The present invention relates to a method for acquiring and processing data in geochemical exploration.
Nowadays, geochemistry has been widely utilized in the exploration for metal minerals and oil/gas resources as well as in the environmental monitoring. However, the collection of geochemical samples still follows the traditional way, wherein a sample is collected at a certain depth for each station. Several basic means for collection of soil samples include: sampling by digging, sampling with a percussion drill and shallow well sampling. Meanwhile, the gas samples are usually collected with a vacuum syringe by drilling to a desired depth. Mineral anomalies are then observed by analyzing these soil or gas samples. The above sampling method can only obtain the information of lateral variation for the geochemical anomaly at a certain depth, and thus is generally difficult to satisfy the exploration requirements such as layer-by-layer sampling and isobathic sampling. As a result, it is difficult to study the variation pattern of the geochemical indicators in the same layer or under isobathic condition. The anomaly variations relative to the depth cannot be realized. In particular, the anomaly characteristics caused by modern anthropogenic pollution is significantly different from anomaly characteristics caused by underground metal minerals or reservoirs. As the depth increases, the former is usually weakened, whereas the latter is enhanced. One type of data can hardly identify the type of anomalies, thereby leading to wrong conclusions in the actual exploration practice. The typical method does not result in satisfactory results. The above-mentioned problems affect further development of the typical sampling method because the typical method itself cannot solve these problems.
The objects of the present invention is to provide a method for geochemical gradient exploration by which the variation pattern in the same layer or under isobathic condition can be obtained.
In order to achieve the above object, the present invention is carried out by the following technical solution:
(1) At each station, a set of samples are obtained by alternately collecting soil samples and gas samples at an interval of 0.5-1 meter underneath the earth surface. Said alternately collecting in step 1) may be carried out by collecting soil and gas samples from shallow layers to deep layers, wherein the depth is in the range of 20-50 meters.
(2) The obtained soil and gas samples are analyzed for their respective geochemical indicators. Said analysis for the geochemical indicators may comprise detecting the composition and content of hydrocarbons in the soil and gas samples. Said hydrocarbons may comprise methane, and said content may be the content of methane.
(3) Curves of the geochemical indicator(s) verse depth and curves of the geochemical indicator(s) gradient verse depth are created based on the analysis of the geochemical indicator(s) for each station. Then the profile curves of the geochemical indicator(s) and the profile curves of the geochemical indicator(s) gradient for each depth are created, wherein the profile is along the survey line;
(4) Contours (isoline maps) of the geochemical indicator(s) and contours (isoline maps) of the geochemical indicator gradient for the profile are created based on the curves obtained in step (3);
(5) A three-dimensional (3D) visible diagram of areal acquisition is created based on the contours obtained in step (3).
(6) The area enriched with metal minerals or reservoirs is determined based on the variation characteristics of the geochemical indicators relative to the change in depth and the anomalies of the geochemical indicators gradient in the 3D visible diagram. Said area enriched with metal minerals or reservoirs in step 6) is an anomalous zone with values of the geochemical indicator increasing with depth in 3D visible map, which is the oil-bearing zone or the zone enriched with metal minerals.
The present invention will be described in detail below with reference to the drawings.
The present invention can be implemented by the following steps:
Station locations for collecting the geochemical samples are determined based on the coordinates from on-site survey. At Station 1, for instance, soil and gas samples are collected with a specialized driller underneath an earth surface up to a depth of 50 meters. A set of samples are obtained by collecting soil and gas samples at an interval of 1 meter. In other words, the first soil sample is collected when reaching 1-meter depth and stored in a sample bag, and the first gas sample is collected when reaching 2-meter depth, sealed in a glass tube and labeled as q1, followed by sending them to a sample analyzing vehicle. Subsequently, the second soil sample is collected when reaching 3-meter depth, whereas the second gas sample is collected when reaching 4-meter depth. Up to 50-meter depth, 25 soil samples (t1, t2 . . . t25) and 25 gas samples (g1, g2 . . . g25) are collected from such station. The driller is then transported to the second station and continues to collect the samples at the second station. The above operations are repeated so as to obtain the soil and gas samples at the second station. The same procedure is further repeated until the sampling for all the stations have been finished. The results are shown in
The geochemical indicators of the samples are analyzed by a method similar to conventional geochemical methods, wherein the gas samples are analyzed in-situ, whereas the soil samples are sent to a base station for analysis.
The content of various geochemical indicators, such as methane, ethane and propane etc., can be obtained by analyzing the composition and content of hydrocarbons in the soil and gas samples. For example, the depth indicators of methane for the soil samples from Station 1 are Ft1, Ft2, Ft3 . . . Ft25, and the depth indicators of methane for the gas samples at Station 1 are Fq1, Fq2, Fq3 . . . Fq25. Similarly, a series of data are obtained from the other stations.
Curves of geochemical indicators versus depth are created based on the analysis of the geochemical indicators for each station, wherein the depth is the vertical axes with “meter” as the unit and geochemical indicators are horizontal axes with “ppm” as the unit. The curves of methane versus depth is created and shown in
The profile curves of methane indicator are formed by forming a profile along the survey line with the methane indicator from all the stations. The horizontal axis is the stations and the vertical axis is the methane indicator. The profile curves of methane are shown in
The profile curves of geochemical indicators versus survey depth are created by combining the curves of methane versus survey depth from all stations into a profile. The horizontal axis is the stations and the vertical axis is the depth. The profile curves of methane versus survey depth are shown in
The diagram of contours (isolines) of methane indicator is created based on the methane indicators of every survey line, wherein the horizontal axis is the stations and the vertical axis is the depth. The diagram of contours of methane indicator versus survey depth for one of the survey lines is shown in
As for the areal acquisition, the 3D visible diagram of methane is created in light of 3D coordinates, that is, the planimetric coordinates are the directions of south and north, and the vertical axis is the survey depth. Meanwhile, the 3D diagram of the methane indicator gradient can also be created.
(4) Identifying the area enriched with reservoirs or metal minerals based on the variation characteristics of the geochemical indicator versus depth and the anomalies of the geochemical indicators gradient as illustrated in the above-mentioned diagrams comprising the methane curves versus depth, the profile curves, the profile curves versus survey depth, section diagram of contours, the 3D visible diagram and diagrams of the corresponding gradient. An anomalous zone where the methane indicator, among others, anomalously increases with the depth is the oil-bearing zone or the zone enriched with metal minerals.
The present invention not only avoids the false anomaly caused by the interference of earth surface conditions, but also makes it possible to discover variation characteristics of the geochemical indicator relative to changes in depth, in particular the influence of the lithological variation of the strata to the geochemical indicator(s), and consequently to improve the accuracy for identifying deep reservoirs by geochemical exploration.
Number | Date | Country | Kind |
---|---|---|---|
201010611852.6 | Dec 2010 | CN | national |
The present application is an application filed under 35 U.S.C.§371, claiming priority to PCT/CN2011/000390, filed Mar. 11, 2011, which claims priority to CN 201010611852.6, filed on Dec. 29, 2010. The contents of these applications are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN11/00390 | 3/11/2011 | WO | 00 | 8/23/2013 |