The present invention relates to the generation of patient-specific implants based on the examination findings on a patient obtained by imaging methods in medical technology.
It has been possible for long to use, to a limited degree, exogenic material (implants) to close organ defects. The recent state of art is to generate hard-tissue implants specifically adapted to a patient either by obtaining the implants during a surgical operation under use of existing intermediate models or, more recently, under use of CAD/CAM technologies as an aid in computer-aided reconstruction. Imaging methods of the medical technology, such as computer tomography, nuclear magnetic resonance tomography, and sonography increasingly form the basis for generation.
It is common medical practice (refer to, for example, U.S. Pat. No. 4,097,935 and U.S. Pat. No. 4,976,737) to use as implants plastic and workable, respectively, metal webs and metal plates, easily to form materials that have a short curing time (for example, synthetic resin) and endogenic material from the patient by which the defects are closed during the surgical operation, i.e. the implant is obtained during the operation, formed and adapted to the defect. However, metallic implants such as webs and plates etc. can be very disturbing at later diagnosises on the patient and can even render impossible to carry out future special methods of examination, in particular, when larger defect areas are concerned. The progress of operation is usually dependent on the situation of treatment itself, and the experience of the surgeon. In such cases it is scarcely possible to have a specific operation planning for the insertion of the implant in advance. Therefore the operated on patient occasionally has to undergo follow-up treatments that are an additional physical and psychological strain for the patient. Moreover, some materials, such as synthetic materials which are easily to form and/or can be produced at comparatively low expenditures, can only be utilized in a limited degree with respect to their loadability and endurance. Additionally, there is the desire of the patient to get an aesthetic appearance which in many cases is very hard to realize.
Furthermore, “Stereolithographic biomodelling in cranio-maxillofacial surgery, a prospective trial”, Journal of Cranio-Maxillofacial Surgery, 27, 1999 or U.S. Pat. No. 5,370,692 or U.S. Pat. No. 5,452,407 or U.S. Pat. No. 5,741,215), it is possible to start the design of the implant by generating a physical three-dimensional intermediate model, for example, by stereolithographic methods based on medical imaging methods mentioned at the beginning. Then the implant is manually modeled in the defect site by use of plastic workable materials and only then the implant is finally manufactured from the implant material. Thereby the implant preferably is produced from materials of a higher strength, such as titanium.
Furthermore, there is known (“Schädelimplantate—computergestützte Konstruktion und Fertigung”, Spektrum der Wissenschaft, Februar 1999; “Die Rekonstruktion kaniofazialer Knochendefekte mit individuellen Titanimplantaten”, Deutsches Ärzteblatt, September 1997), to generate a simple three-dimensional CAD patient model from the data obtained by applying imaging methods on a patient, and to use these data to manually design the implant by computer under use of simple design engineering methods. Subsequently the implant is manufactured for the surgical operation by a computer numeric control (CNC) process.
The methods mentioned hereinbefore, however, have the common disadvantage that the result of the implant-modelling predominantly depends on the experience, the faculty and the “artistic” mastership of the person generating respectively producing said implant. The manufacturing, starting from the data obtained and up to the operationally applicable and mating implant, requires high expenditures of time and cost which are still increased when there is manufactured a so-called intermediate model. The manufacture of an implant during an operation requires correspondingly high expenditures of time and executive routine for the surgical intervention and, thus, means a very high physical and psychological strain, last not least for the patient. Moreover, it is still more difficult to operatively and form-fittingly insert an implant, non-mating to the defect site on the patient, while attending to medical and aesthetic aspects. Also here the special skill and experience of the surgeon very often will be decisive for the outcome of the operation. Practically and in the frame of the clinical routine, the first-mentioned methods can only be used with narrow and/or lowly structurized defects and they will very soon reach their technological limits with complicated defects and implants as concerns shaping and fitting.
The operative expenditure is greatly dependent on the adaptability of the implant to the defect site. But with a manufacture of an implant via intermediate models this precision can be additionally deteriorated due to copying the intermediate model.
In complicated cases the implants have to be manufactured in lengthy and extremely time-consuming processes and, if necessary, via a plurality of intermediate stages. Within this comparatively long period the defect area on the patient can possibly change in the meantime. These changes, in practice, cannot be sufficiently taken into consideration as concerns the adaptability of the implants and additionally increase the operation expenditures.
From the viewpoint of the surgeon as well as of the patient it will be desirable that the implants should be manufactured in the shortest possible time, also with respect to the surgical intervention, and with a high adaptability to the defect site on the patient. Concrete information not only about the defect site on the patient but also to the size and shape of the implant to be inserted should be available to the attending surgeon for planning the operation in advance and before the intervention on the patient.
It is an object of the present invention to provide an implant generated to be functionally and aesthetically more precisely adaptable to a defect site on a patient, said implant being independent of the size, shape and complexity of said defect site, whereby said implant can be manufactured and inserted into a patient in one operation process in a shorter time and with less expenditures. The method should be applicable with a same accuracy for all shapes, sizes and for all suitable implant materials.
The present invention provides a virtual three-dimensional model of the patient which is compared to actual medical reference data, whereby the model is formed from known (two-dimensional) image data taken at least from its implant area and environment. The model best suited for the patient and a reference model object, respectively, best resembling the model of the patient are selected from this comparison and a virtual implant model is generated according to this model. From the virtual implant model data present in the computer, computer numeric controlled (CNC) data are on-line produced for a program controlled manufacture of the implant. The real-medical reference data can be compared in a database to the medical data taken from a number of probands (third persons) as well as to the data from the patient him/herself, whose body symmetry (in particular mirror-symmetrical body regions, doubly present) is taken into consideration with respect to the selection for and generation of, respectively, a patient reference model. Even data, which do not show this defect or are indicative of changes in the same, can be used for this comparison.
In this way the implant is virtually customized modeled in a very short time under aesthetic and functional aspects and only by computational expenditures (software). Furthermore, the implant is very accurately adapted to the shape of the defect site on the patient as concerns any desired form, size and degree of complexity of the required implant. By means of the virtual implant model, which has been generated and adapted to the defect site and to typical reference data, respectively, by CAD/CAM, the attending surgeon can obtain very concrete data for a physical planning of the operation on the virtual model. He can already simulate the progress of an operation in advance of the intervention so that the proper operation and its progress can be better prepared, carried out and its success evaluated more realistically and, if necessary, to have it discussed with the patient a priori and agreed upon. The implant model is extracted from the virtual reference model of the patient by employing mathematical algorithms. Therefrom the control data for the implant, which has to fill respectively to close the defect site, are on-line deduced.
Thus, the implant can be physically and program-controlled manufactured on-line by exploiting the advantages of CNC which is known per se. Thereby it is not necessary to have any intermediate models or test models (in particular for copying, for tests, for improvements and for corrections as well as for a new manufacture, if necessary). Implants of nearly any desired form and size as well as made of any desired material, including ceramics and titanium, can be manufactured by computer numerical controlled (CNC) production machines into which the data input is computer aided. Thus the implant can be selected for each patient with respect to the required properties (function, strength, absorbability, endurance, aesthetic appearance, biological compatibility etc.). The generation of the implant, which is thus obtained in a very short time and which can be repeated just as quickly under new or changed aspects of the operative intervention, thus reduces the time and routine schedule in the clinical work. Furthermore, the stress for the surgeon and the health risk for the patient are reduced, too. In particular, from the viewpoint of the patient it is a further advantage that a high aesthetic of the implanted defect area is obtained by the accurate adaptation of the implant to be generated to the defective range, and that surgical corrections, refinements as well as other follow-up operations are avoided or at least reduced as to their extent and number.
In the following, the invention will be explained in more detail by virtue of the embodiments by reference to the following drawings, in which:
As an example, the case of a patient will be illustrated who has a complicated large area defect (for example, resulting from an accident, a tumor etc.) in the upper half of the cranium. In
For a precise diagnosis and for a later implant generation medical two-dimensional image data 1 (two-dimensional tomograms) of a defect area 5 and of the environment of the same (refer to
In a cooperation between a physician and a design engineer the defect area is precisely defined and marked in this virtual three-dimensional patient model 3 by utilizing user-specific computer programs especially applicable for this purpose.
In the next step, the implant design engineer has several methods at his disposal for generating precisely fitting implants. These methods are:
1. When in a three-dimensional patient model 4 (shown in a cross-sectional view in
2. When in a three-dimensional patient model 10 (shown in a lateral view in
3. In special cases, when for example the defect partially lies in the plane of symmetry, both methods (inversion according to item 1 and database comparison according to item 2) can be used one after the other and the results will be combined to a three-dimensional reference model for the implant modeling.
The selection and/or the shaping of the three-dimensional reference model after at least one of the methods mentioned hereinabove and the generation of the virtual implant model from the three-dimensional reference model are performed merely by computation. By this processing both, a very rapid and a very precisely fitting generation and subsequent manufacture of the implant for the operative insert on the patient is given.
The present virtual implant model 9 (
After designing the virtual implant model 9, a generation/simulation of the CNC-data for the physical implant manufacture and the transfer of the virtual implant model into a usable implant are carried out.
List of Reference Numerals
Number | Date | Country | Kind |
---|---|---|---|
199 22 279 | May 1999 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP00/04166 | 5/10/2000 | WO | 00 | 1/9/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/68749 | 11/16/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4097935 | Jarcho | Jul 1978 | A |
4436684 | White | Mar 1984 | A |
4575805 | Moermann et al. | Mar 1986 | A |
4822365 | Walker et al. | Apr 1989 | A |
4936862 | Walker et al. | Jun 1990 | A |
4976737 | Leake | Dec 1990 | A |
5360446 | Kennedy | Nov 1994 | A |
5365996 | Crook | Nov 1994 | A |
5370692 | Fink et al. | Dec 1994 | A |
5432703 | Clynch et al. | Jul 1995 | A |
5448489 | Reuben | Sep 1995 | A |
5452407 | Crook | Sep 1995 | A |
5554190 | Draenert | Sep 1996 | A |
5687305 | Graham et al. | Nov 1997 | A |
5741215 | D'Urso | Apr 1998 | A |
5765561 | Chen et al. | Jun 1998 | A |
5769092 | Williamson, Jr. | Jun 1998 | A |
5798924 | Heuser et al. | Aug 1998 | A |
5824085 | Mittelstadt et al. | Oct 1998 | A |
5824111 | Schall et al. | Oct 1998 | A |
6112109 | D'Urso | Aug 2000 | A |
6254639 | Peckitt | Jul 2001 | B1 |
6334853 | Kopelman et al. | Jan 2002 | B1 |
6463351 | Clynch | Oct 2002 | B1 |