Method for heating and/or air-conditioning in a vehicle

Information

  • Patent Grant
  • 11359122
  • Patent Number
    11,359,122
  • Date Filed
    Tuesday, March 20, 2018
    6 years ago
  • Date Issued
    Tuesday, June 14, 2022
    a year ago
Abstract
A method for heating and/or air-conditioning in a motor vehicle interior by means of a reversible refrigeration loop in which a refrigerant fluid circulates, said fluid including: between 4 and 6 wt. % of difluoromethane (HFC-32); between 2.5 and 3.5 wt. % of pentafluoroethane (HFC-125); and between 91 and 93.5 wt. % of tetrafluoropropene, preferably 2,3,3,3-tetrafluoropropene.
Description
TECHNICAL FIELD

The present invention relates to a process for heating and/or air conditioning a motor vehicle passenger compartment.


BACKGROUND

In motor vehicles, the heat engine comprises a circuit for circulation of a heat-exchange fluid which is used for the cooling of the engine and also for the heating of the passenger compartment. To this end, the circuit comprises in particular a pump and a unit heater in which circulates a stream of air which recovers the heat stored by the heat-exchange fluid in order to heat the passenger compartment.


Furthermore, an air-conditioning system intended to cool the passenger compartment of a motor vehicle comprises an evaporator, a compressor, a condenser, an expansion valve and a fluid capable of changing (liquid/gas) states commonly denoted refrigerant. The compressor, directly driven by the engine of the vehicle using a belt and a pulley, compresses the refrigerant, forcing it back under high pressure and high temperature toward the condenser. The condenser, by virtue of forced ventilation, brings about the condensation of the gas which arrives in the gaseous state at high pressure and high temperature. The condenser liquefies the gas by virtue of the lowering in temperature of the air which passes through it. The evaporator is a heat exchanger which removes heat from the air which will be blown into the passenger compartment. The expansion valve makes it possible to regulate the flow rate for entry of the gas into the loop via a modification of passage section depending on the temperature and on the pressure in the evaporator. Thus, the hot air coming from the outside is cooled by passing through the evaporator.


The refrigerant widely used in motor vehicle air conditioning is 1,1,1,2-tetrafluoroethane (HFC-134a).


The document WO 2008/107623 describes a system for energy management of a motor vehicle comprising a reversible refrigerating loop with circulation of a refrigerant, means for inversion of the operating cycle of the refrigerating loop which can be moved between a position in refrigerating mode and a position in heat pump mode, at least one first source capable of recovering the energy of the refrigerant, and at least one second source capable of evaporating the refrigerant subsequent to the expansion of said refrigerant from the liquid state to the two-phase state, the inversion means being capable of making possible a flow of the refrigerant from the first recovery source in the direction of at least one evaporation source, when they are in a position identical to that corresponding to the heat pump mode.


However, with HFC-134a as refrigerant in the system as described in the document WO 2008/107623, when the external temperature is low, for example in the vicinity of −10° C., a negative pressure begins to be formed in the evaporator even before the compressor is started. This negative pressure, which results in an infiltration of air into the system, promotes corrosion phenomena and the degradation of the components, such as compressor, exchanger and expansion valve.


SUMMARY

It is an objective of the present invention to limit, indeed even to prevent, air from entering the evaporator of the refrigerating loop on starting up the compressor and/or to improve the efficiency of the refrigerating loop.


A subject matter of the present invention is thus a process for heating and/or air conditioning a motor vehicle passenger compartment using a reversible refrigerating loop, in which a refrigerant circulates, comprising a first heat exchanger, an expansion valve, a second heat exchanger, a compressor and means for inversion of the operation of the reversible refrigerating loop, characterized in that the refrigerant comprises (preferably consists of):

    • from 4% to 6% by weight of difluoromethane (HFC-32);
    • from 2.5% to 3.5% by weight of pentafluoroethane (HFC-125); and
    • from 91% to 93.5% by weight of tetrafluoropropene.


In particular, the abovementioned process for heating and/or air conditioning a motor vehicle passenger compartment comprises a stage of circulation of said refrigerant as defined above, namely comprising

    • from 4% to 6% by weight of difluoromethane (HFC-32);
    • from 2.5% to 3.5% by weight of pentafluoroethane (HFC-125); and
    • from 91% to 93.5% by weight of tetrafluoropropene.


Preferably, the heating and/or air-conditioning process comprises at least one of the following stages: a stage of evaporation of the refrigerant, a stage of compression of said refrigerant, a stage of condensation of said refrigerant and a stage of expansion of said refrigerant.


According to the invention, the percentages by weight are with respect to the total weight of said refrigerant.


Unless otherwise mentioned, throughout the patent application, the proportions of compounds shown are given as percentages by weight.


In the context of the invention, “HFO-1234yf” refers to 2,3,3,3-tetrafluoropropene.


In the context of the invention, “HFO-1234ze” refers to 1,3,3,3-tetrafluoropropene, and includes the cis isomer, the trans isomer and their mixtures.


According to another embodiment, the refrigerant is essentially composed of, preferably consists of:

    • from 4% to 6% by weight of difluoromethane (HFC-32);
    • from 2.5% to 3.5% by weight of pentafluoroethane (HFC-125); and
    • from 91% to 93.5% by weight of tetrafluoropropene.


Impurities can be present in such refrigerants, in a proportion, for example, of less than 1%, preferably of less than 0.5%, preferably of less than 0.1%, preferentially of less than 0.05% and in particular of less than 0.01%. These impurities do not have a significant impact on the properties of said refrigerants.


According to one embodiment, the refrigerant comprises (preferably consists of):

    • from 4.5% to 5.5% by weight of difluoromethane;
    • from 2.5% to 3.5% by weight of pentafluoroethane; and
    • from 91% to 93% by weight of tetrafluoropropene.


According to one embodiment, the refrigerant comprises (preferably consists of):

    • from 4.5% to 5.5% by weight of difluoromethane;
    • from 2.5% to 3.5% by weight of pentafluoroethane; and
    • from 91.5% to 93% by weight of tetrafluoropropene.


According to one embodiment, the refrigerant comprises (preferably consists of):

    • from 4.5% to 5.5% by weight of difluoromethane;
    • from 2.5% to 3.5% by weight of pentafluoroethane; and
    • from 91% to 92% by weight of tetrafluoropropene.


According to one embodiment, the refrigerant comprises (preferably consists of):

    • from 4.5% to 5.5% by weight of difluoromethane;
    • from 3% to 3.5% by weight of pentafluoroethane; and
    • from 91% to 92% by weight of tetrafluoropropene.


According to one embodiment, the tetrafluoropropene of the refrigerant is chosen from 1,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene; preferably, the tetrafluoropropene is 2,3,3,3-tetrafluoropropene.


According to one embodiment, the abovementioned refrigerant is chosen from the group consisting of the following refrigerants:

    • 5% by weight of difluoromethane, 3.3% by weight of pentafluoroethane and 91.7% by weight of tetrafluoropropene, in particular of 2,3,3,3-tetrafluoropropene;
    • 5% by weight of difluoromethane, 3% by weight of pentafluoroethane and 92% by weight of tetrafluoropropene, in particular of 2,3,3,3-tetrafluoropropene;
    • 5% by weight of difluoromethane, 3.1% by weight of pentafluoroethane and 91.9% by weight of tetrafluoropropene, in particular of 2,3,3,3-tetrafluoropropene;
    • 5% by weight of difluoromethane, 3.2% by weight of pentafluoroethane and 91.8% by weight of tetrafluoropropene, in particular of 2,3,3,3-tetrafluoropropene;
    • 6% by weight of difluoromethane, 3% by weight of pentafluoroethane and 91% by weight of tetrafluoropropene, in particular of 2,3,3,3-tetrafluoropropene;
    • 6% by weight of difluoromethane, 3.1% by weight of pentafluoroethane and 90.9% by weight of tetrafluoropropene, in particular of 2,3,3,3-tetrafluoropropene; and
    • 6% by weight of difluoromethane, 2.5% by weight of pentafluoroethane and 91.5% by weight of tetrafluoropropene, in particular of 2,3,3,3-tetrafluoropropene.


According to one embodiment, the refrigerant has a GWP of less than 150, preferably of less than or equal to 140, in particular of less than or equal to 130. The GWP can be calculated according to the instructions provided by the 4th report of the Intergovernmental Panel on Climate Change (IPCC). The GWP of the mixtures is in particular calculated as a function of the concentration by weight and the GWP of each component. The GWP values of the pure compounds are typically listed in the European F-Gas Directive (Regulation (EU) No. 517/2014 of the European Parliament and of the Council, of Apr. 16, 2014).


The abovementioned refrigerants are advantageously nonflammable or only slightly flammable.


The abovementioned refrigerants advantageously have a lower flammability limit of greater than 285 g/m3, preferably of greater than or equal to 287 g/m3, in particular of greater than or equal to 290 g/m3.


The abovementioned refrigerant advantageously results in a WCFF composition having a lower flammability limit of greater than 100 g/m3, preferably of greater than or equal to 105 g/m3, in particular of greater than or equal to 110 g/m3.


The abovementioned refrigerants, the corresponding WCFs and WCFFs, have a heat of combustion (HOC) of less than 19 000 kJ/m3. The heat of combustion according to the invention is defined and determined as indicated in the standard ASHRAE 34-2013. The “lower flammability limit” is defined in the standard ASHRAE 34-2013 as being the minimum concentration of a composition capable of propagating a flame through a homogeneous mixture of the composition and of air, under test conditions specified in the standard ASTM E681-04. It can be given, for example, in kg/m3 or in % vol.


A “WCF” (worst case of formulation for flammability) composition is defined in the standard ASHRAE 34-2013 as being a formulation composition, the flame propagation rate of which is the highest. This composition is very close to the nominal composition (said nominal composition corresponding, in the context of the invention, to a refrigerant according to the invention) with a degree of tolerance.


A “WCFF” (worst case of fractionation for flammability) composition is defined in the standard ASHRAE 34-2013 as being the composition, the flame propagation rate of which is the highest. This composition is determined following a method well defined in the same standard.


In the context of the present invention, the flammability, the flame propagation rate and the lower flammability limit are defined and determined according to the test appearing in the standard ASHRAE 34-2013, which refers to the standard ASTM E681 as to the equipment used.


As regards the flame propagation rate, the method of the tests described in the standard ASHRAE 34-2013 is that developed in the thesis by T. Jabbour, “Classification de l′inflammabilité des fluides frigorigènes basée sur la vitesse fondamentale de flamme” [Classification of the flammability of refrigerants based on the fundamental flame velocity] under the direction of Denis Clodic. Thesis, Paris, 2004. The experimental device uses in particular the vertical glass tube method (tube number 2, length 150 cm, diameter 40 cm). The use of two tubes makes it possible to carry out two tests with the same concentration at the same time. The tubes are in particular equipped with tungsten electrodes; the latter are placed at the bottom of each tube, 6.35 mm (¼ inch) apart, and are connected to a 15 kV and 30 mA generator.


The different compositions tested are described as nonflammable or flammable as such, according to the criteria defined in the standard ASHRAE 34-2013.


The abovementioned refrigerant advantageously has a flame propagation rate of less than 2 cm/s, preferably of less than or equal to 1.7 cm/s, preferentially of less than or equal to 1.6 cm/s, advantageously of less than or equal to 1.5 cm/s.


The abovementioned refrigerant is advantageously classified as 2 L according to the standard ASHRAE 34-2013. Following this standard, the 2 L classification requires a flame propagation rate of less than 10 cm/s.


The abovementioned refrigerants advantageously exhibit a good compromise between good energy performance qualities, low or zero flammability and low GWP, preferably a GWP of less than 150.


Due to their low flammability, the abovementioned refrigerants are advantageously safer when they are used in the process of the invention.


The abovementioned refrigerants can be prepared by any known process, such as, for example, by simple mixing of the different compounds with one another.


The term “heat-transfer compound”, respectively “heat-transfer fluid” or “refrigerant”, is understood to mean a compound, respectively a fluid, capable of absorbing heat by evaporating at low temperature and low pressure and of discharging heat by condensing at high temperature and high pressure, in a vapor compression circuit. Generally, a heat-transfer fluid can comprise just one, two, three or more than three heat-transfer compounds.


The refrigerant according to the invention can comprise stabilizing agents. Mention may in particular be made, among stabilizing agents, of nitromethane, ascorbic acid, terephthalic acid, azoles, such as tolutriazole or benzotriazole, phenolic compounds, such as tocopherol, hydroquinone, (t-butyl)hydroquinone or 2,6-di(tert-butyl)-4-methylphenol, epoxides (alkyl, which is optionally fluorinated or perfluorinated, or alkenyl or aromatic), such as n-butyl glycidyl ether, hexanediol diglycidyl ether, allyl glycidyl ether or butylphenyl glycidyl ether, phosphites, phosphonates, thiols and lactones.


According to the invention, the means for inversion of the operation of the reversible refrigerating loop are means for inversion of the operation of the refrigerating loop between a position in refrigerating mode and a position in heat pump mode.


The abovementioned inversion means can be means for modification of the course of the refrigerant in the reversible refrigerating loop, or means for inversion of the direction of circulation of the refrigerant in said loop.


The abovementioned inversion means can be a four-way valve, a switchover valve, a shut-off (on/off) valve, an expansion valve or their combinations.


For example, during the inversion of the mode of operation of the refrigerating loop, the role of a heat exchanger can be changed: for example, a heat exchanger can act as a condenser in a refrigerating mode or as an evaporator in a heat pump mode.


The reversible refrigerating loop can typically contain pipes, tubes, hoses, tanks or others, in which the refrigerant circulates, between the different exchangers, expansion valves, other valves, and the like.


According to the mode of operation of the loop, refrigerating or heat pump, the first heat exchanger can act as evaporator or as energy recuperator. It is the same for the second heat exchanger. In refrigerating mode, the second exchanger makes possible the cooling of the stream of air intended to be forced inside the passenger compartment of the motor vehicle. In heat pump mode, the second exchanger makes it possible to heat the stream of air intended for the passenger compartment of the motor vehicle.


The first and second heat exchangers are of the air/refrigerant type.


In the process according to the present invention, the refrigerating loop can be thermally coupled, through the heat exchangers, with the cooling circuit of the engine and/or of the electronic circuit. Thus, the loop can comprise at least one heat exchanger traversed both by the refrigerant and by a heat-exchange fluid, in particular the air or the water of the cooling circuit of the heat engine or electric motor, and/or of the electronic circuit.


According to an alternative form of the process, the first heat exchanger is traversed both by the refrigerant and by exhaust gases resulting from the heat engine of the motor vehicle; these can be in thermal communication with a heat-exchange fluid circuit.


According to an alternative form of the process, the first heat exchanger is traversed both by the refrigerant and by the heat resulting from the battery or from the electronic circuit of the motor vehicle, in particular of the electric motor vehicle.


The refrigerating loop in the process according to the present invention can comprise, as a bypass, at least one heat exchanger in thermal communication with a stream of air, intended to be admitted inside the heat engine of the motor vehicle, or with exhaust gases resulting from the motor vehicle heat engine, and/or with the heat resulting from the electric motor and/or from the electronic circuit of the electric motor vehicle.


The process according to the present invention is very particularly suitable when the external temperature is less than 3° C., preferably less than or equal to −2° C., preferentially less than or equal to −7° C., in particular less than or equal to −12° C., more preferentially still less than or equal to −17° C., for example less than or equal to −22° C., and advantageously less than −27° C., and preferably greater than or equal to −29° C.


The process according to the present invention is very particularly suitable when the temperature at the evaporator is less than 0° C., preferably less than or equal to −5° C., preferentially less than or equal to −10° C., in particular less than or equal to −15° C., more preferentially still less than or equal to −20° C., for example less than or equal to −25° C., and advantageously less than −30° C., and preferably greater than or equal to −32° C.


The process according to the present invention may be suitable simultaneously for motor vehicles having a heat engine, for motor vehicles having an electric motor and for hybrid motor vehicles, the latter being designed to operate alternately on a heat engine and an electric motor. It makes it possible to exert the best management over the contributions of energy according to the weather conditions (hot or cold) both for the passenger compartment and for the battery and in particular to supply heat or cold to the battery through a heat-exchange fluid circuit.


The reversible refrigerating loop, in which the refrigerant as defined above circulates, installed in motor vehicles is particularly suitable for the recovery of energy from the heat engine and/or from the electric battery and/or from the electronic circuit, of use for the heating of the passenger compartment and the engine/motor during a cold-start phase. This reversible refrigerating loop, when it comprises a pump, can operate in Rankine mode (that is to say, the compressor operates as a turbine) in order to upgrade the heat energy produced by the heat engine and subsequently transported by the refrigerant, after heat transfer.


The present invention also relates to the use of a reversible refrigerating loop in which circulates a refrigerant comprising (preferably consisting of):

    • from 4% to 6% by weight of difluoromethane (HFC-32);
    • from 2.5% to 3.5% by weight of pentafluoroethane (HFC-125); and
    • from 91% to 93.5% by weight of tetrafluoropropene;


      for heating and/or air conditioning a motor vehicle passenger compartment;


      said refrigerating loop comprising a first heat exchanger, an expansion valve, a second heat exchanger, a compressor and means for inversion of the operation of the reversible refrigerating loop.


Another subject matter of the invention is a device comprising the refrigerating loop as described above; in particular, the refrigerating loop comprises a first heat exchanger, an expansion valve, a second heat exchanger, a compressor and means for inversion of the operation of the reversible refrigerating loop.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a refrigerating loop according to a first embodiment of the invention.



FIG. 2 shows a refrigerating loop according to a second embodiment of the invention.



FIG. 3 shows a refrigerating loop according to a third embodiment of the invention.



FIG. 4 shows a refrigerating loop according to a fourth embodiment of the invention.



FIG. 5 shows a refrigerating loop according to a fifth embodiment of the invention.



FIG. 6 shows a refrigerating loop according to a fifth embodiment of the invention.



FIG. 7 shows a refrigerating loop according to a fifth embodiment of the invention.





DETAILED DESCRIPTION

According to a first embodiment of the invention, represented diagrammatically by FIG. 1, the refrigerating loop (16) comprises a first heat exchanger (13), an expansion valve (14), a second heat exchanger (15), a compressor (11) and a four-way valve (12). The first and second heat exchangers are of the air/refrigerant type. The first heat exchanger (13) is traversed by the refrigerant of the loop (16) and by the stream of air introduced by a fan. A portion or all of this same stream of air can also pass through a heat exchanger of the cooling circuit of the engine/motor and/or of the electronic circuit (not represented in the figure). In the same way, the second exchanger (15) is traversed by a stream of air introduced by a fan. A portion or all of this stream of air can also pass through another heat exchanger of the cooling circuit of the engine/motor and/or of the electronic circuit (not represented in the figure). The direction of circulation of the air is a function of the mode of operation of the loop (16) and of the requirements of the heat engine or electric motor. Thus, when the heat engine or electric motor is in operation and the loop (16) in heat pump mode, the air can be heated by the exchanger of the cooling circuit of the heat engine or electric motor and then blown over the exchanger (13) in order to accelerate the evaporation of the refrigerant of the loop (16) and thus to improve the performance qualities of this loop.


The exchangers of the cooling circuit can be activated using valves according to the requirements of the heat engine or electric motor (heating of the air entering the engine/motor or upgrading of energy produced by this engine/motor).


In refrigerating mode, the refrigerant put in motion by the compressor (11) passes through, via the valve (12), the exchanger (13) acting as condenser (that is to say, gives off heat to the exterior), subsequently the expansion valve (14) and then the exchanger (15) acting as evaporator, thus making possible the cooling of the stream of air intended to be forced inside the passenger compartment of the motor vehicle.


The refrigerating mode according to the invention can typically be an air-conditioning mode.


In heat pump mode, the direction of flow of the refrigerant is inverted via the valve (12). The heat exchanger (15) acts as condenser, while the exchanger (13) acts as evaporator. The heat exchanger (15) then makes it possible to heat the stream of air intended for the passenger compartment of the motor vehicle.


According to a second embodiment of the invention, represented diagrammatically by FIG. 2, the refrigerating loop (26) comprises a first heat exchanger (23), an expansion valve (24), a second heat exchanger (25), a compressor (21), a four-way valve (22) and a bypass branch (d3) fitted, on the one hand, to the outlet of the exchanger (23) and, on the other hand, to the outlet of the exchanger (25), the circulation of the refrigerant being considered in refrigerating mode. This branch comprises a heat exchanger (d1) traversed by a stream of air or a stream of exhaust gas and an expansion valve (d2). The first and second heat exchangers (23 and 25) are of the air/refrigerant type. The first heat exchanger (23) is traversed by the refrigerant of the loop (26) and by the stream of air introduced by a fan. A portion or all of this same stream of air can also pass through a heat exchanger of the cooling circuit of the engine/motor or of the electronic circuit (not represented in the figure). In the same way, the second exchanger (25) is traversed by a stream of air introduced by a fan. A portion or all of this stream of air can also pass through another heat exchanger of the cooling circuit of the engine/motor or of the electronic circuit (not represented in the figure). The direction of circulation of the air is a function of the mode of operation of the loop (26) and of the requirements of the heat engine and/or electric motor. By way of example, when the heat engine and/or electric motor is in operation and the loop (26) in heat pump mode, the air can be heated by the exchanger of the cooling circuit of the heat engine and/or electric motor and then blown over the exchanger (23) in order to accelerate the evaporation of the refrigerant of the loop (26) and to improve the performance qualities of this loop.


The exchangers of the cooling circuit can be activated using valves according to the requirements of the heat engine or electric motor (heating of the air entering the engine/motor or upgrading of energy produced by this engine/motor).


The heat exchanger (d1) can also be activated according to the energy requirements, whether in refrigerating mode or in heat pump mode. Shut-off valves (not represented in FIG. 2) can be installed on the branch (d3) in order to activate or deactivate this branch.


The exchanger (d1) is traversed by a stream of air introduced by a fan. This same stream of air can pass through another heat exchanger of the cooling circuit of the engine/motor and/or of the electronic circuit and also other exchangers placed on the circuit of the exhaust gases, on the intake of air to the engine/motor or on the battery in electric or hybrid cars.


In refrigerating mode, the refrigerant is put in motion by the compressor (21) passes through, via the valve (22), the exchanger (23) acting as condenser (that is to say, gives off heat to the exterior), it subsequently passes through:

    • the expansion valve (24) and then the exchanger (25) acting as evaporator, thus making possible the cooling of the stream of air intended to be forced inside the passenger compartment of the motor vehicle; and/or
    • the expansion valve (d2) and then the exchanger (d1) acting as evaporator, making possible, for example, the cooling of the stream of air intended to cool the electric motor and/or the electronic circuit and/or the battery.


In heat pump mode, the direction of flow of the refrigerant is inverted via the valve (22). The heat exchanger (25) and also the heat exchanger (d1) act as condensers, while the exchanger (23) acts as evaporator. The heat exchangers (25) and (d1) then make it possible to heat the stream of air intended for the passenger compartment of the motor vehicle and the battery.


According to a third embodiment of the invention, represented diagrammatically by FIG. 3, the refrigerating loop (36) comprises a first heat exchanger (33), an expansion valve (34), a second heat exchanger (35), a compressor (31) and a four-way valve (32). The first and second heat exchangers (33 and 35) are of the air/refrigerant type. The operation of the exchangers (33 and 35) is identical to the first embodiment presented in FIG. 1. At least one refrigerant/liquid exchanger (38 and/or 37) can be installed both on the circuit of the refrigerating loop (36) and on the cooling circuit of the heat engine or electric motor and/or battery, or on a secondary circuit of aqueous glycol solution.



FIG. 3 discloses an embodiment with two refrigerant/liquid heat exchangers (37 and 38). However, according to the abovementioned third embodiment, the refrigerating loop can comprise either the exchanger (37) or the exchanger (38) (mode not represented in FIG. 3).


The refrigerant/liquid exchanger (37 or 38) can be mounted in series with the heat exchanger (respectively 35 or 33) (as represented diagrammatically in FIG. 3), or in parallel with the latter. When it is mounted in series with the heat exchanger (35 or 33), the exchanger (37 or 38) can be placed before or after the exchanger (35 or 33) in the direction of circulation of the refrigerant.


The installation of the refrigerant/liquid exchangers without going through an intermediate gaseous fluid (air) contributes to the improvement in the heat exchanges in comparison with the air/refrigerant exchangers.


In refrigerating mode, the refrigerant put in motion by the compressor (31) passes through, via the four-way valve (32), optionally the exchanger (38), if present, acting as condenser (giving off heat through a secondary circuit to the air admitted to the heat engine and/or a system for upgrading energy), then the exchanger (33) acting as condenser (that is to say, gives off heat to the exterior), subsequently the expansion valve (34) and then the exchanger (35) acting as evaporator, thus making possible the cooling of the stream of air intended to be forced inside the passenger compartment of the motor vehicle, and optionally the exchanger (37), if present, acting as evaporator, thus making possible the cooling of a liquid which makes it possible, in its turn, to cool the air inside the passenger compartment of the vehicle via another liquid/air heat exchanger and/or to directly cool the battery.


In heat pump mode, the direction of flow of the refrigerant is inverted via the valve (32). The heat exchanger (37), if present, acts as condenser, the exchanger (35) also acts as condenser, while the exchanger (33) acts as evaporator, just like the exchanger (38), if present. The heat exchanger (35) then makes it possible to heat the stream of air intended for the passenger compartment of the motor vehicle. The heat exchanger (37) then makes it possible to heat a liquid which makes it possible, in its turn, to heat the stream of air intended for the passenger compartment of the motor vehicle via another liquid/air heat exchanger and/or to directly heat the battery.


According to a fourth embodiment of the invention, represented diagrammatically by FIG. 4, the refrigerating loop (46) comprises a first heat exchanger series (43 and 48), an expansion valve (44), a second heat exchanger series (45 and 47), a compressor (41) and a four-way valve (42). A bypass branch (d3) fitted, on the one hand, to the outlet of the exchanger (43) and, on the other hand, to the outlet of the exchanger (47), the circulation of the refrigerant being considered in refrigerating mode. This branch comprises a heat exchanger (d1) traversed by a stream of air or a stream of exhaust gas and an expansion valve (d2). The operation of this branch is identical to the second embodiment presented in FIG. 2.


The heat exchangers (43 and 45) are of the air/refrigerant type and the exchangers (48 and 47) are of the liquid/refrigerant type. The operation of these exchangers is identical to the third embodiment presented in FIG. 3.


The operation of the loop according to the fourth embodiment typically corresponds to the combination of the operations of the second and third embodiments as described above. Thus, all the characteristics of these two embodiments apply for this fourth embodiment.


In particular, although FIG. 4 discloses an embodiment with two refrigerant/liquid heat exchangers (47 and 48), the refrigerating loop can comprise either the exchanger (47) or the exchanger (48) (mode not represented in FIG. 4).


The refrigerant/liquid exchanger (47 or 48) can be mounted in series with the heat exchanger (respectively 45 or 43) (as represented diagrammatically in FIG. 4), or in parallel with the latter. When it is mounted in series with the heat exchanger (45 or 43), the exchanger (47 or 48) can be placed before or after the exchanger (45 or 43) in the direction of circulation of the refrigerant.


According to a fifth embodiment of the invention, represented diagrammatically by FIGS. 5, 6 and 7, the refrigerating loop (56) comprises a first heat exchanger series (53 and 58), an expansion valve (59), an expansion valve (54), a second heat exchanger series (55 and 57) and a compressor (51).


The loop also comprises a bypass branch (d3) fitted, on the one hand, to the outlet of the exchanger (53) and, on the other hand, to the outlet of the exchanger (57), the circulation of the refrigerant being considered in refrigerating mode. This branch comprises a heat exchanger (d1) traversed by a stream of air or a stream of exhaust gas and an expansion valve (d2). The operation of this branch is identical to the second embodiment presented in FIG. 2.


The refrigerating loop also comprises a bypass branch (d4) comprising a valve (d41) and another bypass branch (d5) comprising a valve (d51).


The heat exchangers (53 and 55) are of the air/refrigerant type, the exchanger (53) preferably being an exterior air/refrigerant exchanger.


The exchanger (57) is of the liquid/refrigerant type. The operation of this exchanger is identical to the exchanger (37) of the third embodiment presented in FIG. 3.


The exchanger (58) is of the liquid/refrigerant or air/refrigerant type.


As indicated above for the third embodiment, FIGS. 5, 6 and 7 disclose embodiments with two heat exchangers (57 and 58). However, according to the abovementioned fifth embodiment, the refrigerating loop can comprise either the exchanger (57) or the exchanger (58). Preferably, the exchanger (57) is not present in the loop.


The exchanger (57 or 58) can be mounted in series with the heat exchanger (respectively 55 or 53) (as represented diagrammatically in FIGS. 5, 6 and 7), or in parallel with the latter. When it is mounted in series with the heat exchanger (55 or 53), the exchanger (57 or 58) can be placed before or after the exchanger (55 or 53) in the direction of circulation of the refrigerant.



FIG. 6 represents the refrigerating mode of the fifth embodiment. In this refrigerating mode, the refrigerant is put in motion by the compressor (51) and passes through:

    • either the exchanger (58) (if present) without the latter operating (the refrigerant just passes without the exchanger been put into action) and then the expansion valve (59) without the latter operating (completely open) or else the refrigerant goes through a bypass (not represented in FIGS. 5, 6 and 7) making it possible to circumvent the expansion valve,
    • or a valve (not represented in the figures) upstream of the exchanger (58) makes it possible to circumvent the exchanger (58) in order for the refrigerant to go through the bypass (d4) (the valve (d41) being open).


The valve (d51) being closed, the refrigerant subsequently passes through:

    • the exchanger (53) acting as condenser (that is to say, gives off heat to the exterior), subsequently the expansion valve (54), then the exchanger (55) acting as evaporator, thus making possible the cooling of the stream of air intended to be forced inside the passenger compartment of the motor vehicle, and optionally the exchanger (57), if present, acting as evaporator, thus making possible the cooling of a liquid which makes it possible, in its turn, to cool the air inside the passenger compartment of the vehicle via another liquid/air heat exchanger; and/or
    • the expansion valve (d2) and then the exchanger (d1) acting as evaporator, making possible, for example, the cooling of the stream of air intended to cool the electric motor and/or the electronic circuit and/or the battery.



FIG. 7 represents the heating mode of the fifth embodiment. In this heating mode, the refrigerant is put in motion by the compressor (51). The valve (d41) being closed, the refrigerant subsequently passes through the exchanger (58) acting as condenser, then the expansion valve (59), and the heat exchanger (53) acting as evaporator. The valves (54) and (d2) being closed, the refrigerant subsequently passes through the bypass (d5) via the open valve (d51).


The heat exchanger (58) acts as condenser and so makes it possible to heat the stream of air intended for the passenger compartment of the motor vehicle (if it is an air/refrigerant exchanger) or else to heat a liquid which makes it possible, in its turn, to heat the stream of air intended for the passenger compartment of the motor vehicle via another liquid/air heat exchanger (if it is a liquid/refrigerant exchanger), it being possible for the same exchanger also to heat the battery, if necessary.



FIGS. 1 to 4 describe embodiments in which the means for inversion of the operation of the reversible loop is a means for inversion of the direction of circulation of the refrigerant, such as, for example, a 4-way valve.



FIGS. 5, 6 and 7 describe embodiments in which the means for inversion of the operation of the reversible loop are shut-off (on/off) valves, in particular making it possible to modify the course of the refrigerant and making possible the inversion of the function of some heat exchangers.


In all the abovementioned embodiments, the systems described can comprise additional shut-off (on/off) valves or bypasses (even if they are not present in FIGS. 1 to 7).


All the embodiments described above can be combined with one another.


In the context of the invention, the term “between x and y” or “from x to y” is understood to mean an interval in which the limits x and y are included. For example, the range “between 1% and 2%” includes in particular the values 1% and 2%.


The following examples illustrate the invention without, however, limiting it.


Experimental Part


In the tables which follow, “Tx” denotes the temperature at the location “x”, “Px” denotes the pressure of the refrigerant at the location “x” and “% Y/R134a” denotes the percentage of the property “Y” of the refrigerant with respect to the reference refrigerant R134a.


COP: coefficient of performance and is defined, when a heat pump is concerned, as being the useful hot power supplied by the system (CAP) to the power introduced or consumed by the system per unit of displaced volume.


Isentropic efficiency of the compressor: this is the ratio of the actual energy transmitted to the refrigerant to the isentropic energy.

η=a+bτ+c·τ2+d·τ3+e·τ4

η: isentropic effiency


τ: compression ratio


a, h, c and e: constants


The values of the constants a, b, c, d and e are determined according to a typical efficiency curve, according to the “Handbook of Air Conditioning and Refrigeration”, Shan K. Wang.


The mixtures according to the invention are as follows:


















Name
R1234yf
R32
R125





















M1
93.5
4
2.5



M2
93.0
4
3



M3
92.5
4
3.5



M4
92.5
5
2.5



M5
92.0
5
3



M6
91.5
5
3.5



M7
91.5
6
2.5



M8
91.0
6
3



M9
90.5
6
3.5











Let there be a reversible heat pump installation which operates between a mean evaporation temperature of between 0° C. and −30° C., a mean condensation temperature at 30° C., a superheating of 17° C. and with an internal exchanger.


Example 1A: Results at 0° C. Mean Evaporation Temperature



















Product
Tcond
Tevap
Pcondenser
Pevaporator
Tevaporator inlet
Tcompressor inlet





R134a
30
0
7.7
2.9
0
17


M1
30
0
9.1
3.6
−2
19


M2
30
0
9.1
3.6
−2
19


M3
30
0
9.1
3.6
−2
19


M4
30
0
9.3
3.8
−2
19


M5
30
0
9.3
3.8
−2
19


M6
30
0
9.3
3.8
−2
19


M7
30
0
9.6
3.8
−2
19


M8
30
0
9.6
3.9
−2
19


M9
30
0
9.6
3.9
−2
19



















Pressure
Isentropic




Product
Tcompressor outlet
Texpansion valve inlet
ratio
efficiency
% CAP
% COP





R134a
55
19
2.63
84
100
100


M1
52
16
2.50
84
116
100


M2
52
16
2.50
84
116
100


M3
52
16
2.50
84
116
100


M4
52
16
2.47
83
120
101


M5
52
16
2.47
83
120
101


M6
52
16
2.47
83
120
101


M7
53
16
2.49
84
122
100


M8
53
16
2.49
84
122
100


M9
53
16
2.49
84
123
100









Example 1B: Results at −5° C. Mean Evaporation Temperature



















Product
Tcond
Tevap
Pcondenser
Pevaporator
Tevaporator inlet
Tcompressor inlet





R134a
30
−5
7.7
2.4
−5
12


M1
30
−5
9.1
3.1
−7
14


M2
30
−5
9.1
3.1
−7
14


M3
30
−5
9.1
3.1
−7
14


M4
30
−5
9.3
3.1
−7
14


M5
30
−5
9.3
3.1
−7
14


M6
30
−5
9.3
3.2
−7
14


M7
30
−5
9.6
3.2
−7
14


M8
30
−5
9.6
3.2
−7
14


M9
30
−5
9.6
3.3
−7
14



















Pressure
Isentropic




Product
Tcompressor outlet
Texpansion valve inlet
ratio
efficiency
% CAP
% COP





R134a
57
20
3.16
84
100
100


M1
52
17
2.96
84
116
100


M2
52
17
2.96
84
117
100


M3
52
17
2.96
84
117
100


M4
53
16
2.96
84
119
100


M5
53
16
2.96
84
120
100


M6
53
16
2.94
84
121
100


M7
53
16
2.95
84
123
100


M8
53
16
2.95
84
123
100


M9
54
16
2.95
84
124
100









Example 1C: Results at −10° C. Mean Evaporation Temperature



















Product
Tcond
Tevap
Pcondenser
Pevaporator
Tevaporator inlet
Tcompressor inlet





R134a
30
−10
7.7
2.0
−10
7


M1
30
−10
9.1
2.6
−11
9


M2
30
−10
9.1
2.6
−11
9


M3
30
−10
9.1
2.6
−11
9


M4
30
−10
9.3
2.6
−12
9


M5
30
−10
9.3
2.6
−12
9


M6
30
−10
9.3
2.6
−12
9


M7
30
−10
9.5
2.7
−12
9


M8
30
−10
9.5
2.7
−12
9


M9
30
−10
9.6
2.7
−12
9



















Pressure
Isentropic




Product
Tcompressor outlet
Texpansion valve inlet
ratio
efficiency
% CAP
% COP





R134a
58
20
3.84
83
100
100


M1
53
17
3.54
84
117
100


M2
53
17
3.54
84
118
100


M3
53
17
3.54
84
118
100


M4
53
16
3.54
84
120
100


M5
53
16
3.53
84
121
100


M6
53
16
3.53
84
121
100


M7
54
16
3.52
84
124
100


M8
54
16
3.52
84
124
100


M9
54
16
3.52
84
124
100









Example 1D: Results at −20° C. Mean Evaporation Temperature



















Product
Tcond
Tevap
Pcondenser
Pevaporator
Tevaporator inlet
Tcompressor inlet





R134a
30
−20
7.7
1.3
−20
−3


M1
30
−20
9.0
1.7
−21
−2


M2
30
−20
9.1
1.7
−21
−2


M3
30
−20
9.1
1.7
−21
−2


M4
30
−20
9.3
1.8
−21
−2


M5
30
−20
9.3
1.8
−21
−2


M6
30
−20
9.3
1.8
−21
−2


M7
30
−20
9.6
1.8
−22
−1


M8
30
−20
9.6
1.8
−22
−1


M9
30
−20
9.6
1.8
−22
−1



















Pressure
Isentropic




Product
Tcompressor outlet
Texpansion valve inlet
ratio
efficiency
% CAP
% COP





R134a
65
20
5.80
79
100
100


M1
55
17
5.25
81
117
101


M2
55
17
5.25
81
118
101


M3
55
17
5.25
81
118
101


M4
56
17
5.23
81
121
101


M5
56
17
5.23
81
121
101


M6
56
17
5.22
81
122
101


M7
57
17
5.26
81
124
100


M8
57
17
5.26
81
124
100


M9
57
17
5.26
81
125
100









Example 1E: Results at −30° C. Mean Evaporation Temperature



















Product
Tcond
Tevap
Pcondenser
Pevaporator
Tevaporator inlet
Tcompressor inlet





R134a
30
−30
7.7
0.8
−30
−13


M1
30
−30
9.1
1.1
−31
−12


M2
30
−30
9.1
1.1
−31
−12


M3
30
−30
9.1
1.1
−31
−12


M4
30
−30
9.3
1.2
−31
−12


M5
30
−30
9.3
1.2
−31
−12


M6
30
−30
9.3
1.2
−31
−12


M7
30
−30
9.6
1.2
−31
−11


M8
30
−30
9.6
1.2
−31
−11


M9
30
−30
9.6
1.2
−31
−11



















Pressure
Isentropic




Product
Tcompressor outlet
Texpansion valve inlet
ratio
efficiency
% CAP
% COP





R134a
81
21
9.11
69
100
100


M1
65
18
8.05
72
118
102


M2
65
18
8.04
72
119
102


M3
65
18
8.04
72
119
102


M4
66
17
8.02
72
121
102


M5
66
17
8.02
72
122
102


M6
66
17
8.02
72
122
102


M7
67
17
7.96
72
126
103


M8
67
17
7.96
72
126
103


M9
67
17
7.95
72
126
103









It emerges from examples 1A to 1E that the mixtures according to the invention show a greater pressure at the evaporator than the pressure of HFC-134a, which helps in limiting the infiltration of air inside the system, in particular when this system operates at low temperature, for example at a temperature in the evaporator of 0° C., −5° C., −10° C., −20° C. and −30° C.


For one and the same compressor, the mixtures of the invention are advantageously more effective than HFC-134a. This is because the examples above show that the mixtures of the invention result in an efficiency at the compressor similar to or greater than that of HFC-134a, a better capacity and an identical, indeed even better, COP.

Claims
  • 1. A process for heating and/or air conditioning a motor vehicle passenger compartment using a reversible refrigerating loop, in which a refrigerant circulates, comprising a first heat exchanger, an expansion valve, a second heat exchanger, a compressor and means for inversion of the operation of the reversible refrigerating loop, wherein the refrigerant comprises: from 4% to 6% by weight of difluoromethane;from 2.5% to 3.5% by weight of pentafluoroethane; andfrom 91% to 93.5% by weight of tetrafluoropropene.
  • 2. The process as claimed in claim 1, in which the refrigerant comprises: from 4.5% to 5.5% by weight of difluoromethane;from 2.5% to 3.5% by weight of pentafluoroethane; andfrom 91% to 93% by weight of tetrafluoropropene.
  • 3. The process as claimed in claim 1, in which the refrigerant comprises: from 4.5% to 5.5% by weight of difluoromethane;from 2.5% to 3.5% by weight of pentafluoroethane; andfrom 91.5% to 93% by weight of tetrafluoropropene.
  • 4. The process as claimed in claim 1, in which the refrigerant comprises: from 4.5% to 5.5% by weight of difluoromethane;from 3% to 3.5% by weight of pentafluoroethane; andfrom 91% to 92% by weight of tetrafluoropropene.
  • 5. The process as claimed in claim 4, in which the tetrafluoropropene is 2,3,3,3-tetrafluoropropene.
  • 6. The process as claimed in claim 1, in which the refrigerant is chosen from the group consisting of: 5% by weight of difluoromethane, 3.3% by weight of pentafluoroethane and 91.7% by weight of tetrafluoropropene;5% by weight of difluoromethane, 3% by weight of pentafluoroethane and 92% by weight of tetrafluoropropene;5% by weight of difluoromethane, 3.1% by weight of pentafluoroethane and 91.9% by weight of tetrafluoropropene;5% by weight of difluoromethane, 3.2% by weight of pentafluoroethane and 91.8% by weight of tetrafluoropropene;6% by weight of difluoromethane, 3% by weight of pentafluoroethane and 91% by weight of tetrafluoropropene; and6% by weight of difluoromethane, 2.5% by weight of pentafluoroethane and 91.5% by weight of tetrafluoropropene.
  • 7. The process as claimed in claim 1, in which the refrigerant has a GWP of less than 1500.
  • 8. The process as claimed in claim 1, in which the refrigerant has a lower flammability limit of greater than 285 g/m3.
  • 9. The process as claimed in claim 1, in which the refrigerant has a flame propagation rate of less than 2 cm/s.
  • 10. The process as claimed in claim 1, wherein the first and second exchangers are of the air/refrigerant type.
  • 11. The process as claimed in claim 1, wherein the refrigerating loop is thermally coupled with a cooling circuit of an engine and/or of an electronic circuit.
  • 12. The process as claimed in claim 1, wherein the first heat exchanger is traversed both by the refrigerant and by exhaust gases resulting from a heat engine of the motor vehicle or by heat resulting from a battery or from an electronic circuit of the motor vehicle.
  • 13. The process as claimed in claim 1, wherein the loop can comprise, as a bypass, at least one heat exchanger in thermal communication with a stream of air, intended to be admitted inside a heat engine of the motor vehicle, or with exhaust gases resulting from the motor vehicle heat engine, and/or with heat resulting from an electric motor and/or from an electronic circuit and from a battery of an electric motor vehicle.
  • 14. The process as claimed in claim 1, wherein the refrigerating loop is installed in the motor vehicle for the recovery of energy from a heat engine and/or from an electric battery.
  • 15. A device comprising the reversible refrigerating loop as claimed in claim 1.
  • 16. The process as claimed in claim 1, in which the tetrafluoropropene is 2,3,3,3-tetrafluoropropene.
  • 17. The process as claimed in claim 1, in which the refrigerant is chosen from the group consisting of: 5% by weight of difluoromethane, 3.3% by weight of pentafluoroethane and 91.7% by weight of 2,3,3,3-tetrafluoropropene;5% by weight of difluoromethane, 3% by weight of pentafluoroethane and 92% by weight of 2,3,3,3-tetrafluoropropene;5% by weight of difluoromethane, 3.1% by weight of pentafluoroethane and 91.9% by weight of 2,3,3,3-tetrafluoropropene;5% by weight of difluoromethane, 3.2% by weight of pentafluoroethane and 91.8% by weight of 2,3,3,3-tetrafluoropropene;6% by weight of difluoromethane, 3% by weight of pentafluoroethane and 91% by weight of 2,3,3,3-tetrafluoropropene; and6% by weight of difluoromethane, 2.5% by weight of pentafluoroethane and 91.5% by weight of 2,3,3,3-tetrafluoropropene.
  • 18. The process as claimed in claim 1, wherein the process prevents air from entering the evaporator of the refrigerating loop on starting up the compressor when an external temperature is −12° C.
  • 19. The process as claimed in claim 1, wherein the process prevents air from entering the evaporator of the refrigerating loop on starting up the compressor when an external temperature is −29° C.
  • 20. The process as claimed in claim 1, wherein the process prevents air from entering the evaporator of the refrigerating loop on starting up the compressor when a temperature at the evaporator is −15° C.
  • 21. The process as claimed in claim 1, wherein the process prevents air from entering the evaporator of the refrigerating loop on starting up the compressor when a temperature at the evaporator is −32° C.
Priority Claims (1)
Number Date Country Kind
1752304 Mar 2017 FR national
PCT Information
Filing Document Filing Date Country Kind
PCT/FR2018/050671 3/20/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2018/172689 9/27/2018 WO A
US Referenced Citations (101)
Number Name Date Kind
2438120 Freygang Mar 1948 A
2834748 Bailey et al. May 1958 A
2846458 Haluska Aug 1958 A
2917480 Bailey et al. Dec 1959 A
5056990 Nakajima Oct 1991 A
5290466 Shiflett Mar 1994 A
5363674 Powell Nov 1994 A
5399631 Egawa et al. Mar 1995 A
5497631 Lorentzen et al. Mar 1996 A
5643492 Shiflett Jul 1997 A
5688432 Pearson Nov 1997 A
5722256 Shiflett Mar 1998 A
5744052 Bivens Apr 1998 A
6454960 Sunaga et al. Sep 2002 B1
6508950 Lim et al. Jan 2003 B1
6589355 Thomas et al. Jul 2003 B1
6655160 Roberts Dec 2003 B2
7569170 Minor Aug 2009 B2
7914696 Low et al. Mar 2011 B2
8070977 Rached Dec 2011 B2
8075798 Rached Dec 2011 B2
8142680 Rached Mar 2012 B2
8246850 Rached Aug 2012 B2
8443624 Yamashita et al. May 2013 B2
8496845 Tsuchiya et al. Jul 2013 B2
8709275 Yana Motta et al. Apr 2014 B2
8980118 Yana Motta et al. Mar 2015 B2
8992793 Sato et al. Mar 2015 B2
9057010 Rached Jun 2015 B2
9359540 Rached Jun 2016 B2
9488398 Rached Nov 2016 B2
9556372 Kujak et al. Jan 2017 B2
9598621 Minor et al. Mar 2017 B2
9683156 Rached Jun 2017 B2
9752069 Boussand Sep 2017 B2
10113093 Rached Oct 2018 B2
10308853 Andre et al. Jun 2019 B2
20060025322 Wilson et al. Feb 2006 A1
20060243944 Minor et al. Nov 2006 A1
20060243945 Minor et al. Nov 2006 A1
20060269484 Knopeck et al. Nov 2006 A1
20070108403 Sievert et al. May 2007 A1
20080230738 Minor et al. Sep 2008 A1
20090158771 Low et al. Jun 2009 A1
20090249864 Minor et al. Oct 2009 A1
20090250650 Minor et al. Oct 2009 A1
20090278072 Minor et al. Nov 2009 A1
20090305876 Singh et al. Dec 2009 A1
20090314015 Minor et al. Dec 2009 A1
20100044619 Hulse et al. Feb 2010 A1
20100044620 Rached Feb 2010 A1
20100122545 Minor et al. May 2010 A1
20110079042 Yamashita et al. Apr 2011 A1
20110095224 Rached Apr 2011 A1
20110108756 Tsuchiya May 2011 A1
20110162410 Low Jul 2011 A1
20110173997 Low et al. Jul 2011 A1
20110186772 Rached Aug 2011 A1
20110219791 Rached Sep 2011 A1
20110219792 Rached Sep 2011 A1
20110219815 Yana Motta et al. Sep 2011 A1
20110240254 Rached Oct 2011 A1
20110284181 Rached Nov 2011 A1
20110289748 Singh et al. Dec 2011 A1
20120049104 Rached Mar 2012 A1
20120056123 Rached Mar 2012 A1
20120097885 Hulse et al. Apr 2012 A9
20120144857 Rached Jun 2012 A1
20120151959 Rached Jun 2012 A1
20120153213 Rached Jun 2012 A1
20120159982 Rached Jun 2012 A1
20120161064 Rached Jun 2012 A1
20120167615 Rached Jul 2012 A1
20120255316 Andre et al. Oct 2012 A1
20120312048 Poole et al. Dec 2012 A1
20130055733 Rached Mar 2013 A1
20130055738 Rached Mar 2013 A1
20130055739 Rached Mar 2013 A1
20130061613 Rached Mar 2013 A1
20130096128 Bebbington et al. Apr 2013 A1
20130096218 Rached et al. Apr 2013 A1
20130145778 Yana Motta et al. Jun 2013 A1
20130193369 Low Aug 2013 A1
20130255284 Rached Oct 2013 A1
20140075969 Guerin et al. Mar 2014 A1
20140137578 Yana Motta et al. May 2014 A1
20140223927 Pottker et al. Aug 2014 A1
20140223935 Rached Aug 2014 A1
20140331697 Minor et al. Nov 2014 A1
20150135765 Yana Motta et al. May 2015 A1
20150152307 Rached Jun 2015 A1
20150184052 Rached Jul 2015 A1
20150291869 Boussand Oct 2015 A1
20160145481 Kujak et al. May 2016 A1
20160215192 Minor et al. Jul 2016 A1
20160222272 Rached Aug 2016 A1
20160252283 Rached Sep 2016 A1
20170260437 Rached Sep 2017 A1
20190016937 Andre et al. Jan 2019 A1
20210115312 Rached Apr 2021 A1
20210261841 Itano Aug 2021 A1
Foreign Referenced Citations (47)
Number Date Country
101297016 Oct 2008 CN
101880519 Nov 2010 CN
0 509 673 Oct 1992 EP
0 811 670 Dec 1997 EP
2 767 569 Aug 2014 EP
2959998 Nov 2011 FR
2011-226728 Nov 2011 JP
2001-0044992 Jun 2001 KR
WO 2004037913 May 2004 WO
WO 2004037913 May 2004 WO
WO 2005105947 Nov 2005 WO
WO 2005105947 Nov 2005 WO
WO 2007002625 Jan 2007 WO
WO 2007002625 Jan 2007 WO
WO 2007053697 May 2007 WO
WO 2007053697 May 2007 WO
WO 2007126414 Nov 2007 WO
WO 2007126414 Nov 2007 WO
WO 2008107623 Sep 2008 WO
WO 2008107623 Sep 2008 WO
2008107623 Nov 2008 WO
WO 2009047542 Apr 2009 WO
WO 2009104784 Aug 2009 WO
WO 2009151669 Dec 2009 WO
WO 2009154149 Dec 2009 WO
WO 2010002014 Jan 2010 WO
WO 2010002020 Jan 2010 WO
2010058126 May 2010 WO
WO 2010059677 May 2010 WO
WO 2010059677 May 2010 WO
WO 2010064005 Jun 2010 WO
WO 2010129461 Nov 2010 WO
WO 2010129461 Nov 2010 WO
WO 2010129920 Nov 2010 WO
WO 2011023923 Mar 2011 WO
WO 2011073934 Jun 2011 WO
WO 2011077088 Jun 2011 WO
WO 2011107698 Sep 2011 WO
WO 2011107698 Sep 2011 WO
WO 2011141654 Nov 2011 WO
WO 2011141654 Nov 2011 WO
WO 2011141656 Nov 2011 WO
WO 2011141656 Nov 2011 WO
WO 2012069725 May 2012 WO
WO 2012150391 Nov 2012 WO
WO 2012177742 Dec 2012 WO
WO 2014081539 May 2014 WO
Non-Patent Literature Citations (14)
Entry
Roof, Steven, et al., “The Climate of Death Valley, California,” American Meteorological Society, Dec. 2003, 1725-1739, USA.
U.S. Appl. No. 16/494,413, Wissam Rached, filed Sep. 16, 2019.
U.S. Appl. No. 16/135,566, David Andre, Béatrice Boussand, Wissam Rachen, filed Sep. 19, 2018, (cited herein as US Patent Application Publication No. 2019/0016937 A1 of Jan. 17, 2019).
U.S. Appl. No. 16/494,413, Rached.
International Search Report and Written Opinion issued in PCT/FR2018/050669 (English and French language versions) dated May 29, 2018, 16 pages, European Patent Office, Rijswijk, NL.
Takizawa, K., et al., “Flammability Assessment of CH2=CFCF3: Comparison with Fluoroalkenes and Fluoroalkanes”, Journal of Hazardous Materials, vol. 172, No. 2-3, Aug. 18, 2009, pp. 1329-1338, XP026719989, Elsevier B.V.
Takizawa, K., et al., “Flammability Assessment of CH2=CFCF3 (R-1234yf) and its Mixtures with CH2F2 (R-32); 2010 International Symposium on Next-generation Air Conditioning and Refrigeration Technology,” Tokyo, JP, Feb. 17-19, 2010, pp. 1-8.
“Definitions: Humidity,” Healthy Heating, May 18, 2008, 4 pages, XP002594956, http://web.archive.org/web/20080518174151/http://www.healthyheating.com/Thermal_Comfort_Working_Copy/Definitions/humidity.htm.
Donnelly, M. K., et al., “The Flammability of R-245ca”, ASHRAE Transactions: Symposia (American Society of Heating, Refrigerating and Air-Conditioning Engineers), 1999, 10 pages, including pp. 1169-1176, ASHRAE, USA.
Van Den Schoor, Filip, University Thesis, “Influence of Pressure and Temperature on Flammability Limits of Combustible Gases in Air,” May 2007, 228 pages, Katholieke Universiteit Leuven—Faculteit Ingenieurswetenschappen, Leuven, BE, ISBN 978-90-5682-813-4.
Rached, Wissam, U.S. Appl. No. 16/494,413 entitled “Tetrafluoropropene-based Composition,” filed Sep. 16, 2019.
International Search Report (PCT/ISA/210) dated Jun. 12, 2018, by the European Patent Office as the International Searching Authority for International Application No. PCT/FR2018/050671.
Written Opinion (PCT/ISA/237) dated Jun. 12, 2018, by the European Patent Office as the International Searching Authority for International Application No. PCT/FR2018/050671.
Notice of Reasons for Refusal dated Mar. 23, 2022, issued in JP Patent Application No. 2019-551456, Japan Patent Office, Tokyo, JP, 8 pages including English-language machine translation.
Related Publications (1)
Number Date Country
20210115313 A1 Apr 2021 US