene black is preferably performed without oxidation of the silicon particles.
A large amount of binder greatly lowers secondary battery capacity and drastically degrades charge and discharge cycle performance, and thus the amount of binder mixed at the time of forming slurry is reduced to a minimum conventionally. According to one embodiment of the present invention, even when the amount of binder is increased, polyglutamic acid covers nanosilicon, and even when expansion and contraction of nanosilicon is caused, degradation of the negative electrode is inhibited; therefore, a secondary battery can be achieved in which the secondary battery capacity is not greatly lowered and the charge and discharge cycle performance is not drastically degraded.
According to one embodiment of the present invention, a negative electrode with excellent charge and discharge capacity and charge and discharge cycle performance that can be used in a lithium-ion secondary battery can be provided. A highly safe or highly reliable secondary battery can be provided.
One embodiment of the present invention can provide a negative electrode active material, a negative electrode mixed agent, a negative electrode active material layer, and a secondary battery including them, or a formation method thereof.
Note that the description of these effects does not preclude the existence of other effects. One embodiment of the present invention does not necessarily have all these effects. Other effects will be apparent from and can be derived from the description of the specification, the drawings, the claims, and the like.
In the accompanying drawings:
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the description below, and it is easily understood by those skilled in the art that modes and details of the present invention can be modified in various ways. In addition, the present invention should not be construed as being limited to the description in the following embodiments.
In this embodiment, an example of a negative electrode active material layer and an example of a method for forming a negative electrode including the negative electrode active material layer are described below.
As the binder 102, a material at least containing a polymer including a carboxy group is preferably used, and polyglutamic acid is used in this embodiment.
First, the graphite particle 100, the silicon particle 101, the binder 102, and the AB 103 are prepared. Next, each of them are weighed and first mixing is performed. Specifically, the weight ratio of the silicon particle 101 in the total weight of powders mixed in the first mixing is greater than or equal to 7.5 wt % and less than or equal to 37.5 wt %, and the weight ratio of the binder 102 in the total weight is greater than or equal to 10 wt % and less than or equal to 50 wt %. Furthermore, the weight ratio of the AB 103 in the total weight is greater than or equal to 0 wt % and less than or equal to 20 wt %.
For example, the silicon particle 101, the graphite particle 100, the binder 102, and the AB 103 are weighed so that the weight ratio becomes 3:5:1:1. Alternatively, for example, AB is not used and the silicon particle 101, the graphite particle 100, and the binder 102 are weighed so that the weight ratio becomes 3:5:1. The silicon particle 101, the graphite particle 100, and the binder 102 may be weighed so that the weight ratio becomes 1:9:1.
After the first mixing, a solvent 105 is added to a mixture 104 that is a powder and second mixing is performed; whereby, slurry 106 is formed. Deionized water is used as the solvent 105. The second mixing is also referred to as slurry preparation.
The slurry 106 refers to a material solution that is used to form an active material layer over the current collector and includes at least an active material, a binder, and a solvent, with which, if necessary, a conductive additive is also mixed. Slurry may also be referred to as slurry for an electrode or active material slurry; in some cases, slurry for forming a positive electrode active material layer is referred to as slurry for a positive electrode, and slurry for forming a negative electrode active material layer is referred to as slurry for a negative electrode.
Then, the slurry 106 is applied over a negative electrode current collector 107. After that, drying was performed. After the drying, pressing treatment is further performed. Heating may be performed at the same time as the pressing treatment.
Through the above-described steps, a negative electrode 108 in which the negative electrode active material layer is provided over the negative electrode current collector 107 can be formed.
A secondary battery including the negative electrode 108 obtained in the above manner has high discharge capacity and shows excellent cycle performance.
This embodiment describes examples of shapes of a secondary battery including a negative electrode formed by the formation method described in Embodiment 1.
An example of a coin-type secondary battery is described.
For easy understanding,
In
The positive electrode 304 is a stack in which a positive electrode active material layer 306 is formed over a positive electrode current collector 305.
In a coin-type secondary battery 300, a positive electrode can 301 doubling as a positive electrode terminal and a negative electrode can 302 doubling as a negative electrode terminal are insulated from each other and sealed by a gasket 303 made of polypropylene. A positive electrode 304 includes a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305. A negative electrode 307 includes a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308. The negative electrode 307 is not limited to having a stacked-layer structure, and lithium metal foil or lithium metal-aluminum alloy foil may be used.
Note that only one surface of each of the positive electrode 304 and the negative electrode 307 used for the coin-type secondary battery 300 is provided with an active material layer.
For the positive electrode can 301 and the negative electrode can 302, a metal having corrosion resistance to an electrolyte solution, such as nickel, aluminum, or titanium, an alloy of such a metal, or an alloy of such a metal and another metal (e.g., stainless steel) can be used. The positive electrode can 301 and the negative electrode can 302 are preferably covered with nickel or aluminum in order to prevent corrosion due to the electrolyte solution. The positive electrode can 301 and the negative electrode can 302 are electrically connected to the positive electrode 304 and the negative electrode 307, respectively.
The negative electrode 307, the positive electrode 304, and the separator 310 are immersed in the electrolyte solution or an ionic liquid. Then, as illustrated in
The separator 310 can be formed using, for example, a fiber containing cellulose, such as paper, nonwoven fabric, glass fiber, ceramics, or synthetic fiber containing a nylon resin (polyamide), a vinylon resin (polyvinyl alcohol-based fiber), a polyester resin, an acrylic resin, a polyolefin resin, or a polyurethane resin.
The separator may have a multilayer structure. For example, an organic material film of polypropylene, polyethylene, or the like can be coated with a ceramics-based material, a fluorine-based material, a polyamide-based material, a mixture thereof, or the like. Examples of the ceramics-based material include aluminum oxide particles and silicon oxide particles. Examples of the fluorine-based material include PVDF and polytetrafluoroethylene. Examples of the polyamide-based material include nylon and aramid (meta-based aramid and para-based aramid).
When the separator is coated with the ceramics-based material, the oxidation resistance is improved; hence, deterioration of the separator in high-voltage charging and discharging can be inhibited and thus the reliability of the secondary battery can be improved. When the separator is coated with the fluorine-based material, the separator is easily brought into close contact with an electrode, resulting in high output characteristics. When the separator is coated with the polyamide-based material, in particular, aramid, the safety of the secondary battery is improved because heat resistance is improved.
For example, both surfaces of a polypropylene film may be coated with a mixed material of aluminum oxide and aramid. Alternatively, a surface of a polypropylene film that is in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and a surface of the polypropylene film that is in contact with the negative electrode may be coated with the fluorine-based material.
With the use of a separator having a multilayer structure, the capacity per volume of the secondary battery can be increased because the safety of the secondary battery can be maintained even when the total thickness of the separator is small.
With the above structure, the coin-type secondary battery 300 can have excellent cycle performance. This embodiment can be combined with Embodiment 1.
An example of a cylindrical secondary battery is described with reference to
Inside the battery can 602 having a hollow cylindrical shape, a wound body in which a strip-like positive electrode 604 and a strip-like negative electrode 606 are wound with a strip-like separator 605 located therebetween is provided. Although not illustrated, the wound body is wound around the central axis. One end of the battery can 602 is close and the other end thereof is open. For the battery can 602, a metal having corrosion resistance to an electrolyte solution, such as nickel, aluminum, or titanium, an alloy of such a metal, or an alloy of such a metal and another metal (e.g., stainless steel) can be used. The battery can 602 is preferably covered with nickel and aluminum in order to prevent corrosion due to the electrolyte solution. Inside the battery can 602, the wound body in which the positive electrode, the negative electrode, and the separator are wound is provided between a pair of insulating plates 608 and 609 that face each other. Furthermore, the inside of the battery can 602 provided with the wound body is filled with a nonaqueous electrolyte solution (not illustrated). As the nonaqueous electrolyte solution, an electrolyte solution similar to that for the coin-type secondary battery can be used.
Since the positive electrode and the negative electrode of the cylindrical storage battery are wound, active materials are preferably formed on both sides of the current collectors.
The negative electrode active material layer obtained in Embodiment 1 is used in the negative electrode 606, whereby the cylindrical secondary battery 616 can have high capacity and excellent cycle performance.
A positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606. Both the positive electrode terminal 603 and the negative electrode terminal 607 can be formed using a metal material such as aluminum. The positive electrode terminal 603 and the negative electrode terminal 607 are resistance-welded to a safety valve mechanism 613 and the bottom of the battery can 602, respectively. The safety valve mechanism 613 is electrically connected to the positive electrode cap 601 through a positive temperature coefficient (PTC) element 611. The safety valve mechanism 613 cuts off electrical connection between the positive electrode cap 601 and the positive electrode 604 when the internal pressure of the battery exceeds a predetermined threshold value. The PTC element 611, which is a thermally sensitive resistor whose resistance increases as temperature rises, limits the amount of current by increasing the resistance, in order to prevent abnormal heat generation. Barium titanate (BaTiO3)-based semiconductor ceramics can be used for the PTC element.
The plurality of secondary batteries 616 may be connected in series after being connected in parallel.
A temperature control device may be provided between the plurality of secondary batteries 616. The secondary batteries 616 can be cooled with the temperature control device when overheated, whereas the secondary batteries 616 can be heated with the temperature control device when cooled too much. Thus, the performance of the power storage system 615 is less likely to be influenced by the outside temperature.
In
Structure examples of secondary batteries are described with reference to
As illustrated in
The separator 933 has a larger width than the negative electrode active material layer 931a and the positive electrode active material layer 932a, and is wound to overlap the negative electrode active material layer 931a and the positive electrode active material layer 932a. In terms of safety, the width of the negative electrode active material layer 931a is preferably larger than that of the positive electrode active material layer 932a. The wound body 950a having such a shape is preferable because of its high degree of safety and high productivity.
The negative electrode active material layer obtained in Embodiment 1 is used in the negative electrode 931, whereby the secondary battery 913 can have high capacity and excellent cycle performance.
As illustrated in
As illustrated in
As illustrated in
Next, examples of the appearance of a laminated secondary battery are illustrated in
An example of a method for forming the laminated secondary battery having the appearance illustrated in
First, the negative electrode 506, the separator 507, and the positive electrode 503 are stacked.
Then, the negative electrodes 506, the separators 507, and the positive electrodes 503 are placed over the exterior body 509.
Subsequently, the exterior body 509 is folded along a dashed line as illustrated in
Next, the electrolyte solution is introduced into the exterior body 509 from the inlet of the exterior body 509. The electrolyte solution is preferably introduced in a reduced pressure atmosphere or in an inert atmosphere. Lastly, the inlet is sealed by bonding. In this manner, the laminated secondary battery 500 can be formed.
The negative electrode active material layer obtained in Embodiment 1 is used in the negative electrodes 506, whereby the secondary battery 500 can have excellent cycle performance. This embodiment can be freely combined with Embodiment 2.
Next, examples in which a secondary battery including the negative electrode of one embodiment of the present invention is mounted on a vehicle, typically a transport vehicle, will be described.
Mounting a plurality of secondary batteries illustrated in any of
The automobile 2001 can be charged when the secondary battery included in the automobile 2001 is supplied with electric power through external charging equipment by a plug-in system, a contactless power feeding system, or the like. In charging, a given method such as CHAdeMO (registered trademark) or Combined Charging System can be employed as a charging method, the standard of a connector, or the like as appropriate. Charging equipment may be a charging station provided in a commerce facility or a power source in a house. For example, with the use of the plug-in technique, the power storage device mounted on the automobile 2001 can be charged by being supplied with electric power from outside. The charge can be performed by converting AC electric power into DC electric power through a converter such as an AC-DC converter.
Although not illustrated, the vehicle may include a power receiving device so that it can be charged by being supplied with electric power from an above-ground power transmitting device in a contactless manner. In the case of the contactless power feeding system, by fitting a power transmitting device in a road or an exterior wall, charge can be performed not only when the vehicle is stopped but also when driven. In addition, the contactless power feeding system may be utilized to perform transmission and reception of electric power between two vehicles. Furthermore, a solar cell may be provided in the exterior of the vehicle to charge the secondary battery when the vehicle stops and moves. To supply electric power in such a contactless manner, an electromagnetic induction method or a magnetic resonance method can be used.
The secondary battery module of the aircraft 2004 has eight 4 V secondary batteries connected in series, which has the maximum voltage of 32 V, for example. The battery pack 2203 has the same function as that in
The contents in this embodiment can be combined with any of the contents in the other embodiments as appropriate.
In this embodiment, examples in which the secondary battery of one embodiment of the present invention is mounted on a building will be described with reference to
A house illustrated in
The electric power stored in the power storage device 2612 can also be supplied to other electronic devices in the house. Thus, the electronic devices can be operated in indoor environments with the use of the power storage device 2612 of one embodiment of the present invention as an uninterruptible power source even when electric power cannot be supplied from the commercial power supply due to power failure.
The power storage device 791 is provided with a control device 790, and the control device 790 is electrically connected to a distribution board 703, a power storage controller (also referred to as control device) 705, an indicator 706, and a router 709 through wirings.
Electric power is transmitted from a commercial power source 701 to the distribution board 703 through a service wire mounting portion 710. Moreover, electric power is transmitted to the distribution board 703 from the power storage device 791 and the commercial power source 701, and the distribution board 703 supplies the transmitted electric power to a general load 707 and a power storage load 708 through outlets (not illustrated).
The general load 707 is, for example, an electrical device such as a TV or a personal computer. The power storage load 708 is, for example, an electrical device such as a microwave, a refrigerator, or an air conditioner.
The power storage controller 705 includes a measuring portion 711, a predicting portion 712, and a planning portion 713. The measuring portion 711 has a function of measuring the amount of electric power consumed by the general load 707 and the power storage load 708 during a day (e.g., from midnight to midnight). The measuring portion 711 may also have a function of measuring the amount of electric power of the power storage device 791 and the amount of electric power supplied from the commercial power source 701. The predicting portion 712 has a function of predicting, on the basis of the amount of electric power consumed by the general load 707 and the power storage load 708 during a given day, the demand for electric power consumed by the general load 707 and the power storage load 708 during the next day. The planning portion 713 has a function of making a charge and discharge plan of the power storage device 791 on the basis of the demand for electric power predicted by the predicting portion 712.
The indicator 706 can show the amount of electric power consumed by the general load 707 and the power storage load 708 that is measured by the measuring portion 711. An electrical device such as a TV or a personal computer can also show it through the router 709. Furthermore, a portable electronic terminal such as a smartphone or a tablet can also show it through the router 709. The indicator 706, the electrical device, and the portable electronic terminal can also show, for example, the demand for electric power depending on a time period (or per hour) that is predicted by the predicting portion 712.
The contents in this embodiment can be combined with any of the contents in the other embodiments as appropriate.
This embodiment will describe examples in which the power storage device of one embodiment of the present invention is mounted on a motorcycle and a bicycle.
The electric bicycle 8700 is provided with a power storage device 8702. The power storage device 8702 can supply electric power to a motor that assists a rider. The power storage device 8702 is portable, and
In the motor scooter 8600 illustrated in
The contents in this embodiment can be combined with any of the contents in the other embodiments as appropriate.
In this embodiment, examples of electronic devices each including the secondary battery of one embodiment of the present invention are described. Examples of the electronic device including the secondary battery include a television device (also referred to as a television or a television receiver), a monitor of a computer and the like, a digital camera, a digital video camera, a digital photo frame, a mobile phone (also referred to as a cellular phone or a mobile phone device), a portable game console, a portable information terminal, an audio reproducing device, and a large-sized game machine such as a pachinko machine. Examples of the portable information terminal include a laptop personal computer, a tablet terminal, an e-book reader, and a mobile phone.
The mobile phone 2100 is capable of executing a variety of applications such as mobile phone calls, e-mailing, viewing and editing texts, music reproduction, Internet communication, and a computer game.
With the operation button 2103, a variety of functions such as time setting, power on/off, on/off of wireless communication, setting and cancellation of a silent mode, and setting and cancellation of a power saving mode can be performed. For example, the functions of the operation button 2103 can be set freely by the operating system incorporated in the mobile phone 2100.
The mobile phone 2100 can employ near field communication based on an existing communication standard. For example, mutual communication between the mobile phone 2100 and a headset capable of wireless communication can be performed, and thus hands-free calling is possible.
Moreover, the mobile phone 2100 includes the external connection port 2104, and data can be directly transmitted to and received from another information terminal via a connector. In addition, charge can be performed via the external connection port 2104. Note that the charge operation may be performed by wireless power feeding without using the external connection port 2104.
The mobile phone 2100 preferably includes a sensor. As the sensor, a human body sensor such as a fingerprint sensor, a pulse sensor, or a temperature sensor, a touch sensor, a pressure sensitive sensor, or an acceleration sensor is preferably mounted, for example.
The microphone 6402 has a function of detecting a speaking voice of a user, an environmental sound, and the like. The speaker 6404 has a function of outputting sound. The robot 6400 can communicate with a user using the microphone 6402 and the speaker 6404.
The display portion 6405 has a function of displaying various kinds of information. The robot 6400 can display information desired by the user on the display portion 6405. The display portion 6405 may be provided with a touch panel. Moreover, the display portion 6405 may be a detachable information terminal, in which case charge and data communication can be performed when the display portion 6405 is set at the home position of the robot 6400.
The upper camera 6403 and the lower camera 6406 each have a function of taking an image of the surroundings of the robot 6400. The obstacle sensor 6407 can detect an obstacle in the direction where the robot 6400 advances with the moving mechanism 6408. The robot 6400 can move safely by recognizing the surroundings with the upper camera 6403, the lower camera 6406, and the obstacle sensor 6407.
The robot 6400 further includes, in its inner region, the secondary battery 6409 of one embodiment of the present invention and a semiconductor device or an electronic component. A secondary battery including the negative electrode described in Embodiment 1 has high cycle performance and a high degree of safety, and thus can be used safely for a long time over a long period of time and is preferable as the secondary battery 6409 included in the robot 6400.
For example, the cleaning robot 6300 can determine whether there is an obstacle such as a wall, furniture, or a step by analyzing images taken by the cameras 6303. In the case where the cleaning robot 6300 detects an object that is likely to be caught in the brush 6304 (e.g., a wire) by image analysis, the rotation of the brush 6304 can be stopped. The cleaning robot 6300 further includes, in its inner region, the secondary battery 6306 of one embodiment of the present invention and a semiconductor device or an electronic component. A secondary battery including the negative electrode described in Embodiment 1 has a high energy density and a high degree of safety, and thus can be used safely for a long time over a long period of time and is preferable as the secondary battery 6306 included in the cleaning robot 6300.
The contents in this embodiment can be combined with the contents in any of the other embodiments as appropriate.
In this example, a half cell was formed using polyglutamic acid as a binder, and the cycle performance was measured.
First, silicon particles, graphite particles, and a binder were prepared and weighed.
As the silicon particles in this example, silicon particles (product number 633097 manufactured by Sigma-Aldrich Co. LLC) each of which has a specific surface area of 12.7715 m2/g by a BET method and a particle diameter of 100 nm were used.
The specific surface areas of silicon particles by a BET method are values measured by a nitrogen gas adsorption one-point BET method, and a surface area and porosity analyzer Tri Star II 3020 (manufactured by SHIMADZU CORPORATION) can be used as a measuring instrument.
As the graphite particles in this example, graphite (FormulaBT 1520T manufactured by Superior Graphite Co.) having an average particle diameter of 20 μm was used. This graphite is obtained by coating spherical natural graphite with low crystalline carbon.
As the binder in this example, polyglutamic acid (manufactured by Nippon Poly-Glu Co., Ltd.) was used. Polyglutamic acid (also referred to as PGA) was used without neutralization. This polyglutamic acid has hydrophilicity and contains γ-polyglutamic acid as the main component. Furthermore, polyglutamic acid that is a crosslinking substance was used. The crosslinking substance can be prepared by irradiating γ-polyglutamic acid or its salt. Irradiation can cause a dehydrogenation reaction and produce a radiation crosslinking substance having large molecular weight. The average molecular weight of cross-linking polyglutamic acid can be several tens of millions.
A negative electrode is formed in such a manner that graphite particles, silicon particles, a binder, and acetylene black are mixed at predetermined amounts, deionized water is added to the mixture to form slurry, the slurry is applied over a current collector (copper foil) and dried, and pressing is performed. Polyglutamic acid is a polar polymer and has hydrophilicity, and thus can be dissolved in deionized water.
In this example, Sample 1 that is a half cell including a negative electrode was prepared; in the negative electrode, the weight ratios of silicon particles, graphite particles, a binder, and acetylene black were set to 9 wt %, 81 wt %, 7.5 wt %, and 2.5 wt %, respectively, the powders were mixed, deionized water was added to the mixture to form slurry, and the slurry was applied over a current collector. Note that heating was sufficiently performed after the application to evaporate a solvent component (moisture). The carried amount of the negative electrode was adjusted to be greater than or equal to 3.8 mg/cm2 and less than or equal to 4.2 mg/cm2. In this specification, the carried amount refers to weight of a negative electrode active material per unit surface area of a negative electrode current collector.
The conditions of a half cell are described below.
A positive electrode can and a negative electrode can that were formed of stainless steel (SUS) were used.
A lithium metal was prepared as a counter electrode and a coin-type half cell having the above negative electrode structure was formed. In the half cell, the lithium metal functions as a negative electrode and the above-described negative electrode functions as a positive electrode. Twelve samples of coin cells were formed.
Sample 2 was prepared in which the weight ratios of silicon particles, graphite particles (GP), a binder, and acetylene black were set to 8.5 wt %, 76.5 wt %, 10 wt %, and 5 wt %, respectively, and Sample 3 was prepared in which the weight ratios of silicon particles, graphite particles, a binder, and acetylene black were set to 9 wt %, 81 wt %, 10 wt %, and 0 wt %, respectively. Furthermore, Sample 4 was prepared in which the weight ratios of silicon particles, graphite particles, a binder, and acetylene black were set to 8 wt %, 72 wt %, 14 wt %, and 6 wt %, respectively. Sample 5 was prepared in which the weight ratios of silicon particles, graphite particles, a binder, and acetylene black were set to 7.6 wt %, 68.4 wt %, 18 wt %, and 6 wt %, respectively, and Sample 6 was prepared in which the weight ratios of silicon particles, graphite particles, a binder, and acetylene black were set to 6.8 wt %, 61.2 wt %, 24 wt %, and 8 wt %, respectively. Table 1 shows the measurement results.
In Table 1, each sample except Sample 3 not containing AB shows a favorable charge capacity value of greater than 600 mAh/g.
Furthermore, Sample 7 was prepared in which the weight ratios of silicon particles (Si), graphite particles (GP), and a binder (PGA) were set to 9 wt %, 81 wt %, and 10 wt %, respectively. Sample 8 was prepared in which the weight ratios of silicon particles, graphite particles, and a binder were set to 20 wt %, 70 wt %, and 10 wt %, respectively. Sample 9 was prepared in which the weight ratios of silicon particles, graphite particles, and a binder were set to 30 wt %, 50 wt %, and 20 wt %, respectively. Sample 10 was prepared in which the weight ratios of silicon particles, graphite particles, a binder, and AB were set to 30 wt %, 50 wt %, 10 wt %, and 10 wt %, respectively. Table 2 shows the measurement results of the prepared samples.
In Table 2, Sample 10 shows a favorable charge capacity value of greater than 1700 mAh/g.
Furthermore, Sample 11 was prepared in which the weight ratio of silicon particles, graphite particles, polyglutamic acid, and acetylene black was set to 8:72:14:6, and
Note that porous polypropylene (PP) was used as a separator of Samples 1 to 11. In an electrolyte solution of Samples 1 to 11, as an ionic liquid, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) in which lithium bis(fluorosulfonyl)imide (LiFSI) was dissolved was used. EMI that is a cation of the ionic liquid does not contain fluorine at a terminal. The concentration of a lithium salt in the electrolyte solution was 2.15 mol/L.
In this example, the cycle performance of Sample 11 in Example 1 was measured.
A charge and discharge cycle test was performed on the coin-type half cell formed above. Although two cycles were performed in Example 1, 50 cycles were performed in Example 2. The results are shown in
As described in Example 1, one-hour break was taken between the first cycle and the second cycle. Ten-minute break was taken between the second cycle and the third cycle. Ten-minute break was taken between cycles after the third cycle. Furthermore, the cycle test was performed at a charge rate of 0.2 C and a discharge rate of 0.2 C after the third cycle.
As shown in
Although test results of the half cells were shown in this example, the similar effects can be obtained even with full cells. Note that a full cell is formed by using a positive electrode containing a positive electrode active material and a negative electrode having the above negative electrode structure.
In this specification, a charge voltage and a discharge voltage are voltages in the case of using a counter electrode of lithium, unless otherwise specified. Note that even when the same negative electrode is used, the charge and discharge voltages of a secondary battery vary depending on the material used for the positive electrode.
Furthermore, as a comparative example, a comparative sample below was formed.
Graphite (G10) having an average particle diameter of 10 μm and silicon particles having an average particle diameter of greater than or equal to 5 μm were mixed, polyimide was used as a binder to form slurry, and the slurry was applied over a copper current collector. The weight ratio of a silicon particle, graphite, polyimide, and acetylene black was adjusted to be 9.6:86.4:3:1.
As a solvent of the slurry, N-methyl-2-pyrrolidone (NMP) was used. After the current collector was coated with the slurry, the solvent was volatilized. Through the above steps, a negative electrode was obtained.
A sheet of porous polyimide was used as a separator.
A lithium metal was used for a positive electrode. As the electrolyte, a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol/L of LiPF6 (lithium hexafluorophosphate) was dissolved was used. The compounding ratio was EC:DEC=3:7 (volume ratio).
This application is based on Japanese Patent Application Serial No. 2022-097849 filed with Japan Patent Office on Jun. 17, 2022, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2022-097849 | Jun 2022 | JP | national |