Not Applicable.
The present application is related generally to tire tread depth measurement systems, and in particular, to a method for generating a display representative of potential tire wear or tread condition within a region on a tire tread surface, based in-part on measurements of tire tread depth previously acquired from the tread surface within the region.
Motor vehicles, such as passenger cars and trucks, rely upon wheel assemblies consisting of wheel rims with tires mounted thereon to maintain contact with the roadway surfaces over which the vehicle is traveling. It is well known that the condition of the tires of the wheel assemblies of a motor vehicle, and in particular, the condition of the tire tread surfaces, can have a significant impact on the performance of the vehicle as well as be indicative of potential problems with the vehicle. For example, tires with excessive tread wear (or insufficient tread depth) lack the ability to evacuate water from a contact patch region between the tire and roadway when traveling over wet surfaces, leaving the vehicle dangerously susceptible to hydroplaning and a loss of control. Uneven tread wear across the width of a tire's outer tread surface may be indicative of an improper wheel alignment or a broken component in the vehicle suspension system. Improper inflation of a tire can result in the failure of the tire to properly support the vehicle, leading to bulges in the tire sidewall adjacent to the contact patch, and excessive fuel consumption by the vehicle.
A wide variety of automatic or semi-automatic tire tread depth measurement systems are known. These include systems which optically acquire tire tread depth measurement data points along a single scan line or contour of tire tread, as well as systems which acquire tire tread depth measurement data points along multiple adjacent scan lines or contours sufficient to generate a surface map for a region of the tire tread surface. In either case, the acquired tire tread depth measurement data points are representative of the tire tread depth at the observed locations on the tire tread surfaces at the time of the scan.
Tires, however, are not static components of a vehicle, and are continually being worn away during use, reducing the height of various features on the tread surface. For a given measurement of tire tread depth, industry known standard estimates for tread wear rates based on driven mileage can be used to determine or predict a point in time (or number of miles driven) when the tire will require replacement. Conveying this information in a meaningful manner to a vehicle owner can be difficult. Simply providing a vehicle owner with a numerical number representative of an estimated remaining tire tread depth or a “tire replacement due at 15,000 miles” reminder often fails to motivate the vehicle owner to take necessary actions to inspect or replace the tires. Accordingly, a more compelling method for communicating tire tread wear progression to a vehicle owner would be advantageous to encourage regular inspection and proper replacement of worn tires in a timely manner.
Briefly stated, the present disclosure sets forth a procedure by which a three-dimensional perspective image of a tire tread surface region generated from actual measurements of tire tread depths is utilized to generate a visual representation of expected tire tread wear over a period of time, using image manipulation techniques. The three-dimensional perspective image of the tire tread surface region is provided as an initial input to at least one image filter configured to selectively alter a characteristic of either individual image pixels or groups of image pixels from the input image to generate an output of a three-dimensional perspective image representative of worn regions of tire tread. The altered characteristic is selected from a set of characteristics including brightness, color, contrast, smoothness, and represented height. The resulting visual representation of tread wear over the period of time is subsequently displayed as an altered three-dimensional perspective image of the tire tread surface regions in conjunction with the original three-dimensional perspective image of the same tire tread surface regions.
In an alternate procedure of the present disclosure, a three-dimensional perspective image of a tire tread surface region, illustrating an effect of tread wear over a period of time, is generated directly from actual measurements of tire tread depths within the tire tread surface region. The actual measurements acquired from the tire tread surface region are selectively processed to produce a set of “worn” tire tread depth measurements from which an associated three-dimensional perspective image is generated. The selective processing of the actual tire tread measurements is configured to reduce height variations between tread features within the tread surface region by lowering raised tread features to simulate an effect of tire tread wear. The resulting visual representations of tread wear on the tire tread surface over a period of time are subsequently displayed as a three-dimensional perspective image of the tire tread surface region.
The foregoing features, and advantages set forth in the present disclosure as well as presently preferred embodiments will become more apparent from the reading of the following description in connection with the accompanying drawings.
In the accompanying drawings which form part of the specification:
Corresponding reference numerals indicate corresponding parts throughout the several figures of the drawings. It is to be understood that the drawings are for illustrating the concepts set forth in the present disclosure and are not to scale.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings.
The following detailed description illustrates the invention by way of example and not by way of limitation. The description enables one skilled in the art to make and use the present disclosure, and describes several embodiments, adaptations, variations, alternatives, and uses of the present disclosure, including what is presently believed to be the best mode of carrying out the present disclosure.
It will be understood that the procedures and methods of the present disclosure are not limited to use with any specific type of vehicle service equipment. Systems having sufficient computational capacity and functionality to carry out the necessary software instructions may be adapted to implement the procedures described herein. Within an automotive service environment, tire tread depth measurements are typically acquired using a system such as a drive-over tire tread depth measurement system, a suitably configured wheel balancer, a suitably configured tire changer, or a hand-held tire tread depth measurement device. The specific source of the tire tread depth measurement data points is not critical to the procedures and methods described herein, which will function equally well utilizing “current” tire tread depth measurement data received from an appropriate measurement system, as well as “stored” tire tread depth measurement data retrieved from an electronic storage or database, provided a sufficient number of tire tread depth measurement data points, such as may be found in a point cloud, are available from which a three-dimensional perspective image of the tire tread surface can be generated. In one exemplary configuration, an automotive service center management system implements the procedures of the present disclosure using a point cloud of “current” tire tread depth measurement data points to assist a service representative in conveying tire tread wear progression information to a vehicle owner, such as during a vehicle inspection, as well as recalling a “stored” point cloud of tire tread depth measurement data points to prepare reminders or customized advertisements to be mailed or delivered to a vehicle owner at a subsequent point in time.
Turning to the figures, and to
To present the vehicle owner or an operator with one or more images 12 illustrating predicted changes to the tire tread surface regions 10 over time due to tread wear, the generated three-dimensional perspective image 10, or a copy there-of, is utilized as an input or starting point to an image manipulation algorithm (i.e., an image manipulation filter) (Box 104a). The image manipulation algorithm or filter (Box 104b) selectively alters individual pixel elements which illustrate characteristics or visible tire tread surface features shown in the initial image 10 to generate, as described herein, a second three-dimensional perspective image 12 representative of an effect of tread wear on the actual tire tread surface region shown in the initial image 10.
A display of the generated image 12 may be communicated to the recipient by printing (Box 110a), such as in a vehicle condition report, marketing material, or advertisement, may be presented visually (Box 110b), such as within a graphical user interface displayed on a display screen, on a cellular phone or other portable computing device, (or may be presented as a static image within an electronic communication such as an e-mail or text message (Box 110c). Optionally, the second generated image 12 is recalled at a later point in time, from images stored in the accessible database (Box 106), and communicated to the vehicle owner or operator as an advertisement or reminder to check the then-current condition of the tires which are expected to have reached the illustrated level of tread wear, possibly necessitating replacement. With these procedures, it is not necessary to know the precise rate at which a tire tread will wear based on mileage, as the resulting generated image 12 is a visual representation of a worn tire surface region, and is not intended as an accurate measure of true tire tread wear.
In order to generate the image 12 representative of future or predicted tire wear, one or more image manipulation filters are utilized to selectively alter the characteristics or visible tire tread surface features present in the initial rendered image (10) to simulate the appearance of an aged or worn tire tread surface. As used herein, an image manipulation filter is understood to be any graphics processing tool utilized to alter the properties of an image, such as by processing individual pixels within the image through a selected algorithm to achieve a desired result An exemplary combination of image filters includes an image brightness-altering image manipulation filter to alter the brightness level for individual pixels within the images (altering brightness results in an “aged” appearance), a contrast altering image manipulation filter to alter the overall contrast between light and dark regions of the images (altering contrast results in changes in the visual appearance of tread groove shadows), and a color altering image manipulation filter to selectively shift colors representative of actual tread depths (such as green to indicate acceptable, and yellow to indicate marginal, as seen in
Additional image manipulation filters which may be used alone, or in a combination with other filters, include an image manipulation filter to compress, crop, or mask the image in order to reduce the overall “height” represented by the rendered tire tread, an image manipulation filter to alter a perspective view of the tire tread surface, a surface smoothing image manipulation filter to “round off” sharp edges and transitions between tire tread features, and an image scale manipulation filter applied along one or more axes of the generated images to compress tire tread features and reduce the depth of visible tread grooves. For example,
As an alternative to generating a tire tread wear image 12 by applying individual filters to an initial image 10 of an actual tire tread surface, an artistic image manipulation filter may be utilized to achieve a visual appearance of a worn or aged tired surface having reduced tire tread depths. For example, a Paint Daubs image manipulation filter is utilized to alter the appearance of patches of pixels (corresponding to paint brush strokes) within an input image 10 of a tire tread surface region to generate an image representative of a worn tire tread surface, such as shown in
In a further alternative procedure of the present disclosure, shown in
To present the vehicle owner or an operator with one or more images 12 illustrating predicted changes to the tire tread surface regions 10 over time due to tread wear, the tire tread depth measurement data is utilized to directly render a three-dimensional representation of a worn tire tread surface region (Box 804). The rendered three-dimensional perspective image representative of an effect of tread wear on the actual tire tread depth measurements acquired or recalled (Box 800) and manipulated to simulate tire tread wear (Box 802). The generated three-dimensional perspective image is conveyed to a recipient in a suitable manner. For example, the image may be communicated to, and stored in, a suitable data storage for future use, (Box 806) and/or communicated to a graphical user interface for display to the vehicle owner or operator as a visual indication of what the tire will look like after a period of continued usage.
A display of the generated image 12 may be communicated to a recipient by printing (Box 808a), such as in a vehicle condition report, marketing material, or advertisement, may be presented visually (Box 808b), such as within a graphical user interface viewed on a display screen, on a cellular phone or other portable device, or may be presented as a static image within an electronic communication such as an e-mail or text message (Box 808c). Optionally, the generated image is recalled at a later point in time, from images stored in the accessible database (Box 806), and communicated to the vehicle owner or operator as an advertisement or reminder to check the then-current condition of the tires which are expected to have reached the illustrated level of tread wear, possibly necessitating replacement. As with the procedure of
The present disclosure can be embodied in-part in the form of computer-implemented processes and apparatus for practicing those processes. The present disclosure can also be embodied in-part in the form of computer program code containing instructions embodied in tangible media, or another computer readable non-transitory storage medium, wherein, when the computer program code is loaded into, and executed by, an electronic device such as a computer, micro-processor or logic circuit, the device becomes an apparatus for practicing the present disclosure.
The present disclosure can also be embodied in-part in the form of computer program code, for example, whether stored in a non-transitory storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the present disclosure. When implemented in a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.
As various changes could be made in the above constructions without departing from the scope of the disclosure, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
The present application is related to, and claims priority from, U.S. Provisional Patent Application Ser. No. 62/279,305 filed on Jan. 15, 2016, and which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6384834 | Watanabe | May 2002 | B1 |
6430993 | Seta | Aug 2002 | B1 |
7805987 | Smith | Oct 2010 | B1 |
9481217 | Iwasaki | Nov 2016 | B2 |
9805697 | Dorrance | Oct 2017 | B1 |
20040107081 | Miyori | Jun 2004 | A1 |
20070107506 | Kishida | May 2007 | A1 |
20090308149 | Kishida | Dec 2009 | A1 |
20100018628 | Ueyoko | Jan 2010 | A1 |
20110126617 | Bengoechea Apezteguia | Jun 2011 | A1 |
20130271574 | Dorrance | Oct 2013 | A1 |
20130327135 | Russell | Dec 2013 | A1 |
20150231932 | Singh | Aug 2015 | A1 |
20160029006 | Zoken | Jan 2016 | A1 |
20160033368 | Neau | Feb 2016 | A1 |
20160221404 | Lee | Aug 2016 | A1 |
20160343126 | Miller | Nov 2016 | A1 |
20170190223 | Fish | Jul 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
62279305 | Jan 2016 | US |