The present invention is directed to a method of processing data representing an image of an individual's retina to identify the individual and more particularly to such a system that generates a unique and consistent signal pattern for identification of an individual from data representing the individual's optic disk.
N/A
Various devices are known that detect a vascular pattern in a portion of an individual's retina to identify the individual. Examples of such devices are disclosed in U.S. Pat. Nos. 4,109,237; 4,393,366; and 4,620,318. In these devices, a collimated beam of light is focused on a small spot of the retina and the beam is scanned in a circular pattern to generate an analog signal representing the vascular structure of the eye intersecting the circular path of the scanned beam. In the U.S. Pat. No. 4,393,366, the circular pattern is outside of the optic disk or optic nerve and in the U.S. Pat. No. 4,620,318, the light is scanned in a circle centered on the fovea. These systems use the vascular structure outside of the optic disk because it was thought that only this area of the retina contained sufficient information to distinguish one individual from another. However, these systems have problems in consistently generating a consistent signal pattern for the same individual. For example, the tilt of the eye can change the retinal structure “seen” by these systems such that two distinct points on the retina can appear to be superimposed. As such, the signal representing the vascular structure of an individual will vary depending upon the tilt of the eye. This problem is further exacerbated because these systems analyze data representing only that vascular structure which intersects the circular path of scanned light, if the individual's eye is not in exactly the same alignment with the system each time it is used, the scanned light can intersect different vascular structures, resulting in a substantially different signal pattern for the same individual.
In accordance with the present invention, the disadvantages of prior retinal identification systems and methods have been overcome. Unlike the prior art, the method of the present invention includes the analysis of bit mapped image data representing the intensity of pixels forming an image of an area of an individual's retina that includes the optic disk. The method of the present invention locates the optic disk in the image and generates a unique and consistent signal pattern for identifying an individual from pixel data having a predetermined relationship to the individual's optic disk. The generated signal pattern is then used to verify the identity of the individual.
More particularly, the method of the present invention finds, from the pixel data, the boundary of the optic disk in the image and generates a signal pattern from the intensity data representing pixels having a predetermined relationship with respect to the boundary of the optic disk. The signal pattern generated from the data representing the image of the optic disk is then compared to one or more stored signal patterns to verify the identity of the individual.
In accordance with one embodiment of the present invention, the boundary of the optic disk is found by fitting a circle onto the image of the optic disk represented by the pixel data and distorting the circle to fit an ellipse onto the image of the optic disk. A circle fitting closest to the image of the individual's optic disk is found by analyzing the average intensity of the pixels within the circle and the average edge strength of the pixels positioned about the circumference of the circle as the circle's parameters are changed to fit it onto the optic disk. The closest fitting circle is distorted into an ellipse based on the change in the average edge strength of the pixels positioned about the circumference of the ellipse as the ellipse parameters are changed.
In one embodiment of the present invention, the signal pattern identifying the individual is generated from a series of values, each value representing the average intensity of the pixels in an edge or boundary area at successive positions along the path of the ellipse fit onto the optic disk image. The average intensity of pixels associated with the optic disk and having a different relationship with respect to the boundary of the optic disk can also be used to generate a unique and repeatable signal pattern to identify an individual. For example, the area of the optic disk within the boundary can be divided into a number of sectors in which the average intensity of pixels within each sector can be used to form the signal pattern identifying an individual. Alternatively, the average intensity of the pixels at different points taken along one or more predetermined paths within the optic disk boundary or adjacent to the boundary but outside thereof can be used to form the signal pattern identifying the individual.
The method of the present invention has been found to generate a unique and consistent signal pattern to identify an individual. The method has also been found to successfully match the signal patterns generated from images of different quality to the signal pattern stored for an individual so as to provide a more reliable and robust retinal identification method than has heretofore been possible. These and other advantages and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
The method of the present invention analyzes bit mapped image data representing the intensity of pixels forming an image of an area of an individual's retina that includes the optic disk. As used herein, bit mapped image data is such that a particular group of data bits corresponds to and represents a pixel at a particular location in the image.
The method of the present invention analyzes received pixel intensity data representing an image of an individual's retina by first finding the location of the optic disk in the image represented by the data. The location of the optic disk in the image of the retina will vary depending upon the system used to obtain the image.
More particularly, as shown at block 20, a histogram of the pixel intensities is first calculated by the processor for a received retinal image. Thereafter, at block 22, the processor calculates an intensity threshold where the threshold is set to a value so that 1% of the pixels in the received image have a higher intensity than the threshold, T. At block 22, the processor assigns those pixels having an intensity greater than the threshold T to a set S. Thereafter, at block 24, the processor calculates, for the pixels assigned to the set S, the variance in the pixel's position or location within the image as represented by the pixel data. The variance calculated at block 24 indicates whether the highest intensity pixels as identified at block 22 are concentrated in a group as would be the case for a good retinal image. If the highest intensity pixels are spread throughout the image, then the image may contain unwanted reflections. At block 26, the processor determines if the variance calculated at block 24 is above a threshold value and if so, the processor proceeds to block 28 to repeat the steps beginning at block 22 for a different threshold value. For example, the new threshold value T might be set so that 0.5% of the pixels have a higher intensity than the threshold or so that 1.5% of the pixels have a higher intensity than the threshold. It is noted that instead of calculating a threshold T at step 22, the threshold can be set to a predetermined value based on typical pixel intensity data for a retinal image. If the variance calculated at block 24 is not above the variance threshold as determined at block 26, the processor proceeds to block 30 to calculate the x and y image coordinates associated with the mean or average position of the pixels assigned to the set S. At block 32, the x, y coordinates determined at block 30 become an estimate of the position of the center of the optic disk in the image.
An alternative method of finding the optic disk could utilize a cluster algorithm to classify pixels within the set S into different distributions. One distribution would then be identified as a best match to the position of the optic disk on the image. A further alternative method for finding the optic disk is illustrated in
In accordance with the present invention, after locating the optic disk, the boundary of the disk is found by determining a contour approximating a shape of the optic disk. The shape of a typical optic disk is generally an ellipse. Since a circle is a special type of ellipse in which the length of the major axis is equal to the length of the minor axis, the method first finds the closest fitting circle to the optic disk as shown in
The algorithm depicted in
At block 40, an ellipse is defined having a center located at the coordinates xc and yc within the bit mapped image and a major axis length set equal to a and a minor axis length set equal to b. At block 42, the search for the closest fitting circle starts by setting the center of the ellipse defined at block 40 equal to the estimated location of the center of the optic disk determined at block 32 of
At block 46, the processor calculates the change in the cost function A for each of the following six cases of parameter changes for the ellipse circle: (1) x=x+1; (2) y=y+1; (3) x=x 1; (4) y=y−1; (5) a=b=a+1; (6) a=b=a−1. At block 48, the processor changes the parameter of the circle according to the case that produced the largest increase in the cost function A as determined at block 46. For example, if the greatest increase in the cost function A was calculated for a circle in which the radius was decreased by 1, then at block 48, the radius is set to a=b=a−1 and the coordinates of the center remain the same. At block 50, a new value is calculated for the cost function B for the circle defined at block 48. At block 52, the processor determines whether the cost function value B calculated at block 50 exceeds a threshold. If not, the processor proceeds back to block 46 to calculate the change in the cost function A when each of the parameters of the circle defined at block 48 are changed in accordance with the six cases discussed above.
When the cost function B calculated for a set of circle parameters exceeds the threshold as determined at block 52, this indicates that part of the circle has found an edge of the optic disk and the algorithm proceeds to block 54. At block 54, the processor calculates the change in the cost function B when the parameters of the circle are changed for each of the cases depicted in step 5 at block 46. At block 56, the processor changes the ellipse pattern according to the case that produced the largest increase in the cost function B as calculated at step 54. At block 58, the processor determines whether the cost function B is increasing and if so, the processor returns to block 54. When the cost function B, which is the average edge strength of the pixels within the boundary area 14 of the circle being fit onto the optic disk, no longer increases, then the processor determines at block 60 that the closest fitting circle has been found.
After finding the closest fitting circle, the method of the invention distorts the circle into an ellipse more closely matching the shape of the optic disk in accordance with the flow chart depicted in
At block 66, the processor calculates the change in the cost function B when the parameters of the ellipse are changed as follows:
x=x+1 (1)
y=y+1 (2)
x=x−1 (3)
y=y−1 (4)
a=a+1 and b=b+1 (5)
a=a−1 and b=b−1 (6)
a=a−1 (7)
a=a+1 (8)
b=b−1 (9)
b=b+1 (10)
θ=θ+1 (11)
θ=θ−1 (12)
At block 68, the processor changes the ellipse parameter that produces the largest increase in the cost function B as determined at block 66 to fit the ellipse onto the optic disk image. Steps 66 and 68 are repeated until it is determined at block 70 that the cost function B is no longer increasing. At this point the processor proceeds to block 72 to store the final values for the five parameters defining the ellipse fit onto the image of the optic disk as represented by the pixel data. The ellipse parameters determine the location of the pixel data in the bit mapped image representing the elliptical boundary 18 of the optic disk in the image as illustrated in
The method depicted in
In another embodiment of the present invention, as illustrated in
The signal pattern generated in accordance with the embodiments discussed above represents the intensity of pixels within a predetermined distance of the optic disk boundary 75. It should be appreciated, however, that a signal pattern can be generated having other predetermined relationships with respect to the boundary of the optic disk as well. For example, in another embodiment of the invention, the signal pattern is generated from the average intensity of pixels taken along or with respect to one or more predetermined paths within the optic disk boundary or outside of the optic disk boundary. It is noted that these paths do not have to be elliptical, closed loops or concentric with the determined optic disk boundary. The paths should, however, have a predetermined relationship with the optic disk boundary to produce consistent signal patterns from different retinal images captured for the same individual. In another embodiment, the area within the optic disk boundary is divided into a number of sectors and the average intensity of the pixels within each of the sectors is used to form a signal pattern to identify an individual. These are just a few examples of different methods of generating a signal pattern having a predetermined relationship with respect to the boundary of the optic disk found in accordance with the flow charts depicted in
Many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as described hereinabove.
The present application is a continuation of U.S. patent application Ser. No. 10/103,106 now U.S Pat. No. 6,757,409 filed Mar. 21, 2002 which is a continuation of U.S. patent application Ser. No. 09/705,133 now U.S. Pat. No. 6,453,057 filed Nov. 2, 2000. This application is also related to U.S. patent application Ser. No. 09/704,980 filed Nov. 2, 2000.
Number | Name | Date | Kind |
---|---|---|---|
4109237 | Hill | Aug 1978 | A |
4393366 | Hill | Jul 1983 | A |
4620318 | Hill | Oct 1986 | A |
4641349 | Flom et al. | Feb 1987 | A |
D302152 | Alfonso et al. | Jul 1989 | S |
4975969 | Tal | Dec 1990 | A |
4993068 | Piosenka et al. | Feb 1991 | A |
5291560 | Daugman | Mar 1994 | A |
5359669 | Shanley et al. | Oct 1994 | A |
5412738 | Brunelli et al. | May 1995 | A |
5457747 | Drexler et al. | Oct 1995 | A |
5532771 | Johnson et al. | Jul 1996 | A |
5572596 | Wildes et al. | Nov 1996 | A |
5581630 | Bonneau, Jr. | Dec 1996 | A |
5615277 | Hoffman | Mar 1997 | A |
5673097 | Heacock | Sep 1997 | A |
5751836 | Wildes et al. | May 1998 | A |
5845733 | Wolfsen | Dec 1998 | A |
5861938 | Heacock | Jan 1999 | A |
5861939 | Heacock | Jan 1999 | A |
5868134 | Sugiyama et al. | Feb 1999 | A |
5901238 | Matsushita | May 1999 | A |
5956122 | Doster | Sep 1999 | A |
5978494 | Zhang | Nov 1999 | A |
5995014 | DiMaria | Nov 1999 | A |
6030079 | Torii | Feb 2000 | A |
6453057 | Marshall et al. | Sep 2002 | B1 |
6757409 | Marshall et al. | Jun 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040037453 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10103106 | Mar 2002 | US |
Child | 10648463 | US | |
Parent | 09705133 | Nov 2000 | US |
Child | 10103106 | US |