This application claims the priority of European Patent Application No. EP 06405051, filed Feb. 2, 2006, the subject matter of which is incorporated herein by reference in its entirety.
The subject matter of each of the following documents is incorporated herein by reference in its entirety:
European Patent Document EP 0 623 542 A, filed May 3, 1994, by Hanspeter Roosli;
European Patent Document EP 1 199 275 A, filed Oct. 20, 2000, by Christof Keller; and
European Patent Document EP 1 378 472 A, filed Jul. 2, 2002, by Christof Keller.
The invention relates to a method for forming stacks of specific length, which can vary, using upright positioned and successively lined up signatures. The signatures are supplied one after another with a conveying system from a printing press to a stack-forming device where the signatures are separated into individual stacks by a separating device.
The invention furthermore relates to an arrangement for realizing such method.
One skilled in the art will also refer to stacks of the aforementioned type as bundles and to the stack-forming device as a bundle delivery device. Stacks of this type are formed in particular on offset printing as well as sheet-fed photogravure rotary machines, wherein the stacks are formed inside the stack-forming device. The signatures to be stacked are supplied with transport belts to the stack-forming device. In the stack-forming device, the signatures are pushed together while positioned on the bound edge. During the further processing, the signatures are pulled off, for example, in a feeder for a gathering and wire-stitching machine and perfect binder, so that book blocks can be produced with these signatures.
Devices for forming such stacks are described, for example, in European Patent Documents EP 0 623 542 A and EP 1 199 275 A, identified above, which describe methods and systems to compress and strap the stacks. A device for palletizing the compressed and strapped stacks is described, for example, in European Patent Document EP 1 378 472 A, identified above. For suitable palletizing and further processing, the stacks are typically required to have a specific length, for example, in the range from about 500 to about 1200 mm.
The signatures to be stacked are produced, for example, in a rotary or digital printing press, which can operate at extremely high capacities. Such machines can switch quickly from a production A to a production B, for example, with a plate change. The different productions are separated inside the stack-forming device. Stacks containing items from both productions A and B might not be tolerated. Therefore, the stacks should comprise only items from one production, thus making it necessary to have a separation between the stacks composed of different production items. Until now, this has been achieved with a comparably high accumulation of waste materials at the end of the production run. Additionally, a comparably long period for the changeover has been required between different productions, since the conveying system at the end of a production contains remaining items which cannot be used to form a stack. Such items are either treated as waste material and are discarded or such items are transferred out and subsequently placed manually onto a pallet. Thus, in the systems available today a manual intervention is required before the start of each subsequent production, which might result in a comparably long changeover time.
The described problems are especially prominent when printing small editions such as paperbacks and other books or print products. The small editions impose especially high requirements for a cost-effective production. To lower the costs, it is particularly important with the small editions to prevent the unnecessary accumulation of waste and avoid manual operations.
It is therefore an object of the present invention to provide a method and an arrangement, which avoids the above-listed and other disadvantages, in particular to substantially reduce a number of items to be discarded and to change from one production to another without a substantial changeover period. The bundles and/or stacks that are produced are separated into the respective production types.
The above and other objects are accomplished according to the invention, which in one embodiment comprises a method for forming stacks from signatures successively conveyed one after another by a conveying system from a printing press to a stack-forming device, in which the signatures are separated into stacks by a separating device, the method comprising: counting a remaining number of non-stacked signatures of a current production with a counting device; and separating with the separating device the remaining number of signatures of the current production into standard stacks of a varying length between a minimum length and a maximum length based on the number of the counted remaining signatures.
A standard stack is understood to mean, for example, a stack having a minimum length of about 300 mm or a maximum length of about 1200 mm. A standard stack of this type permits a preferably automatic palletizing on standardized pallets and a suitable further processing.
The method according to the invention prevents that a number of signatures remain at the end of a production cannot be processed automatically or through manual intervention and formed into a predetermined stack. In addition, the method allows for a direct changeover from production A to production B. The only waste materials to be discarded are the print-related sheets accumulating during the changeover, wherein these generally include only a few items.
The arrangement according to an embodiment of the invention is provided with a device for counting items, which determines the number of items remaining from each production and transmits this information to a control unit. A suitable computer divides the number of remaining items so that stacks of varying lengths can optimally be formed with the remaining production items.
The described and other features and advantages of the invention will be further understood from the following detailed description with reference to the accompanying drawings in which:
a-2e schematically show individual phases of the stack forming operation, in a view from the side of the arrangement according to an embodiment of the invention;
The signatures 8 are produced in a printing press 3. In
A discharge belt 28 or a different type of a transfer-out device is located at a suitable location of the conveying system 4 and may be used to deliver defective signatures 8 and 9 to a container 29.
In the stack-forming device, the signatures 8, 9 are stacked on a table 13. A stack 5 formed in this way is comparably loose. A specific number of the stacked signatures 8, 9 is respectively separated off, the stacks are compressed, and then strapped. The strapped stacks 5 are, for example, palletized automatically or supplied in other ways to a storage unit. The stacks 5 typically have a minimum length and do not exceed a maximum length, so that the stacks can be palletized and further processed in a suitable manner. The compressing of the stacks and the transfer out are described, for example, in European Patent Documents EP 0 623 542 A, EP 1 199 275 A, and EP 1 378 472 A, identified above.
A number of stacks 5 that can be formed with the signatures 8 of a production A, for example, can differ considerably and can range from few stacks 5 for a small production run to several hundred stacks for a large production run.
The present invention concerns processing of the remaining items of the production A and/or B. The remaining items are the signatures 8, 9 still remaining on the conveying system 4 and/or in the overlapping flow S, following a production change. The sum of items x1 to x6 plus z represents a number of the remaining items according to
According to an embodiment of the invention, the data referring to the count of the remaining number of items in the production A, B is continuously supplied to the control unit 6. The control unit 6 may adaptively determine a number of signatures or remaining items in bundles 5′, so that a residual number of items z is sufficient to form a specific stack, which can be strapped and palletized in a suitable manner. The adaptation occurs with an aid of a suitable computer program, for example, and preferably occurs continuously, because some items may still have to be transferred out, thereby causing the number of the remaining items to change.
Print-related waste material can accumulate following the items z, during a changeover to a production B, which is then transferred out with the discharge belt 28. The changeover in production and/or the end of a production run is signaled with a signal from the printing press 3 to the control unit 6. The control unit 6 is therefore continuously informed about the remaining number of items from the production A, even after a changeover in the production. It is possible for a short gap to develop between the productions A and B as a result of the transfer out of the printing-related waste. However, the changeover in production occurs without interruption of the operation and during a comparatively short interval, for example, within a few seconds.
Individual steps of the method according to the invention are explained in further detail with reference to
a shows the stack forming for the production A. A loose stack 5 has already been formed on a table 13 and/or on a support of the stack forming device 2. The stack 5 is supported on a pressure clamp 11 of a pressing device 10. A plate 14 is arranged between the pressure clamp 11 and the stack 5, such as, for example, a wooden plate which may be used later on for the strapping operation. A second pressure clamp 12 is not yet in use at this stage. The overlapping flow S moves continuously first in a horizontal direction as shown with an arrow 18 and then, following a deflection, in a vertical downward direction as shown with an arrow 19 and onto the table 13. The last item and/or the last signature of the production A is denoted as 8′.
b shows an arrangement with the signatures 9 of a subsequent production B. The signatures 9 form an overlapping flow S2. A first item of the production B is denoted as 9′.
A gap between the production A and the production B is closed by correspondingly delaying a transport section 4′.
If the last signature 8′ is fed into a stack 5′, as shown in
The above explanations show that a change from the production A to the production B, as well as to other productions, is possible without interruption. The formed stacks 5′ respectively contain only items from the same production, e.g. the signatures 8 from the production A or the signatures 9 from the production B. The formed stacks 5′ are stacks of a specific length. The length of the stacks 5′ is adapted so that no items z from the production A remain unstacked and go to waste. E.g., substantially all items z are used to form a stack.
It will be understood that the above description is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
06405051 | Feb 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4038909 | Preisig | Aug 1977 | A |
4531343 | Wood | Jul 1985 | A |
4611705 | Fluck | Sep 1986 | A |
4641489 | Wood | Feb 1987 | A |
6782678 | Bodereau | Aug 2004 | B1 |
6840369 | Derenthal et al. | Jan 2005 | B2 |
7021035 | Muri et al. | Apr 2006 | B2 |
7200976 | Gosslinghoff | Apr 2007 | B2 |
Number | Date | Country |
---|---|---|
0 623 542 | Nov 1994 | EP |
1 199 275 | Apr 2002 | EP |
1 378 472 | Jan 2004 | EP |
05 178522 | Jul 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20070187886 A1 | Aug 2007 | US |