This relates to a method for a rapid change in service for rail tank cars from carrying heated heavy oils or bitumen to transporting light hydrocarbon fractions.
Currently, when heavy Canadian crude oil is transported by rail to terminals or refineries in the U.S., the cars are sent back empty. At the same time, large quantities of light hydrocarbons such as condensate and naphtha travel north from the U.S. to the western Canada producers of the heavy oil to be used as diluent so that bitumen can be reduced in viscosity to a point where it can flow in a pipeline at ambient temperatures. At present, the empty railcars are, for the most part, not returned loaded with light hydrocarbons because it takes a long time for the insulated cars to cool down before they can be safely loaded with light hydrocarbons, which means that they either would have to be removed off-site or take up precious space inside terminals or refineries.
Currently, large quantities of bitumen are produced from tar sands either through surface mining or by steam assisted gravity drainage, notably in Alberta, Canada. At ambient temperatures, the viscosity of the bitumen thus produced is too high to allow transportation by pipeline or other conventional means of transportation such as unheated tank trucks, railcars or vessels. Therefore the bitumen is brought to distant markets either after conversion to lighter synthetic crude oil or after dilution with light hydrocarbon fractions, usually natural gas condensates, to a viscosity that allows conventional handling methods at ambient temperatures. The conversion to synthetic crude oil and the dilution with light hydrocarbon fractions are costly processes that result in end products that have properties that are less desirable and lead to yield losses and additional processing costs in refineries when compared to mixtures of conventional crude oil and undiluted bitumen.
It is in principle possible to transport undiluted bitumen in insulated railcars over great distances with only minimal heat loss, so that even after 15 to 21 days, the time required to bring a dedicated train of 100 or more railcars (referred to in the industry as “unit trains”) from the principal producing regions in Alberta, Canada, to major refining centers such as the US Gulf Coast, the bitumen is still hot enough to be discharged in liquid form. Even with longer transit times, only minimal heating, usually in the form of steam supplied to coils attached to the shell of the rail tank car, is necessary to be able to empty the rail car. The overall economics of transportation of undiluted bitumen by rail compare very favorably with the transport of diluted bitumen by pipeline, because of savings in transportation cost of the diluent, and the cost of the diluent itself. The advantage of transportation by rail and the overall energy efficiency of the process can be further enhanced by loading the railcars with a light hydrocarbon liquid as a backhaul cargo to be used as a diluent in the transportation of additional bitumen by pipeline. Overall, there is a shortage of suitable diluents such as natural gas condensates in the bitumen producing regions, while there is an increasing excess of light hydrocarbons in the US as a result of increased natural gas production.
Typically, a rail tank car must be cooled down first before the light hydrocarbons can be loaded in order to avoid the flashing off of flammable hydrocarbon vapors. Additionally, the rail tank cars may have to be purged with an inert gas such as nitrogen when a railcar is still containing air before the flammable light hydrocarbons can be introduced. The cooling down period and the purging with inert gas adds significantly to the turnaround time of the railcars, which translates into a considerable expense as well as space requirements for the parked rail tank cars. In addition, there are the costs of the inert gas used to purge the car and the losses of hydrocarbon vapor contained in the purged gas, which are usually not recoverable but are destroyed in special combustion systems.
Some embodiments are described with respect to the following figures:
Bituminous heavy crude oil is kept at elevated temperatures on the order of 80 to 120° C. in order to flow and may be transported in one direction, and light hydrocarbons comprising of mixtures of components of which the majority will have molecular chain lengths of 2 to 12 carbon atoms, such as Liquefied Petroleum Gas (LPG), Natural Gas Liquids (NGL), light naphtha, natural gasoline and natural gas condensates may be transported in the opposite direction.
Alternatively, the railcar may be specially designed to withstand full vacuum. To prevent the collapse of a vessel under internal vacuum, a common practice in the industry is to provide the shell of the vessel with external or internal stiffening girders. In one embodiment, external heating coils function also as the stiffening rings that allow the railcar to withstand full vacuum without the risk of collapse.
In a first embodiment, heavy bitumen is transported in rail tank cars designed to withstand overpressure as well as full vacuum, such as widely used in the transportation of LPG and certain chemicals. The rail tank car is insulated with suitable, industry standard insulation materials, such as fiberglass, mineral wool or foam, usually in thicknesses in the order of 10 cm (4 inch) covered with suitable sheeting to prevent ingress of moisture into the insulating material.
The rail car is loaded at its origin with bitumen at a suitably high temperature, i.e., in a range of 90 to 120° C. (190 to 200° F.) in order to arrive at its destination after a journey that may take up to 10 days, at temperatures whereby the bitumen still flows freely, i.e., in a range of 70 to 90° C. (160 to 190° F.), at which temperatures the bitumen typically will have a dynamic viscosity in the order of 500 to 2,000 mPa·s.
The pressure in the vapor space of the rail tank car at arrival will correspond to the vapor pressure of the bitumen at the temperature at that time, which is close to full vacuum, after the bitumen has absorbed any remaining light hydrocarbon vapors of the previous cargo during the transit time. The presence of a vacuum in the vapor space allows a convenient check on the potential ingress of air, which might lead to unsafe conditions if highly flammable light hydrocarbon vapors are introduced into the rail tank car.
The rail tank car has connections for transfer of liquid and vapor as per industry standards. For LPG-type railcars these connections are usually at the top, whereby the liquid phase nozzle is provided with a dip-pipe that extends into the railcar to within a short distance from the bottom. At its destination, the rail tank car's liquid outlet is connected to a collection system for the bitumen, and the vapor nozzle is connected to a system that can supply light hydrocarbon vapors under pressure. The pressure of the light hydrocarbon vapors is used to fill the vacuum and subsequently to maintain sufficient pressure to displace the bitumen, which will typically be in a range of 3 to 4 bar g. A level switch in the liquid line is used to detect when the rail car is empty and closes a valve in the liquid line to prevent the breakthrough of light hydrocarbon vapors into the bitumen storage tank. Other means of preventing vapor breakthrough, as known to those skilled in the art, can also be used.
At completion of the discharge of the bitumen, the connection to the bitumen system is broken and the liquid phase nozzle of the rail tank car is then connected to a system that can deliver liquid light hydrocarbons. Depending on the composition of the liquid light hydrocarbons and the temperature of the rail tank car after completion of the discharge of bitumen, a certain portion of the light hydrocarbon liquid may vaporize when brought into contact with the still hot tank wall of the rail tank car and the liquid heel of bitumen still remaining at the bottom. During this phase, the flow of the light hydrocarbon liquid may be carefully controlled to avoid excessive build up of pressure in the rail tank car, preferably by a pressure controlled automatic flow control valve. The vaporized light hydrocarbon vapors are vented through the vapor phase connection of the rail tank car to the same system through which the light hydrocarbon vapors were supplied to displace the bitumen. The flow in this system is now reversed and the vapors are led from the vapor space of the rail tank car to a condenser where the vapors are recovered in liquid form. After the rail tank car and its contents are cooled down, for example to a temperature in the range of about 30 to 40° C. at which no further flashing off of liquid occurs, the filling of the rail tank car can proceed at loading rates of for example greater than 100 cubic meters per hour.
Using the process described above, and handling up to 60 rail tank cars simultaneously, it is possible to complete the unloading of a 120-car unit train with bitumen and reloading it with light hydrocarbon diluent in less than 12 hours.
In a second embodiment, the rail tank cars may be specially built Dual Purpose cars such as described in the prior art, or general insulated and coiled bulk liquid rail tank cars. Typically, such rail tank cars are designed for pressures up to 5 bar g (75 psi) but are not designed to withstand full vacuum and are protected by a vacuum relief valve that will let in ambient air if the pressure in the vapor space of the rail tank car falls below atmospheric pressure. At their origin, after having been discharged from light hydrocarbon liquids and subsequent loading of bitumen at a suitably high temperature, the rail tank cars are now pressurized with an inert gas such as nitrogen to a pressure that is above ambient and below the maximum allowable working pressure of the rail tank car. Pressurizing the rail tank cars with nitrogen after loading with hot bitumen will prevent a drop in pressure in the vapor space to below atmospheric pressure as the car cools down during transit, which could lead to ingress of air as the rail tank car's vacuum relief valve would open.
On arrival at its delivery destination for the bitumen, the nitrogen pressure allows a convenient check against the possible ingress of air prior to the introduction of highly flammable light hydrocarbon vapors. The excess pressure of nitrogen is vented off to the atmosphere before offloading the rail tank car. Depending on the amount of hydrocarbon present in the nitrogen and on local environmental regulations, such venting may require the use of a Vapor Destruction Unit (VDU) or a Vapor Recovery Unit (VRU). After venting off the nitrogen, as with the first embodiment, pressurized light hydrocarbon vapors are used to displace the bitumen and empty the rail tank car. Once empty, the rail tank car is reloaded with light hydrocarbon liquid. This time, because of the nitrogen now present in the vapors resulting from the initial flashing off and the vapors later displaced from the rail tank car as it is filled, the condensation process will not be complete and uncondensed inert gases will have to be vented. Since these gases will contain certain amounts of hydrocarbons, such venting will have to take place by means of a VDU or VRU, as may be required by local environmental regulations.
The first embodiment may be advantageous over the second in terms of operational consideration, in some cases, because there is one fewer process step because it does not require venting of nitrogen, the cost of nitrogen is avoided, and there are no venting losses of light hydrocarbon vapors. The first embodiment also will require less capital, because there is no need for a knock-out separator and VDU or VRU. However, whether the first embodiment in its totality offers a financial advantage over the second or not will depend on market factors such as the differential in leasing cost for LPG type rail tank cars versus more common bulk liquid tank cars. The latter also have a slight advantage in that they can carry a larger backhaul cargo of light hydrocarbon liquids (for high-density bitumen, the carrying capacity in both cases is determined by the maximum allowable weight per rail car).
Referring to
In the rail tank car 9 the pressure of the light hydrocarbon vapors displaces the bitumen, which is pushed out through the liquid phase connection(s) of the rail tank car 10 through a loading arm with swiveling joints or a flexible hose connecting the rail tank car through a valve 11 into a heated and insulated line that transfers the hot bitumen, labeled 12, into a heated and insulated storage tank 13. As another example, the hot bitumen can be mixed with lighter crude oils immediately after discharge, through in-line blending or other suitable means as known to those skilled in the art, after which it can be stored in normal storage tanks without the need for insulation and heating (not shown).
According to the second embodiment, shown in
References throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.