The present invention relates to a method for generating a series of images of an object.
The present invention further relates to an optical device comprising a zoom lens and image recording means placed behind the zoom lens.
In the field of image recording, it can be desirable to generate a series of images of an object of interest, for instance to be able to display the object at different scales. However, it is not trivial to obtain such a series, because it is difficult to avoid moving an optical device such as a camera. Furthermore, the object itself may be moving, which makes it even more difficult to generate such a series with sufficient sharpness for each of the images in the series.
The introduction of digital image recording techniques has provided a solution for this problem in the form of digital zoom functionality. With digital zoom, an image can be redimensioned to fit a predetermined area, such as a display screen size or a photographic paper size, by selecting a subset of the complete set of recorded pixels, and fit the spacing of the pixels in the subset to the predetermined area. This is sometimes also referred to as blow-up.
However, digital blow-up has the disadvantage that the image becomes more coarse-grained, which reduces the image quality.
The present invention seeks to provide a method according to the opening paragraph that improves on the prior art.
The present invention further seeks to provide an optical device according to the opening paragraph that improves on the prior art.
According to a first aspect of the present invention, there is provided a method for generating a series of images at different zoom angles, the method comprising providing an optical device having a liquid-based zoom lens and image recording means; recording a first image of an object at a first zoom angle responsive to a user input; and automatically recording a second image of the object at a second zoom angle after recording the first image.
The method is based on the realization that liquid-based zoom lenses, such as the zoom lens disclosed in PCT application WO2004/038480 and the zoom lens disclosed in unpublished PCT application with filing number WO2004/050618, benefit from improved switching speeds compared to mechanically driven solid state zoom lenses. The zoom lenses disclosed in the aforementioned PCT patent applications have a typical switching speed of less than 10 ms for switching between the extremes of the zoom range of the lens. Thus, as soon as a user takes a picture with an optical device comprising such a lens, the optical device can be configured to rapidly take a series of images at different zoom angles, each having the same image quality in terms of pixel density. Also, because the liquid-based lens is very fast, the chance that a user moves the camera during the image capturing process, or the chance that an object moves outside the image range, is reduced.
In an embodiment, the method further comprises combining the first image and the second image into a further image. Thus, the versatility of the generated images can be improved.
Advantageously, the step of combining the first image and the second image into a further image comprises extracting the object from one of the first image and the second image; resealing the extracted object to the dimensions of the object in the other image of the first image and the second image; and replacing the object in the other image with the rescaled extracted object. Consequently, an overview image can be obtained in which the object of interest is of a higher pixel density than its surroundings, yielding an image in which the object of interest is depicted with an improved image quality.
Advantageously, the step of combining the first image and the second image into a further image comprises reducing the size of the first image; and inserting the reduced size first image into the second image. Consequently, an image can be generated including a thumbnail of an overview of the scenery or of an object in close-up.
In an alternative embodiment, the method further comprises automatically recording a third image of the object at a third zoom angle after recording the second image. Thus, a series of images at different zoom angles can be recorded, which for instance enables the user of the optical device to select the best image from the range. This is an important advantage, because it allows the user to generate a first image that only approximates the desired image, with the user relying on the automatic image generation producing the desired image, which means that the user requires less time to prepare the optical device for the image generation. This is particularly useful when the object of interest is moving.
According to another aspect of the invention, there is provided an optical device comprising a liquid-based zoom lens; image recording means placed behind the zoom lens; and control means for automatically generating a second image of an object at a second zoom angle in response to a user controlled generation of a first image of the object at a first zoom angle.
The optical device of the present invention implements the method of the present invention, and therefore benefits from the same advantages.
The invention is described in more detail and by way of non-limiting examples with reference to the accompanying drawings, wherein:
It should be understood that the Figures are merely schematic and are not drawn to scale. It should also be understood that the same reference numerals are used throughout the Figures to indicate the same or similar parts.
In
In
The zoom lens 10 further comprises a first electrode 11 and a second electrode 13 in contact with the first liquid A. The driver circuit 40, which may comprise independently controllable voltage sources V1 and V2, is coupled to the wall electrode 12 and the electrodes 11 and 13, thus forming a first electrode pair 11, 12 for controlling the shape of the first interface 14 and a second electrode pair 12, 13 for controlling the shape of the second interface 15. Both the first interface 14 and the second interface 15 can be switched from a stable convex to a stable concave shape in less than 10 ms. The shape change of the first interface 14 and/or the second interface 15 modifies the zoom angle of the zoom lens 10.
In operation, the user of the optical device 1 can use the manual zoom function of the optical device 1 to capture an object 100 in an image. The processor 30 implements the manual zoom function by translating a zoom in/out command from the user into an instruction for the driver circuit 40 to change the shape of at least one of the first interface 14 and the second interface 15. In response, the driver circuit alters the voltage generated by either voltage source V1 or V2 or by both voltage sources.
As soon as the user decides to capture an image, e.g. to take a picture, the processor 30 will initiate the image recording process, for instance by activating the image sensor 20 or by opening a shutter (not shown). Thus, a first image of an object 100 at a first zoom angle responsive to a user input is recorded. The processor 30 evaluates the first zoom angle and instructs the driver circuit 40 to move the zoom lens 10 to a second zoom angle, after which the processor 30 will automatically activate the recording a second image of the object 100 at a second zoom angle after recording the first image.
Optionally, the first image P1 and the second image P2 may be combined in the following manner. A known object recognition algorithm may be used to extract the object 100 from the second image P2. The size of the object 100 in the first image P1 is calculated and the extracted object 100 is resized to the dimensions of the object 100 in image P1, after which the object 100 in picture P1 is replaced by the resealed extracted object 120 to form a third image P3. The rescaled extracted object 120 has a higher density of image elements, e.g. pixels, than the original object 100 in image P1, as indicated by the increased density of the horizontal lines in the rescaled extracted object 120 compared to the object 100. Consequently, a further image P1′ is obtained in which the object of interest is described with a higher resolution than in the original image P1.
The resealing of the object 100 may be performed by the processor 30, or may be performed in a post processing step, e.g. by software running on a personal computer. Since such a step can easily be executed by known algorithms, it will not be described in further detail. To facilitate the post-processing, the processor 30 may attach a label to the first image P1 and the second image P2 to indicate an existing relationship between the images.
Optionally, the first image P1 and the second image P2 may be combined into a further image P1′, for instance by rescaling the second image P2 to a thumbnail size and inserting the thumbnail into a corner of the first image P1. This may be done by the processor 30 or in a post-processing step, as previously explained.
At this point, it is emphasized that the present invention is not restricted to the embodiment of the liquid based zoom lens 10 shown in
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” does not exclude the presence of elements or steps other than those listed in a claim. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. The invention can be implemented by means of hardware comprising several distinct elements. In the device claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
0424767.2 | Nov 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/053528 | 10/28/2005 | WO | 00 | 5/4/2007 |