The invention relates to a method for heating process gases for direct reduction systems.
Steel production is currently carried out in a variety of ways. Classic steel production is carried out by producing pig iron in the hot furnace process, primarily out of iron oxide carriers. In this method, approx. 450 to 600 kg of reducing agent, usually coke, is consumed per metric ton of pig iron; this method, both in the production of coke from coal and in the production of the pig iron, releases very significant quantities of CO2. In addition, so-called “direct reduction methods” are known (methods according to the brands MIDREX, FINMET, ENERGIRON/HYL, etc.), in which the sponge iron is produced primarily from iron oxide carriers in the form of HDRI (hot direct reduced iron), CDRI (cold direct reduced iron), or so-called HBI (hot briquetted iron).
There are also so-called smelting reduction methods in which the melting process, the production of reduction gas, and the direct reduction are combined with one another, for example the methods of the brands COREX, FINEX, HiSmelt, or HiSarna.
Sponge irons in the form of HDRI, CDRI, and HBI usually undergo further processing in electric furnaces, which is extraordinarily energy-intensive. The direct reduction is carried out using hydrogen and carbon monoxide from natural gas (methane) and possibly synthesis gas as well as coke oven gas. For example, in the so-called MIDREX method, first methane is transformed according to the following reaction:
CH4+CO2=2CO+2H2
and the iron oxide reacts with the reduction gas, for example according to the following formula:
Fe2O3+6CO(H2)=2Fe+3CO2(H2O)+3 CO(H2).
This method also emits CO2.
DE 198 53 747 C1 has disclosed a combined process for the direct reduction of fine ores in which the reduction is to be carried out with hydrogen or another reduction gas in a horizontal turbulence layer.
DE 197 14 512 A1 has disclosed a power station with solar power generation, an electrolysis unit, and an industrial metallurgical process; this industrial process relates either to the power-intensive metal production of aluminum from bauxite or is intended to be a metallurgical process with hydrogen as a reducing agent in the production of nonferrous metals such as tungsten, molybdenum, nickel, or the like or is intended to be a metallurgical process with hydrogen as a reducing agent using the direct reduction method in the production of ferrous metals. The cited document, however, does not explain this in detail.
WO 2011/018124 has disclosed methods and systems for producing storable and transportable carbon-based energy sources using carbon dioxide and using regenerative electrical energy and fossil fuels. In this case, a percentage of regeneratively produced methanol is prepared together with a percentage of methanol that is produced by means of non-regenerative electrical energy and/or by means of direct reduction and/or by means of partial oxidation and/or reforming.
In the direct reduction method, the gas emerging downstream of the reduction shaft—after it is purified and the water has been separated out and additional CO2 separation in the HYL method or optional additional CO2 separation in the HYL MIDREX method—is predominantly fed back into the process as recycling gas. As a rule, this gas is in turn enriched with natural gas in order to supply fresh reduction gas. In the HYL method, the gas, which the gas purification has cooled from approximately 105° C., is heated again to approximately 700 to 1100° C. and then a partial oxidation with oxygen is performed.
In the MIDREX method, CO2 and water are transformed with natural gas into H2 and CO in a heated reformer in a temperature range from approximately 700 to 1100° C. Both methods share the fact that a partial flow of the gas that has been purified and is exiting the reduction shaft is introduced and is enriched with natural gas.
The reduction process can be expressed with the following equation:
Fe2O3+6CO(H2)=2Fe+3CO2(H2O)+3CO(H2) (1)
In the MIDREX method, the following reactions take place in the reformer:
CH4+CO2→2CO+2H2 (2)
CH4+H2O→CO+3H2 (3)
In the HYL method, the following reaction takes place:
CH4+½O2→CO+2H2 (4)
In both methods, the additionally used fossil fuel, namely natural gas, is used to heat the process gases and to heat the reformer.
One object of the invention is to create a method for heating process gases for direct reduction systems with which the heating of process gases can be better and more flexibly adapted to and optimized for an overall process that is adapted to the energy demand and to the available energy.
Another object of the invention is to reduce CO2 emissions.
In order to make the heating process more flexible, according to the invention, the heating of the reduction gases and of the reformer is changed to an electrical heating.
Preferably, the electrical energy can be produced from renewable resources, thus replacing fossil fuels.
This advantageously increases the flexibility of the process with regard to the energy sources used; this is achieved through combined heating by means of a variable use of fossil fuels and electrical energy.
In this regard, the invention has the advantage that electrical current can be considered to be 100% energy so that it can be completely converted into high temperature heat. The direct convertibility of electrical energy into heat permits the addition of a high degree of flexibility, particularly also with regard to the use of current peaks that are inexpensively available on the market.
It is also advantageous that current from renewable energy sources such as hydroelectric, wind power, or solar energy does not cause any CO2 emissions when it is produced.
The invention will be explained by way of example in conjunction with the drawings. In the drawings:
The HYL method is shown by way of example in
In a method according to the invention (
The invention has the advantage of achieving a simple and quickly implementable option for replacing fossil fuels with electrical power from renewable energies. CO2 emissions from direct reduction systems are also reduced. The invention also makes it possible to successfully operate direct reduction systems in an effective and flexible way. In particular, in a steel production that is adapted to the availability of regenerative energies with an electrically-powered preheating of process gas, particularly one with heating based on renewable energies, it is possible to achieve an improvement and reciprocal adaptation.
It is also advantageous that such a system can inexpensively make use of available current peaks.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 108 631.1 | Sep 2012 | DE | national |
10 2012 109 284.2 | Sep 2012 | DE | national |
10 2013 104 002.0 | Apr 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/068743 | 9/10/2013 | WO | 00 |