The invention relates to a method for grinding a machine component that is driven to rotate about its longitudinal axis and that has at its one axial end a journal and at its opposing end an interior recess, wherein exterior surfaces are ground using a first grinding wheel and the circumferential surface of the interior recess is ground using a second grinding wheel and a workpiece headstock, a tailstock, and at least one steady are provided for clamping the machine component during grinding, and relates to a grinding machine like a universal, circular, or non-circular grinding machine for performing the method.
When grinding such machine components that have a relatively complicated configuration, it is known to clamp the machine component at its ends between a workpiece headstock and a tailstock and to grind different areas on the exterior contour of the machine component using different grinding wheels. If there is a recess at the end of the machine component, it has been suggested to clamp the machine component on one side and at the opposing freely accessible end of the machine component to grind both exterior areas and the contour of the interior recess using grinding wheels having different sizes. Such a method may be found for instance in DE 23 33 041. With machine components that are clamped on one side, it is also customary to support the opposing free end with a steady. DE 101 44 644 A1 describes using steadies for supporting rotating workpieces during grinding using a plurality of grinding wheels.
In all of these cases, the required machining processes can be performed in a single, unchanged clamping process on one and the same machine.
However, the machine component to be ground in accordance with the invention has at its one end a journal that has a smaller diameter compared to the other areas of the machine component. This journal must also be centered very precisely and then circle-ground on its exterior circumference. In addition, the exterior areas and the interior recess must be ground. In this case it is not possible to grind using the known methods because certain areas of the machine component are not accessible when the normal clamping methods are used. In particular if the machine component in question is a gear shaft, the demands on accuracy are very stringent with respect to dimensional accuracy and centering. In some cases even the slightest changes, which can occur due to inaccuracy when grinding, can lead to extremely disadvantageous effects.
It is therefore the object of the invention to provide a grinding method and a grinding machine with which the machine component can be at least finish-ground in a single grinding machine and without intermittent position changes, i.e. under clamped conditions that remain the same to the greatest extent possible.
This goal is attained using a method in accordance with the totality of the features in claim 1 and using a grinding machine having the totality of the features in claims 9.
With the method and the grinding machine in accordance with the invention it is possible to adjust to different clamped conditions without having to change the position of the machine component in the grinding machine, the so-called clamped position, to do so.
The following clamped positions should be stressed:
With the exception of the journal, all of the exterior areas of the machine component can be machined in clamped condition a. Circular and non-circular grinding are possible. Not only can circumferential areas be ground on the exterior contour of the machine component, but also end faces and tapered transition surfaces. In clamped condition a it is also possible to grind at least one steady seat. The steady seat can be ground while the exterior contours are ground or in a separate work step. It is particularly desirable to prepare the steady seat as the first work sequence after exterior grinding and prior to grinding the interior recess. Turned recesses can also be added with no problem in clamped condition a.
In clamped condition b, the machine component is already centered by the centering tip of the workpiece headstock and the positioned steady. In this clamped condition it is possible to grind the circumference of the interior recess with great accuracy. Both circular and non-circular grinding are possible, the X, Z, and at least C axes travel in an interpolated manner. Prismatic contours for the interior recess are possible with nothing further, as is a tapered longitudinal progression for the interior recess.
In clamped condition c it is possible to grind the round cross-section of the journal with more precise centering without it being necessary to change the clamped position of the machine component within the grinding machine. A certain axial thrust exerted by the tailstock is enough for the centering tip of the workpiece headstock to cause the machine component to rotate because the rotational resistance during circular grinding of the relatively small journal is significantly lower than with the other grinding processes.
CBN grinding wheels must be used for grinding in all of the clamped conditions.
The grinding allowance for the interior recess can be determined in that the distance between one shoulder of the machine component and the sleeve of the tailstock is determined using an electronic positioning head.
The interior recess of the machine component can have a conical or cylindrical contour, or, as stated in the foregoing, any desired contour. However, a centering bore of preferably 60° must be required. If a correspondingly conically configured interior recess is provided anyway, it can naturally be used directly for centering.
Using the inventive method and the grinding machine therefor it is possible to precision-grind the machine component in question with particularly high quality using one and the same grinding machine. In this manner it is possible to produce significantly enhanced dimensional, shape, and position accuracies on the machine part. Moreover, no interim storage for semi-finished parts is required because the workpiece is completely precision ground in one and the same machine. This means that there is no need for expensive interim storage for semi-finished parts.
Additional advantageous embodiments are the subject matter of dependent claims.
The invention is described in the following in greater detail using exemplary embodiments that are depicted in the drawings.
The grinding machine depicted in
Arranged coaxial with the workpiece headstock 4 axially spaced therefrom is the tailstock 7. The latter has the usual tailstock sleeve 8 that terminates in an adapted sleeve tip 9 (
Labeled 11 is a steady that comprises a steady base 28 and a movable support part 29 (
A total of four measuring devices 13, 14, 15, and 30 are shown in the figures, and they control and regulate the grinding process. A dressing device 12 dresses the grinding wheels present on the grinding machine.
The grinding machine is equipped with three grinding spindles 19, 22, and 25 that are all disposed on a common grinding headstock 17. The grinding headstock 17 is arranged pivotable about a vertical pivot axis 18 on a slide 16 that can itself be displaced perpendicular to the common rotational axis 10, that is, in the direction of the usual X axis. The pivot movement is indicated by the curved arrow B and the slide displacement movement is indicated by the straight, two-headed arrow X. Z and Z2 indicate the displacement directions in the longitudinal direction of the workpiece and parallel thereto, respectively, while C depicts the rotation of the machine component 31 about the common rotational axis 10.
The first grinding wheel 19 bears the first grinding wheel 20, which rotates about the first rotational axis 21. The first grinding wheel 20 grinds the outer contour of the machine component 31. In the exemplary embodiment selected here, the first grinding wheel 20 has two abrasive layers 20a and 20b arranged perpendicular to one another; the first grinding wheel 20 can therefore grind both rotationally symmetrical circumferential surfaces and also end faces that are at the top in the exemplary embodiment see especially
The second grinding spindle 22 bears the second grinding wheel 23, which rotates about the second rotational axis 24, has a small diameter, and grinds the rotationally symmetrical interior recess 36 of the machine component 31, as depicted in particular in
Only the first grinding spindle 19 and the second grinding spindle 22 are needed to perform the inventive method.
Labeled 25 is a third grinding spindle that can be used for additional machining processes such as for instance in circumferential or end faces that are to be ground or turned recesses that are to be ground.
In addition, the clamping jaws 27 are engineered such that the machine component 31 is pressed in the axial direction onto the centrically circumferential centering tip 26 of the chuck 6.
In this manner increased centering accuracy for the machine component 31 is attained.
On the opposite side of the machine component 31, the conically adapted pin 9 of the tailstock sleeve 8 is inserted into the tapered interior recess 36.
The steady 11 is in its retracted position; its movable support part 29 is retracted. In this first clamped position, the first grinding wheel 20 is positioned against the transition area 34 of the machine component 31, and a steady seat 39 is ground there. The grinding location is indicated by a short double line. The grinding performed is peel grinding, the grinding direction in
The common rotational axis 10 and the first rotational axis 21 are not in a common plane, but rather are also positioned in a vertical direction somewhat obliquely to one another so that there is largely only point contact on the grinding location.
Furthermore, the tailstock 7 has withdrawn from the machine component 31 in the axial direction so that the second grinding spindle 22 can be brought into the active position in front of the rotationally symmetrical interior recess 36 of the workpiece 31 by pivoting the grinding headstock 17 about the pivot axis 18. The tailstock 7 must be withdrawn by a length L, which is not available on conventional universal circular and non-circular grinding machines and which is long enough that the second grinding spindle 22 can be inserted in the space between tailstock 7 and machine component 31 for interior grinding. The length L is approximately 3 to 5-times longer than the conventional sleeve travel. This creates the second clamped condition. Now the rotationally symmetrical circumferential surface of the interior recess 36 is ground using the second grinding wheel 23.
Thus, in the re-created first clamped condition in accordance with
Finally, however, the journal 32 should also be ground;
The various phases of the grinding process have been controlled, monitored, and somewhat regulated by the measuring devices 13, 14, 15, and 30. It must be stressed that all method steps have been performed in the same grinding machine with the machine component 31 in an unchanged clamped position.
The machine component can now be unloaded after the finish-grinding.
Other machining processes, such as for instance producing turned recesses, are possible with the third grinding spindle 25, however, provided the latter is not used for entirely different machining purposes.
1 Machine bed
2 Guides
3 Grinding table
4 Workpiece headstock
5 Drive motor for 4
6 Chuck for 4
7 Tailstock
8 Tailstock sleeve
9 Sleeve tip
10 Common rotational axis
11 Steady
12 Dressing device
13 First measuring device
14 Second measuring device
15 Third measuring device
16 Slide
17 Grinding headstock
18 Pivot axis
19 First grinding spindle
20 First grinding wheel
20
a Abrasive layer for circumferential side
20
b Abrasive layer for end face
21 First rotational axis
22 Second grinding spindle
23 Second grinding wheel
24 Second rotational axis
25 Third grinding spindle
26 Centering tip
27 Clamping jaws
28 Steady base
29 Movable support part
30 Fourth measuring device
31 Machine component
32 Journal
33 Longitudinally-extended shaft part
34 Transition part
35 Flange
36 Rotationally symmetrical interior recess
37 Undercut area
38 Groove
39 Steady seat
Number | Date | Country | Kind |
---|---|---|---|
10 2007 009 843.1 | Feb 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/052395 | 2/27/2008 | WO | 00 | 7/22/2009 |