1. Field of the Invention
The present invention relates generally to the structure and manufacturing process of a FET semiconductor device for ESD protection of electronic circuit devices and more particularly to a structure with a guard ring for low capacitance input ESD protection.
2. Description of Prior Art
Because of high input impedance and thin oxide gate structures, the problem of electrostatic discharge damage (ESD) with field effect transistor (FET) devices can be severe. Therefore the input/output (I/O) circuit locations or pads usually have a protective device connected between the I/O pad and the internal circuits which allows the ESD current to be shunted to an alternative voltage source, typically ground, protecting the active internal circuits from damage.
There can be several different types of device structures used for these protective devices, such as single diodes, stacked diodes, field effect transistor (FET) devices, and silicon controlled rectifiers (SCR).
With prior art devices, the capacitance associated with the ESD protection device on the active circuit input pad could be a concern as circuit speeds increase. A typical prior art protection circuit scheme is represented in
A positive ESD voltage at the input pad 10 would turn on diode D14 and ESD-112 providing a suitable discharge path for the ESD energy. For a negative ESD event on the I/O pad 10, diode D 12 is placed into a conducting mode, as is ESD-Vcc 16, again providing a suitable discharge path for the ESD energy.
Typical prior art protection devices are shown in schematic form in
Although the prior art circuit shown in
The invention provides a unique structure and method to eliminate some of this capacitance on the I/O pad while still providing appropriate ESD protection.
The following patents and reports pertain to ESD protection.
U.S. Pat. No. 6,097,066 (Lee et al.) shows an ESD structure with a third ring shape serving as a guard ring.
U.S. Pat. No. 5,714,784 (Ker et al.) reveals an ESD structure with guard rings.
U.S. Pat. No. 5,637,900 (Ker et al.) shows an ESD structure with P+ guard rings.
U.S. Pat. No. 6,249,413 (Duvvury) and U.S. Pat. No. 5,905,287 (Hirata) show related ESD structures and guard rings.
Accordingly, it is the primary objective of the invention to provide an effective and manufacturable method and structure for reducing the capacitance of the protective device providing resistance to the potential damage caused by the phenomenon known as electrostatic discharge (ESD) by utilizing a low capacitance ESD protection device connected to an input pad of an integrated circuit device.
It is a further objective of the invention to improve ESD protection for high frequency applications by providing a low input capacitance structure that will have minimum impact on device performance while maintaining reasonable ESD protection levels.
A still additional objective of the invention is to provide the ESD protection with reduced capacitance without changing the characteristics of the internal circuits being protected and by using a process compatible with the process of integrated MOS device manufacturing.
The above objectives are achieved in accordance with the methods of the invention that describes a structure and a manufacturing process for semiconductor ESD protection devices with reduced input capacitance. One embodiment of the invention utilizes a NMOS FET structure with associated junction diode and parasitic NPN bipolar transistor for ESD protection for both positive and negative ESD voltages occurring on the active circuit input pad. There is a heavily doped P+ guard ring that protects the NMOS device from exhibiting latchup characteristics. The guard ring also enhances the junction diode characteristics improving ESD protection for negative ESD voltages on the input pad. A heavily doped N+ guard ring surrounding the NMOS device including the P+ guard ring enhances the Vcc to Vss ESD protection diode characteristics, and eliminates the need for an additional device, often referred to as ESD2, to protect against this mode of ESD occurrence, which would normally be attached from the input pad to Vcc. This design structure eliminates the capacitance associated with the prior art devices that have a second ESD protection device from the input pad to Vcc.
Protection device ESD-Vcc 16 is shown as NMOS 16 with drain 16D connected to a first voltage source, Vcc, and source 16S and gate 16G connected to a second voltage source Vss, typically ground. ESD-Vcc device 16 also has parasitic capacitance C16 and diode D16 with cathode connected to the first voltage source Vcc and anode connected to the second voltage source Vss. The capacitance C16 is normally not a degrading factor to circuit performance as it is connected between the power buses. Also shown I the parasitic NPN bipolar transistor TX16 electrically in parallel with NMOS 16. As shown, the TX 16 collector is connected to the first voltage source Vcc, the emitter connected to the second voltage source Vss, and the base connected to the second voltage source Vss through the parasitic resistor R16.
During a positive ESD event at the input pad 10, TX12 collector base junction goes into breakdown turning on TX12 providing a discharge path to Vss. A negative ED event on the input pad 10 is conducted through diode D12 to Vss. If sufficient energy is presented to pull down Vss below normal ground level, TX 16 will turn on providing an additional energy discharge path.
Another embodiment of the invention is shown in
As indicated in
The P+ guard ring 30 surrounding the device also serves as substrate contact region, and as previously mentioned, is connected tot he second voltage source, typically ground. The invention embodiment of the N+ guard ring 32 shown in
As indicated in
Isolation for the devices is provided by shallow trench isolation elements 28. Diode D12 is formed between the P+ guard ring 30 and ESD-1 device N-well 36 N+ contact 40. The diode D12 provides a discharge path for negative ESD events on the input pad 10 relative to Vss. A positive ESD event relatives to Vss will be discharges through ESD-1 SCR 38 as before. A positive ESD event occurring on the input pad will cause the collector base junction of TX-38-2 to conduct providing positive feedback to turn on TX38-1 until the ESD event expires.
Diode D16 is formed between the SCR device 38 N+ guard ring 32 and the P+ guard ring 30 as well as the ESD-Vcc P+ guard ring 34 and NFET 16 source 16S and drain 16D. A positive ESD event relative to Vcc will turn on ESD-1 SCR 38 as described above, and consequently by discharged through diode D16 to Vcc. A negative ESD event with respect to Vcc will be discharged through diode D12 and the ESD-Vcc NMOS device 16 to Vcc.
First and second gate elements are created from patterning gate oxide and polysilicon layers on the substrate surface as indicated in element 62.
The P+ guard rings are created immediately surrounding the first and second NMOS devices, respectively, as indicated in element 68. These P+ guard rings provide the anode side of the diodes associated with ESD-1 and ESD-Vcc. The N+ guard ring forms the cathode of the diode that shunts negative ESD voltages appearing on Vcc to ground.
Creating a metallurgical electrical conduction system allows the elements to be appropriately connected to the respective circuit nodes. Connecting the drain of the first NMOS ESD-! Protection device to the input-output pad while connecting the source and gate elements as well as the P+ guard rings to a second voltage source Vss, typically ground, initiates the I/O ESD protection circuit. Connecting the drain of the second NMOS ESD-Vcc protection device as well as the N+ guard ring to the first voltage source Vcc, completes the ESD protection circuit. Device processing is continued using conventional techniques such as utilizing a surface passivation layer to provide protection. The surface passivation layer is comprised of borosilicate glass or boron phosphosilicate glass. Processing is continued to completion.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
This application is a divisional of U.S. patent application Ser. No. 11/622,574, filed Jan. 12, 2007, which is a division of U.S. Pat. No. 7,179,691, issued Feb. 20, 2007, and entitled “A NOVEL METHOD FOR FOUR DIRECTION LOW CAPACITANCE ESD PROTECTION”.
Number | Name | Date | Kind |
---|---|---|---|
3899373 | Antipov | Aug 1975 | A |
4033787 | Marshall | Jul 1977 | A |
4490192 | Gupta et al. | Dec 1984 | A |
4722910 | Yasaitis | Feb 1988 | A |
4772910 | Fields | Sep 1988 | A |
4959708 | Henderson et al. | Sep 1990 | A |
5494857 | Cooperman et al. | Feb 1996 | A |
5571737 | Sheu et al. | Nov 1996 | A |
5637900 | Ker et al. | Jun 1997 | A |
5714784 | Ker et al. | Feb 1998 | A |
5763918 | El-Kareh et al. | Jun 1998 | A |
5852315 | Ker et al. | Dec 1998 | A |
5895940 | Kim | Apr 1999 | A |
5905289 | Lee | May 1999 | A |
6008108 | Huang et al. | Dec 1999 | A |
6049119 | Smith | Apr 2000 | A |
6097066 | Lee et al. | Aug 2000 | A |
6249413 | Duvvury | Jun 2001 | B1 |
6329694 | Lee et al. | Dec 2001 | B1 |
6417544 | Jun et al. | Jul 2002 | B1 |
6424013 | Steinhoff et al. | Jul 2002 | B1 |
6605493 | Yu | Aug 2003 | B1 |
6621133 | Chen et al. | Sep 2003 | B1 |
6628493 | Chen et al. | Sep 2003 | B1 |
6639283 | Hung et al. | Oct 2003 | B1 |
6720622 | Yu | Apr 2004 | B1 |
20020055214 | Trivedi | May 2002 | A1 |
20020167091 | Iwasaki et al. | Nov 2002 | A1 |
20030197225 | Chen et al. | Oct 2003 | A1 |
20030197226 | Chen et al. | Oct 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20090101937 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11622574 | Jan 2007 | US |
Child | 12342294 | US | |
Parent | 10207545 | Jul 2002 | US |
Child | 11622574 | US |