The invention relates generally to high pressure gradient formation liquid chromatography. More particularly, the invention relates to a method for high pressure gradient formation based on controlling the pump strokes of solvent pumps.
In high pressure gradient liquid chromatography, the contribution of two or more solvents to the mobile phase changes over time. Generally, pumping systems for high pressure gradient liquid chromatography utilize parallel pumps to deliver multiple fluids in defined proportions to achieve a specified final fluid composition. Typically, each pump in the system is a combination of individual pump heads that are periodically refilled to maintain a constant fluid flow. The refilling process can cause disturbances or ripple in the flow and pressure of the delivered liquid due to a variety of factors, such as solvent compressibility and hydraulic inertia. If the refilling of a pump occurs during the pressure and flow disturbances resulting from the refilling of another pump, the solvent composition of the liquid delivered by the pumping system may not accurately match the desired solvent composition.
In one aspect, a method of generating a flow having a composition gradient includes generating a plurality of pump strokes for a first pump in a system having at least the first pump and a second pump. Each of the pump strokes for the first pump has a volume contribution based on a relative contribution of a first liquid to a composition gradient for a flow. The pump strokes of the first pump are generated at a pump stroke frequency. A plurality of pump strokes is generated for the second pump. Each of the pump strokes for the second pump has a volume contribution based on a relative contribution of a second liquid to the composition gradient for the flow. The pump strokes for the second pump are generated at the pump stroke frequency and are interspersed in time with the pump strokes of the first pump. An initiation of each of the pump strokes of the second pump is offset in time relative to an initiation of a respective one of the pump strokes of the first pump such that variations in the flow rates of the first and second pumps based on the initiations of the pump strokes do not overlap in time.
In another aspect, a pump system includes a first pump, a second pump and a processor in communication with the first and second pumps. The first pump is configured to deliver volume contributions of a first liquid with each volume contribution occurring during a pump stroke of the first pump. The second pump is configured to deliver volume contributions of a second liquid with each volume contribution occurring during a pump stroke of the second pump. The processor is configured to control the first and second pumps to have a same pump stroke frequency and to be interspersed in time. The initiations of pump strokes of the first and second pumps are offset in time such that variations in the flow rates of the first and second pumps based on the initiations of the pump strokes do not overlap in time. The processor changes the volume contributions of the first and second pumps in time according to a predetermined composition gradient of a flow comprising the first and second liquids.
In yet another aspect, a computer program product for generating a flow having a composition gradient includes a computer readable storage medium. The computer readable storage medium has computer readable program code embodied therewith. The computer readable program code includes computer readable program code configured to generate a plurality of pump strokes for a first pump in a system having at least the first pump and a second pump. Each of the pump strokes for the first pump has a volume contribution based on a relative contribution of a first liquid to a composition gradient for a flow. The pump strokes for the first pump are generated at a pump stroke frequency. The computer readable program code further includes computer readable program code configured to generate a plurality of pump strokes for the second pump. Each of the pump strokes for the second pump has a volume contribution based on a relative contribution of a second liquid to the composition gradient for the flow. The pump strokes for the second pump are generated at the pump stroke frequency and are interspersed in time with the pump strokes of the first pump. An initiation of each of the pump strokes of the second pump is offset in time relative to an initiation of a respective one of the pump strokes of the first pump such that variations in the flow rates of the first and second pumps based on the initiations of the pump strokes do not overlap in time.
The above and further advantages of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like reference numerals indicate like elements and features in the various figures. For clarity, not every element may be labeled in every figure. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular, feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the teaching. References to a particular embodiment within the specification do not necessarily all refer to the same embodiment.
During a binary gradient liquid chromatography process, the solvent contributions from the two solvent pumps change over time. The changes in the solvent contributions are typically achieved by changing the pump stroke frequency (i.e., cycle time) of each solvent pump. Thus it is possible for one of the pumps to initiate a pump stroke in a pump head near or at the same time as the initiation of a pump stroke for a pump head in the other pump. Consequently, a “collision” can occur during which the variation (i.e., “ripple”) in the flow rate of one pump occurring upon and soon after initiation of the pump stroke overlaps the ripple in the flow rate of the other pump following stroke initiation. The collision can degrade the compositional accuracy of the mobile phase gradient.
Some pump systems include a control system that anticipates a collision before it can occur. The control system reacts to this potential collision by shortening the stroke for the pump heads of one of the solvent pumps. This temporary modification of the pump strokes means that the following initiation of a pump stroke occurs earlier than if the nominal pump stroke were maintained. The process of shortening a pump stroke is repeated for potential future collisions to avoid their occurrence. The pump stroke may also be shortened for other conditions, such as high flow rates, high pressures and high compressibility solvents. Under such conditions, the opportunities to shorten the pump stroke to avoid collisions can be substantially reduced and, in some instances, sufficient opportunities may not exist to avoid collisions.
In brief overview, the invention relates to a method of generating a flow having a composition gradient. For example, the flow may be a mobile phase gradient used to perform liquid chromatography. In one embodiment, pump strokes for a first pump and pump strokes for a second pump occur at the same pump stroke frequency. In addition, the initiations of the pump strokes of the second pump are interspersed in time with the initiations of the pump strokes of the first pump. The initiations of the pump strokes of the two pumps are offset in time such that variations in the flow rates of the first and second pumps occurring upon initiation do not overlap in time. The pump stroke frequency can change over time as long as the initiations of the pump strokes of the second pump remain interspersed with the initiations of the pump strokes of the first pump.
The present teaching will now be described in more detail with reference to embodiments thereof as shown in the accompanying drawings. While the present teaching is described in conjunction with various embodiments and examples, it is not intended that the present teaching be limited to such embodiments. On the contrary, the present teaching encompasses various alternatives, modifications and equivalents, as will be appreciated by those of skill in the art. Those of ordinary skill having access to the teaching herein will recognize additional implementations, modifications and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein.
A block diagram of a liquid chromatography system 10 is shown in
A processor module 30 controls the operation of the binary solvent delivery system 14, sample injector 26 and detector 22. The processor module 30 can include one or more processing units and memory units, and may coordinate operational and control signals used to operate other components and subsystems of the liquid chromatography system 10. A user interface 34 in communication with the processor module 30 allows for various parameters of a chromatographic measurement to be defined and for output and display of operational and measurement data to a user.
In the illustrated binary solvent delivery system 14, a first pump 38 draws a first solvent A from a reservoir 42 and supplies the first solvent at a desired flow rate and pressure to a mixer 46. A second pump 50 draws a second solvent B from a second reservoir 54 and supplies the second solvent at a desired flow rate and pressure to the mixer 46. The solvents are blended at the mixer 46 to achieve a solvent mixture having desired mobile phase properties. The flow rate of each solvent can be adjusted to vary the composition of the solvent mixture over time. A variation in the solvent mixture over time is referred to as a solvent gradient or compositional gradient.
During a gradient liquid chromatography process, the relative contributions of the two solvents A and B to the mobile phase change in time. Typically, the contribution of a solvent is defined through the control of the flow rate of the corresponding solvent pump. Each pump stroke provides a volume of the solvent based on the displacement volume of the pump head during the pump stroke. This “volume contribution” may be different from the displacement volume of the pump head due to the compressibility of the solvent. Higher flow rates are achieved by operating the solvent pump at a higher pump stroke frequency while maintaining a fixed stroke volume. As used herein, the phrase “pump cycle” means the time between the initiations of two consecutive pump strokes.
Solvent pumps can be configured in a variety of ways. By way of a particular example, each solvent pump can be configured with two pump heads in a serial arrangement. Typically, one of the pump heads functions as a primary pump and the other pump head functions as an accumulator pump. In some configurations, the pump strokes of the primary and accumulator pumps operate with opposite phase. In an alternative configuration, pump heads are configured in a parallel arrangement with each pump head operating in opposite phase from the other pump head. One pump head delivers solvent while the other pump head is refilled with solvent.
Regardless of the configuration of pump heads, the flow rate of the solvent delivered by a pump 38, 50 can fluctuate at the beginning of a pump stroke due to a variety of factors, including compressibility of the solvent and hydraulic inertia. To generate a mobile phase gradient, the flow rates of the solvent pumps 38, 50 are changed over time. It is possible for one of the pumps 38 to initiate a stroke of one of its pump heads at nearly the same time as the initiation of a stroke in one of the pump heads of the other pump 50. Consequently, the ripple in the flow rates of the two pumps 38, 50 can overlap and adversely affect the compositional accuracy of the mobile phase gradient.
Referring also to
According to one embodiment of a method of generating a flow having a composition gradient, such as a mobile phase gradient, each pump is operated at substantially the same pump stroke frequency. Each stroke of one pump 38 is initiated at a time between consecutive stroke initiations of the other pump 50 so that the pump strokes and associated pressure pulses 74 and 78 of the two pumps are interspersed in time as shown in
The initiations of pump strokes of the two solvent pumps can be interpreted as two pulse trains that are out of phase with each other. Preferably, the phase difference corresponding to the delay time between the two pulse trains is approximately 180° to maintain the initiations of pump strokes of one pump midway between the initiations of the pump strokes of the other pump and thereby allow for variations in controlled parameters, such as pump stroke frequency and pump stroke volume. Other phase differences are possible as long as sufficient operating margins are maintained to ensure that the initiations of the pump strokes for the two pumps do not occur close in time such that variations in the flow rates for the two pumps do not collide or overlap in time.
Although described above primarily with respect to binary pump systems, the method of the invention can be used with pump systems using three or more pumps. For example, a three pump system is operated such that all the pumps operate at the same pump stroke frequency and each pulse train has a different phase. More specifically, the phases of the pump strokes for two of the pumps would preferably be 120° and 240° with reference to the phase of the pump strokes for the third pump.
In some mobile phase gradients, there can be a period of time when the volume contribution from one of the pumps is substantially less than the volume contribution from the other pump. For example, the contribution ratio of the solvents may be a few percent or less. There is a minimum time for a transfer from the pump heads therefore it can be advantageous to operate the greater contribution solvent pump at a pump stroke frequency that is an integer multiple of the pump stroke frequency of the lower contribution solvent pump.
According to another embodiment of a method of generating a flow having a composition gradient, one pump is operated at a pump stroke frequency that is an integer multiple of the pump stroke frequency of the other pump. For example, a “faster” pump contributing a substantially higher flow rate can be operated at twice the pump stroke frequency of a “slower” pump contributing at a lesser flow rate. In this circumstance, two pump strokes of the faster pump occur between consecutive occurrences of pump strokes for the slower pump. The timing of each pump stroke of the slower pump is controlled so that the pump stroke is initiated approximately midway between an initiation of an immediately preceding pump stroke and an initiation of an immediately following pump stroke of the faster pump. More generally, the ratio of the pump stroke frequencies does not have to be a constant over the duration of the gradient run as long as each pump stroke of the slower pump is initiated between the initiations of an immediately preceding pump stroke and an immediately following pump stroke of the faster pump.
While the invention has been shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as recited in the accompanying claims.
This application claims the benefit of the earlier filing date of U.S. Provisional Patent Application Ser. No. 61/936,385, filed Feb. 6, 2014 and titled “Method for High Pressure Gradient Chromatography Using Pump Stroke Control,” the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3985019 | Boehme | Oct 1976 | A |
3985021 | Achener | Oct 1976 | A |
4045343 | Achener | Aug 1977 | A |
4191649 | Hartwick | Mar 1980 | A |
4595496 | Carson | Jun 1986 | A |
4624625 | Schrenker | Nov 1986 | A |
4767279 | Dourdeville | Aug 1988 | A |
4882063 | Allington | Nov 1989 | A |
4954253 | Alexandrov | Sep 1990 | A |
4964985 | Goulder | Oct 1990 | A |
4980059 | Barlow | Dec 1990 | A |
4981597 | Allington | Jan 1991 | A |
4988447 | Hellinger | Jan 1991 | A |
4990250 | Hellinger | Feb 1991 | A |
5071562 | Allington | Dec 1991 | A |
5080785 | Allington | Jan 1992 | A |
5135658 | Lee | Aug 1992 | A |
5158675 | Allington | Oct 1992 | A |
5234587 | Allington | Aug 1993 | A |
5253981 | Yang | Oct 1993 | A |
5360320 | Jameson | Nov 1994 | A |
5393434 | Hutchins | Feb 1995 | A |
5423661 | Gabeler | Jun 1995 | A |
5630706 | Yang | May 1997 | A |
5635070 | Allington | Jun 1997 | A |
5637208 | Dourdeville | Jun 1997 | A |
5664938 | Yang | Sep 1997 | A |
6299767 | Dourdeville | Oct 2001 | B1 |
6427526 | Davison | Aug 2002 | B1 |
6561767 | Berger | May 2003 | B2 |
7631542 | Weissgerber | Dec 2009 | B2 |
9744477 | Almeida | Aug 2017 | B2 |
9770678 | Jackson | Sep 2017 | B2 |
9970908 | Yotani | May 2018 | B2 |
20020116989 | Davison | Aug 2002 | A1 |
20020134143 | Allington | Sep 2002 | A1 |
20030026704 | Berger | Feb 2003 | A1 |
20030116195 | Weissgerber | Jun 2003 | A1 |
20030118459 | Gerhardt | Jun 2003 | A1 |
20030190237 | Berger | Oct 2003 | A1 |
20040108273 | Richardson | Jun 2004 | A1 |
20040136833 | Allington | Jul 2004 | A1 |
20040164013 | Takao | Aug 2004 | A1 |
20050023205 | Hiraku | Feb 2005 | A1 |
20080135484 | Hammer | Jun 2008 | A1 |
20080179251 | Davison | Jul 2008 | A1 |
20080235081 | Davison | Sep 2008 | A1 |
20080245136 | Gerhardt | Oct 2008 | A1 |
20090166294 | Davison | Jul 2009 | A1 |
20090205409 | Ciavarini | Aug 2009 | A1 |
20100143155 | Preiswerk | Jun 2010 | A1 |
20110261642 | Shreve | Oct 2011 | A1 |
20120122731 | Soh | May 2012 | A1 |
20120198919 | Witt | Aug 2012 | A1 |
20130008523 | Witt | Jan 2013 | A1 |
20130134095 | Anderer | May 2013 | A1 |
20130330209 | Joudrey | Dec 2013 | A1 |
20140251448 | Witt | Sep 2014 | A1 |
20140334251 | Shreve | Nov 2014 | A1 |
20150219091 | Jackson | Aug 2015 | A1 |
20160153942 | Yotani | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
0299396 | Jan 1989 | EP |
1450400 | Sep 1976 | GB |
2432328 | Jun 2009 | GB |
H07159388 | Jun 1995 | JP |
2006023828 | Mar 2006 | WO |
Entry |
---|
Uleh, C.A., “Wet Gas Flow Metering Using PIV and Tracer Dilution”, 2011, 3rd IEEE Intl Conf on Adaptive Science and Technology (ICAST 2011). |
Dourdeville, T.A., WO 02/082103 A3, Oct. 17, 2002. |
Klaus, W., WO 2006087037 A1, Aug. 24, 2006. |
Jourdrey, K., WO 2012/099763 A1, Jul. 26, 2012. |
Combined Search adn Examination Report in counterpart Great Britain Application No. GB1500994.7, dated Jul. 9, 2015; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20150219603 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61936385 | Feb 2014 | US |