This application claims priority under 35 U.S.C. § 119 to patent application no. DE 10 2013 226 090.3, filed on Dec. 16, 2013 in Germany, the disclosure of which is incorporated herein by reference in its entirety.
The disclosure relates to a method for gas carbonitriding, which serves for forming a wear protection layer on a sliding surface of a machine component.
It is known from the prior art to carbonitride the machine components of the sliding partners. In this heat treatment method, the chemical composition of the boundary layer is modified, so that the strength is increased and the wearing behavior is improved.
Thus, according to the prior art, machine components are carbonitrided in a salt bath. The disadvantage of this is that soiling caused by residues of the salt bath may occur on the component.
EP 1 122 330 B1 and EP 1 122 331 B1 disclose methods for the carbonitriding of components by means of gas, this being designated below as gas carbonitriding.
The object of the disclosure is to provide a method for gas carbonitriding, by means of which slide pairings can be produced cost-effectively and, furthermore, have a longer service life and are more failsafe even under high system pressures and under high frictional forces resulting from these, so that the slide pairing and therefore the machine affected have a long useful life.
This object is achieved by means of a method disclosed herein.
According to the disclosed method for gas carbonitriding, an iron-containing machine component of a slide pairing, in a first step, is acted upon with gas in a furnace at a comparatively low treatment temperature and for a comparatively long treatment duration. A comparatively thin bonding layer and a comparatively thick diffusion layer are therefore formed. In this case, the bonding layer is of uniform thickness. In a subsequent second step or in a second stage, carbon donor is added and the treatment temperature increased. As a result, the carbon content of the bonding layer is increased. In the second stage, therefore, by carbon donors being added, the carbonizing potential of the furnace atmosphere is increased and therefore the carbon content of the bonding layer is increased. So that this takes place quickly and without an appreciable layer growth, the second stage is usually carried out at higher treatment temperatures. Since the dimensional changes of the machine component which, according to the disclosure, is gas-carbonitrided in two stages are reduced in comparison with the prior art, it becomes possible to have higher process safety and higher operating safety of the slide pairing, particularly in the case of components with low tolerances.
The technical trick of the first stage, which is run at relatively low temperature and lasts for a long time, is that only as much nitrogen is offered in the furnace atmosphere as diffuses away into the diffusion layer of the workpiece. As a result, further growth of the bonding layer is virtually suppressed and the thin form of the bonding layer is obtained.
In a preferred refinement of the method, the first step or the first stage takes place at 500 to 510° C.
In this case, a carbon donor may be added even in the first step or in the first stage.
It is especially preferable, furthermore, if, in the first step, less nitrogen is fed to the machine component than in a supersaturated furnace atmosphere. Too high a growth of the bonding layer and therefore the embrittlement of the latter are consequently avoided.
So that the increase in the carbon content of the bonding layer takes place quickly and without an appreciable layer growth, according to a preferred refinement of the method the second step or the second stage takes place at 570 to 580° C.
In a preferred further development of the method, the bonding layer is postoxidized. As a result, the run-in behavior of the slide pairing is improved, and microscopic stress peaks during operation are reduced.
In a preferred further development of the method, first the temperature is equalized and/or the bonding layer is seeded and/or the process gas is formed.
The thickness of the bonding layer preferably amounts to 4-15 μm, for example to 6-12 μm.
The thickness of the diffusion layer preferably amounts to at least 50 μm. The thickness of the diffusion layer may therefore amount to at least ten times the thickness of the bonding layer.
The method according to the disclosure can advantageously be applied to a machine component of an axial piston machine.
In an especially preferred application, the component affected is a cylindrical drum of the axial piston machine of sloping axis type of construction or else a bushless cylindrical drum of an axial piston machine of swashplate type of construction. The component affected may also be a drive shaft of the axial piston machine.
An exemplary embodiment of the disclosure is described in detail below with reference to the figures in which:
Referring to
According to the disclosure, the cylindrical drum 1 according to
According to the disclosure, the bonding layer (VS) is comparatively thin and at the same time formed in uniform thickness, whereas the diffusion layer (DS) is of comparatively thick form. The thickness ratio of the layers was achieved by gas carbonitriding in two steps or stages, the first step or first stage being characterized by a comparatively low treatment temperature and a comparatively long treatment duration. The second step or second stage is characterized by an increase in the carbonizing potential and an increase in temperature. The carbon content of the bonding layer (VS) was thereby increased. Two-stage gas carbonitriding makes it possible to have dimensional changes of the component which are reduced in comparison with the prior art and to have higher process safety and higher operating safety of the axial piston machine, particularly in the case of components with low tolerances.
A method for forming a wear protection layer of a machine component which with a further machine component forms a slide pairing is disclosed. At least one of the machine components is gas-carbonitrided to minimize wear, a thin uniform bonding layer and a comparatively thick diffusion layer lying underneath being generated in that gas carbonitriding first takes place at a low temperature and for a long duration.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 226 090 | Dec 2013 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
20140246126 | Horimoto | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1 122 331 | Mar 2003 | EP |
1 122 330 | Oct 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20150167145 A1 | Jun 2015 | US |