This application is related to commonly-assigned U.S. patent application Ser. No. 12/235,438 to Mark Lester Jacob et al. entitled “SEAMLESS HOST MIGRATION BASED ON NAT TYPE,” filed the same date as the present application, the entire contents of which are incorporated herein by reference.
This application is related to U.S. patent application Ser. No. 12/049,954 to Mark Lester Jacob et al. entitled “SYSTEM AND METHODS FOR SEAMLESS HOST MIGRATION”, filed Mar. 17, 2008, the entire contents of which are incorporated herein by reference. This application is also related to U.S. Provisional Patent Application No. 60/997,918 filed Oct. 5, 2007 and entitled “Systems and Methods for Seamless Host Migration”, the disclosure of which is incorporated herein by reference.
This application is related to commonly-assigned US Patent Application Publication Number 20070076729 to Yutaka Takeda et al. entitled “PEER-TO-PEER COMMUNICATION TRAVERSING SYMMETRIC NETWORK ADDRESS TRANSLATORS”, filed Oct. 4, 2005, the entire contents of which are incorporated herein by reference.
This invention is related to computer networks and more specifically to determination of a host for peer-to-peer communication among several clients of a computer network.
Presently, during game play amongst several clients of a computer network, clients communicate directly with the server. The central server processes data from every client relaying this data to all other clients so that several clients in the network can engage in game play with each other through a central server. The central server's ability to communicate data amongst several clients is limited by bandwidth, and so communication outside of game play data is limited.
Aside from game play data, clients may want to communicate other information to each other without having to go through a bandwidth-limited central server. Examples of such communication may include voice over Internet protocol (VoIP), bit torrents, video data, file sharing, and data streaming. By allowing clients to communicate amongst each other without the need of a central server, some of the central server's responsibilities may be offloaded to the clients.
A peer-to-peer network is established when a host is determined amongst the numerous clients participating in the P2P network. The host takes the duty of a central server and directs communication amongst clients (hereinafter referred to as peers when referencing non-hosts in a P2P network).
It is within this context the embodiments of the present invention arise.
One problem that arises when trying to establish communication amongst clients through peer-to-peer communication (P2P) is the issue of network address translation (NAT). Most clients connected to the central server are situated behind a NAT. NAT is an Internet standard that enables a local area network (LAN) to use one set of private IP addresses for internal traffic and a second set of global IP addresses for external traffic. It is therefore desirable for a host in a P2P network to have a favorable NAT profile in order to create an optimal P2P network.
Thus, there is need in the art, for a method of determining a host with a favorable NAT profile amongst several clients connected to a central server.
There are 4 types of NATs available: Full Cone NAT, Restricted Cone NAT, Port Restricted Cone NAT, and Symmetric NAT. A full cone NAT is one where all requests from the same internal IP address and port are mapped to the same external IP address and port. Furthermore, any external host can send a packet to the internal host by sending a packet to the mapped external address.
In a restricted cone NAT, all requests from the same internal IP address and port are mapped to the same external IP address and port. Unlike a full cone NAT, an external host (with IP address X) can send a packet to the internal host only if the internal host had previously sent a packet to IP address X.
A port restricted NAT is like a restricted cone NAT, but the restriction includes port numbers. Specifically, an external host can send a packet with source IP address X and source port P to the internal host only if the internal host had previously sent a packet from IP address X and port P.
In a symmetric NAT, all requests from the same internal IP address and port, to a specific destination IP address and port, are mapped to the same external IP address and port. If the same host sends a packet with the same source address and port, but to a different destination, a different mapping is used. Furthermore, only the external host that receives a packet can send a user data protocol (UDP) packet back to the internal host.
Host Selection Based on NAT Type
In establishing a P2P network in which clients can communicate directly with each other, one client may be established as a host 107 by which other peers 105 (clients connected to the P2P network who are not the host) may establish direct connections with each other. By way of example and not by way of limitation, the peers 105 may be connected in a configuration known as a fully connected grid (FCG). Such a configuration prevents any one peer from being a bottle neck. In embodiments of the present invention, the host 107 may be determined based on each client's NAT profile. The NATs 111A, 111B, 111C and 111D may be of one of four different configurations generally referred to as Full Cone NAT, Restricted Cone NAT, Port Restricted Cone NAT, and Symmetric NAT.
A full cone NAT is one where all requests from the same internal IP address and port are mapped to the same external IP address and port. Any client can send a packet to the client behind a full cone NAT by sending a packet to the mapped external address for the client.
In a restricted cone NAT, all requests from the same internal IP address and port are mapped to the same external IP address and port. However, unlike a full cone NAT, an external client (with IP address X) can send a packet to the client behind the full cone NAT only if the internal host had previously sent a packet to IP address X.
A port restricted NAT is similar to a restricted cone NAT, but the restriction includes port numbers. Specifically, an external client can send a packet with a source IP address X and source port P to the client behind the port restricted NAT only if the client behind the port restricted NAT had previously sent a packet from IP address X and port P.
In a symmetric NAT, all requests from the same internal IP address and port, to a specific destination IP address and port, are mapped to the same external IP address and port. If the same host sends a packet with the same source address and port, but to a different destination, a different mapping is used. Furthermore, only the external host that receives a packet can send a UDP packet back to the internal host.
Traversal of full cone, restricted cone and port restricted cone NATs is relatively straightforward and somewhat more complicated for symmetric NATs. NAT traversal may be implemented if a client is behind a symmetric NAT, e.g., as described in commonly-assigned US Patent Application Publication Number 20070076729. In particular, the client may perform a port prediction involving construction of a list of predicted transport addresses on the NAT that the client is behind. The client may then send an INVITE message containing the list of predicted transport addresses from the first node to a second client. The client behind the symmetric NAT may then perform a connectivity check with the second node using the predicted transport addresses. Connectivity checks may be performed by e.g., by sending simple traversal of user data protocol (UDP) through NAT (STUN) requests to each predicted transport address, in parallel. When the client behind the symmetric NAT receives these, it sends a STUN response to the second client. If the second client receives the STUN response, it can then begin to send media to that address.
There may be NAT types other than the four described above. In some cases it may be possible to traverse such NATs using standard techniques and in other cases the NAT behavior may be so unpredictable or unstable that communication with a client behind such a NAT is unreliable.
Because the duty of the host 107 is to communicate information between other peers 105A, 105B, and 105D it is essential that the host 107 be behind a NAT of a type that does not interfere with its ability to communicate. In embodiments where the peers 105A, 105B, 105D and the host 107 are connected in a fully connected grid (FCG) it is particularly desirable to use a host behind a NAT that does not interfere with its ability to communicate in order to provide the highest level of service to the greatest number of peers. There have been cases where a NAT identified as having questionable (unknown) support for P2P has actually performed quite well against the other NAT types in use by the existing peers in the P2P network. By selecting a host 107 with the most favorable NAT profile, more reliable peer-to-peer communication may be obtained. As used herein, the term P2P communication generally refers to direct communication between client devices connected to a network. Examples of P2P applications include, but are not limited to, the voice over internet protocol (VoIP), bit torrent transmission, video transmission, file sharing, data sharing, and other types of direct data transfer between clients that does not exceed the bandwidth capabilities of an individual client. Once the host 107 has been established, peers 105A, 105B, 105D can communicate with each other by initially transmitting information to the host 107 which then relays that information to the respective recipient peers 105A, 105B, 105D, or they may transmit information directly after using host 107 to establish this direct communication path.
In certain embodiments, clients 105A, 105B, 105D and 107 may obtain their NAT profile information through a simple traversal of user data protocol (UDP) through NAT (STUN) server 103 that is associated with the external network 109. STUN server 103 is a lightweight protocol proposed by Internet Engineering Task Force (IETF) that allows an IP enabled client to discover the presence and types of NAT that the client is behind. STUN 103 works with most NAT types and does not depend on any special behavior of the NAT. The STUN server 103 acts like a mirror held up to a client 105A so that the client 105A can see how its local transport address gets mapped to a public transport address. The client 105A can also determine the type of the NAT 111A that the client 105A is behind through communication with the STUN server 103.
By way of example and not by way of limitation, each client 105A, 105B, 107, 105D may use a STUN server 103 to obtain NAT profile information, that it may then relay that information to the central server 101 in order for the central server 101 to determine which client would make the most favorable host 107. Likewise, a client 105A, 105B, 107, 105D may use a STUN server 103 to obtain NAT profile information that may then be relayed to all other clients 105 attempting to communicate through the P2P network in order for the clients 105A, 105B, 107, 105D to best determine the host 107.
In addition to NAT behavior, each client's profile information may include quality of service (QoS) information. As used herein, the term QoS information, includes information regarding a client device that is related to how well the client device can communicate with other client devices. By way of example, but not by way of limitation, such information may relate to how fast the client can communicate, how reliably the client can communicate, or some combination of both. Particular examples of QoS information include, but are not limited to ping time, bandwidth behavior, latency, geography, IP provider.
The profile information for each client may be used to create a priority list amongst all the clients connected to the server in order to best select the host for P2P communication. If there is a tie in priority between potential hosts, ordinal numbers may be assigned to determine which potential host is selected as the actual host. In some embodiments, such ordinal numbers may be assigned by a server as indicated at 203, e.g., in the order in which the clients connected to the server. Alternatively, a distributed arbitration algorithm may be used to select a host from amongst two or more equally suitable potential hosts. If the initial host decides to leave the P2P network or is somehow disconnected from the network, this information may be used to select the next host for the P2P network.
Once the profile information has been collected by a given client, the NAT profile for that client is shared with other clients that are connected to the server. Profile information includes an expected count of the number of clients connected to the server, in order to determine whether an optimized P2P network has been reached. At this point, each client waits until every other client has submitted their profile information regarding the NAT they are behind as indicated at 205. Once all NAT profiles have been submitted by the clients, a determination is made as to whether the client should be a host, peer or if they fail to meet the requirements for either as described at 207. This determination may be made based on the profile information obtained for each client described above. For example, by assigning a priority based on a number of factors, a host can be selected from amongst the available clients based on the client having the most favorable profile. The rest of the clients may be assigned as peers or may fail to be recognized as a peer or host based on their profile information. For example, a client behind a non-traversable NAT may not meet the requirements necessary to connect to the network as a peer or host. By way of example and not by way of limitation, the client that is unable to be recognized as a peer or host may update his profile to notify the rest of the P2P network of his status, and the expected count may be decremented to exclude this client from the P2P network.
Table 1 illustrates an example of a prioritization scheme that may be used to decide host assignments in a P2P network. By way of example, but not by way of limitation, the prioritization scheme may be broken down into 5 separate distinctions: Active, Likely, Unknown, In Progress, and Inactive. These are listed in host priority order in Table 1. An active tag indicates that a client is a very good candidate for host. A likely tag indicates that a client is a good candidate for host, but priority is still given to a client with an active tag. An unknown tag indicates that the network is unable to decide whether that particular client is a good candidate for host. An in progress tag indicates that the network is still deciding whether the client is a good candidate for host. Lastly, an inactive tag indicates that a client is unable to assume the duties of a host. In the example illustrated in Table 1, the priority tags may be based on 4 separate criteria: NAT type, universal plug and play (UPnP) capability, port preservation, and port predictability. However, several other factors may also be used in determining priority. These factors fall under a client's quality of service profile and may include QoS information including, but not limited to ping time, bandwidth behavior, geography, latency, and IP provider.
Once the client has obtained the profile information regarding the NAT it is behind, the client then shares this NAT profile with other clients that are connected to the same server as indicated at 303. Not only are these clients now aware of the profile information described above for all other clients, but they are also notified of the expected count of clients currently connected to the server. At this point, each client may wait until every other client has submitted their profile information regarding the NAT they are behind as indicated at 305. Once all NAT profiles have been submitted by the clients, a determination is made as to whether the client should be a host, peer or if they fail to meet the requirements for either as indicated at 307. This determination may be made based on the profile information obtained for each client described above. By assigning a priority based on a number of factors, a host can be selected amongst the clients based on having the most favorable profile. The rest of the clients may be assigned as peers or may fail to be recognized as a peer or host based on their profile information. For example, a client behind a non-traversable NAT may not meet the requirements necessary to connect to the network as a peer or host. By way of example and not by way of limitation, the client who is unable to be recognized as a peer or host may update his profile to notify the rest of the P2P network of his status, and the expected count may be decremented to exclude this client from the P2P network.
The client that is assigned the duty of being a host may then wait for the rest of the clients on the network to connect and also updates their profiles as indicated at 309. Once all the clients have connected to the host, the expected count may be checked to determine whether all clients that are connected to the server have connected to the host as indicated at 311. If the count is as expected, P2P communication is enabled as indicated at 317. If however, the count is less than expected due to one or more clients failing to meet the requirements of being a host or peer, then the count is reduced and the process may begin again at 303.
If the client is determined to be a peer, it may attempt to connect to the host once the host has been determined as indicated at 313. A determination is made as to whether the peer is able to connect to the host or fails to connect to the host as indicated at 315. If the client is able to connect to the host, then it waits for all other peers to connect to the host before P2P communication is enabled as described at 317. If the client is unable to connect to the host, then the client's profile information is updated and the process begins again at 305. Ultimately, if the client is unable to connect to the host on multiple occasions, the count may be decremented leaving that individual client out of the P2P network.
If a peer failure occurs while collecting the NAT information, then this may be recorded as a failure and shared with the other peers. It may be assumed that sharing the data or waiting for the data will not fail, e.g., if the communication of this data is done through a reliable communication channel, such as the server 101. If the communication to the server 101 fails at any point during this process then the entire process may be aborted and the remaining clients are notified of this disconnect as specified by the protocol used to communicate with the server 101. The remaining clients will no longer be waiting for a response from the disconnected client.
Once a host has been identified from among the client devices, the server 101 may offload one or more functions to the P2P grid managed by the peer designated as the host. Such functions may be assumed by the host and/or any of the peers within the P2P grid. By way of example, but not by way of limitation, the P2P grid maybe a fully connected grid or a star topology where by the all communication goes through the host. The topology of the grid is not strictly relevant to embodiments of this invention. What is relevant is that the primary point of connection (the host) to a P2P grid of any topology is established based on the behavior of a NAT associated with that primary point of connection.
A client device 400 may be configured to implement a method for host determination according to an embodiment of the present invention as shown in
The device 400 may include a central processing unit (CPU) 402 and a memory 404 coupled to the CPU 402. The CPU 402 may be configured to run software applications and, optionally, an operating system. Some embodiments of the present invention may take advantage of certain types of processor architecture in which the CPU 402 includes a main processor 402A and one or more auxiliary processors 402B. Each auxiliary processor 402B may have its own associated local data storage. One example, among others of such processor architecture is a Cell Processor. An example of Cell Processor architecture is described in detail, e.g., in Cell Broadband Engine Architecture, copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba Corporation Aug. 8, 2005 the entire contents of which are incorporated herein by reference.
Referring again to
One or more user input devices 420 may be used to communicate user inputs from one or more users to the system 400. By way of example, one or more of the user input devices 420 may be coupled to the client device 400 via the I/O elements 411. Examples of suitable input devices 420 include keyboards, mice, joysticks, touch pads, touch screens, remote control units, light pens, still or video cameras, and/or microphones.
The client device 400 may communicate with one or more other client devices in a peer-to-peer network through a network interface 425 that facilitates communication via the electronic communications network 427. The network interface 425 may be configured to implement wired or wireless communication over local area networks and wide area networks such as the Internet. The system 400 may send and receive data and/or requests for files via one or more message packets 426 over the network 427. By way of example and not by way of limitation, the electronic communication network 427 may be a local area network, wide area network, or personal area network (e.g., blue-tooth) that can communicate between the device 400 and one or more other client devices.
The memory 404 may store applications and data for use by the CPU 402. The memory 404 may be in the form of an integrated circuit (e.g., RAM, DRAM, ROM, and the like). A computer program 401 may be stored in the memory 404 in the form of instructions that can be executed on the processor 402.
The program 401 may include instructions that when executed by the processor cause it to implement a method for determining a host from among a group of two or more peer client devices in a peer-to-peer network. By way of example, and without loss of generality, the program 401 may, upon execution, cause the device 400 to implement the method 200 illustrated in
NAT profile information 406 for the client device 400 and the other client devices 400′, 400″ may be stored in the memory 404 for use in determining the host. Each of the client device 400, 400′ and 400″ may be behind a corresponding NAT 403, 403′ and 403″. The client device 400 may reside behind a network address translator (NAT) 403, which translates an internal IP address for the client device 400 to a public IP address that is seen by other devices. It is noted that the NAT 403 is usually not a part of the client device 400 although some types of client device may include a NAT. Furthermore, embodiments of the present invention may be implemented if any or all of the client devices 400, 400′, 400″ is not behind a NAT at all.
The NAT profile information 406 may include, but is not limited to, information about the type of NAT (if any) that the client device 400 is behind, the ability of the NAT to engage in universal plug and play (UPnP), the NAT's ability to maintain port preservation, and the NAT's port predictability. The program 401 may implement selection may be based on the criteria described above, with respect to Table 1. Each of the other client devices 400′, 400″ may be similarly configured and may implement the same host selection process. If all client devices 400, 400′, and 400″ use the same program 401 and the profile information 406 it is reasonable to expect that they should all make the same host determination.
In some situations, it may be desirable for the program 401 to apply a supplemental arbitration filter based on additional information 408, such as quality of service information, to arbitrate a determination the host device from among two or more equally likely candidate devices. Quality of service information may include factors such as the client's ping time, bandwidth behavior, geography, latency, IP provider, etc, and other factors as described above. Such additional information 408 may also be stored in the memory 404.
The client device 400 may further comprise a graphics subsystem 430, which may include a graphics processing unit (GPU) 435 and graphics memory 437. The graphics memory 437 may include a display memory (e.g., a frame buffer) used for storing pixel data for each pixel of an output image. The graphics memory 437 may be integrated in the same device as the GPU 435, connected as a separate device with GPU 435, and/or implemented within the memory 404. Pixel data may be provided to the graphics memory 437 directly from the CPU 402. Alternatively, the CPU 402 may provide the GPU 435 with data and/or instructions defining the desired output images, from which the GPU 435 may generate the pixel data of one or more output images. The data and/or instructions defining the desired output images may be stored in memory 404 and/or graphics memory 437. In an embodiment, the GPU 435 may be configured (e.g., by suitable programming or hardware configuration) with 3D rendering capabilities for generating pixel data for output images from instructions and data defining the geometry, lighting, shading, texturing, motion, and/or camera parameters for a scene. The GPU 435 may further include one or more programmable execution units capable of executing shader programs.
The graphics subsystem 430 may periodically output pixel data for an image from the graphics memory 437 to be displayed on a video display device 450. The video display device 450 may be any device capable of displaying visual information in response to a signal from the device 400, including CRT, LCD, plasma, and OLED displays that can display text, numerals, graphical symbols or images. The digital broadcast receiving device 400 may provide the display device 450 with a display driving signal in analog or digital form, depending on the type of display device. In addition, the display 450 may be complemented by one or more audio speakers that produce audible or otherwise detectable sounds. To facilitate generation of such sounds, the client device 400 may further include an audio processor 455 adapted to generate analog or digital audio output from instructions and/or data provided by the CPU 402, memory 404, and/or storage 415.
The receiving device 400 may optionally include a position location device 470. Such a device may be based on any suitable technology capable of providing information on the geographic location of a device. Examples of existing technology include global positioning satellite (GPS) technology, inertial guidance technology, and the like. Information from such devices may be used in digital broadcast data applications such as navigation for mobile or hand-held devices.
According to certain embodiments, it may be useful to determine a geographic location of the client device 400. Certain QoS considerations, such as bandwidth, ping time and latency may be affected by the location of the device. By way of example and not by way of limitation, to facilitate host determination, the position-locating device 470 may provide geographic location information that the program 401 may use in determining whether the client device 400 is a good candidate to be the host for a peer-to-peer service.
The components of the device 400, including the CPU 402, memory 404, support functions 410, data storage devices 415 user input devices 420, network interface 425, graphics unit 430, audio processor 455 and position location device 470 may be operably connected to each other via one or more data buses 460. These components may be implemented in hardware, software or firmware or some combination of two or more of these.
Embodiments of the present invention allow for cooperative host determination and host migration in peer-to-peer network situations.
While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature described herein, whether preferred or not, may be combined with any other feature described herein, whether preferred or not. In the claims that follow, the indefinite article “A”, or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for”.
Number | Name | Date | Kind |
---|---|---|---|
4764928 | Akerberg | Aug 1988 | A |
4787051 | Olson | Nov 1988 | A |
4843568 | Krueger | Jun 1989 | A |
5128671 | Thomas, Jr. | Jul 1992 | A |
5528265 | Harrison | Jun 1996 | A |
5544325 | Denny et al. | Aug 1996 | A |
5596720 | Hamada et al. | Jan 1997 | A |
5630184 | Roper et al. | May 1997 | A |
5636216 | Fox et al. | Jun 1997 | A |
5701427 | Lathrop | Dec 1997 | A |
5768382 | Schneier et al. | Jun 1998 | A |
5768531 | Lin | Jun 1998 | A |
5793763 | Mayes et al. | Aug 1998 | A |
5809016 | Kreitzer et al. | Sep 1998 | A |
5812531 | Cheung et al. | Sep 1998 | A |
5835726 | Shwed et al. | Nov 1998 | A |
5856972 | Riley et al. | Jan 1999 | A |
5898679 | Brederveld et al. | Apr 1999 | A |
5956485 | Perlman | Sep 1999 | A |
6012096 | Link et al. | Jan 2000 | A |
6058431 | Srisuresh et al. | May 2000 | A |
6128623 | Mattis et al. | Oct 2000 | A |
6128624 | Papierniak et al. | Oct 2000 | A |
6128627 | Mattis et al. | Oct 2000 | A |
6128664 | Yanagidate et al. | Oct 2000 | A |
6151584 | Papierniak et al. | Nov 2000 | A |
6151601 | Papierniak et al. | Nov 2000 | A |
6152824 | Rothschild et al. | Nov 2000 | A |
6157368 | Fager | Dec 2000 | A |
6208649 | Kloth | Mar 2001 | B1 |
6209003 | Mattis et al. | Mar 2001 | B1 |
6212565 | Gupta | Apr 2001 | B1 |
6212633 | Levy et al. | Apr 2001 | B1 |
6289358 | Mattis et al. | Sep 2001 | B1 |
6292880 | Mattis et al. | Sep 2001 | B1 |
6327630 | Carroll et al. | Dec 2001 | B1 |
6333931 | LaPier et al. | Dec 2001 | B1 |
6349210 | Li | Feb 2002 | B1 |
6353891 | Borella et al. | Mar 2002 | B1 |
6375572 | Masuyama | Apr 2002 | B1 |
6389462 | Cohen et al. | May 2002 | B1 |
6393488 | Araujo | May 2002 | B1 |
6405104 | Dougherty | Jun 2002 | B1 |
6421347 | Borgstahl et al. | Jul 2002 | B1 |
6487583 | Harvey et al. | Nov 2002 | B1 |
6487600 | Lynch | Nov 2002 | B1 |
6535511 | Rao | Mar 2003 | B1 |
6549786 | Cheung et al. | Apr 2003 | B2 |
6553515 | Gross et al. | Apr 2003 | B1 |
6581108 | Denison et al. | Jun 2003 | B1 |
6590865 | Ibaraki et al. | Jul 2003 | B1 |
6616531 | Mullins | Sep 2003 | B1 |
6618757 | Babbitt et al. | Sep 2003 | B1 |
6636898 | Ludovici et al. | Oct 2003 | B1 |
6640241 | Ozzie et al. | Oct 2003 | B1 |
6641481 | Mai et al. | Nov 2003 | B1 |
6667972 | Foltan et al. | Dec 2003 | B1 |
6668283 | Sitaraman et al. | Dec 2003 | B1 |
6701344 | Holt et al. | Mar 2004 | B1 |
6704574 | Lin | Mar 2004 | B2 |
6712697 | Acres | Mar 2004 | B2 |
6772219 | Shobatake | Aug 2004 | B1 |
6779017 | Lamberton et al. | Aug 2004 | B1 |
6779035 | Gbadegesin | Aug 2004 | B1 |
6789126 | Saulpaugh et al. | Sep 2004 | B1 |
6799255 | Blumenau et al. | Sep 2004 | B1 |
6807575 | Emaru et al. | Oct 2004 | B1 |
6816703 | Wood et al. | Nov 2004 | B1 |
6829634 | Holt et al. | Dec 2004 | B1 |
6848997 | Hashimoto et al. | Feb 2005 | B1 |
6891801 | Herzog | May 2005 | B1 |
6899628 | Leen et al. | May 2005 | B2 |
6920501 | Chu et al. | Jul 2005 | B2 |
6978294 | Adams et al. | Dec 2005 | B1 |
7016942 | Odom | Mar 2006 | B1 |
7017138 | Zirojevic et al. | Mar 2006 | B2 |
7035911 | Lowery et al. | Apr 2006 | B2 |
7043641 | Martinek et al. | May 2006 | B1 |
7065579 | Traversat et al. | Jun 2006 | B2 |
7082316 | Eiden et al. | Jul 2006 | B2 |
7096006 | Lai et al. | Aug 2006 | B2 |
7107348 | Shimada et al. | Sep 2006 | B2 |
7120429 | Minear et al. | Oct 2006 | B2 |
7123608 | Scott et al. | Oct 2006 | B1 |
7127613 | Pabla et al. | Oct 2006 | B2 |
7130921 | Goodman et al. | Oct 2006 | B2 |
7133368 | Zhang et al. | Nov 2006 | B2 |
7134961 | Hora | Nov 2006 | B2 |
7155515 | Brown et al. | Dec 2006 | B1 |
7155518 | Forslow | Dec 2006 | B2 |
7168089 | Nguyen et al. | Jan 2007 | B2 |
7174382 | Ramanathan et al. | Feb 2007 | B2 |
7177950 | Narayan et al. | Feb 2007 | B2 |
7177951 | Dykeman et al. | Feb 2007 | B1 |
7194654 | Wray et al. | Mar 2007 | B2 |
7197565 | Abdelaziz et al. | Mar 2007 | B2 |
7203841 | Jackson et al. | Apr 2007 | B2 |
7216359 | Katz et al. | May 2007 | B2 |
7240093 | Danieli et al. | Jul 2007 | B1 |
7243141 | Harris | Jul 2007 | B2 |
7254709 | Richard | Aug 2007 | B1 |
7263070 | Delker et al. | Aug 2007 | B1 |
7272636 | Pabla | Sep 2007 | B2 |
7321928 | Feltin et al. | Jan 2008 | B2 |
7340500 | Traversat et al. | Mar 2008 | B2 |
7346015 | Shipman | Mar 2008 | B2 |
7392375 | Bartram et al. | Jun 2008 | B2 |
7398388 | Xu et al. | Jul 2008 | B2 |
7407434 | Thomas et al. | Aug 2008 | B2 |
7429215 | Rozkin et al. | Sep 2008 | B2 |
7451490 | Pirich et al. | Nov 2008 | B2 |
7457279 | Scott et al. | Nov 2008 | B1 |
7533172 | Traversat et al. | May 2009 | B2 |
7738468 | Standridge et al. | Jun 2010 | B2 |
7803052 | Multerer et al. | Sep 2010 | B2 |
20010005368 | Rune | Jun 2001 | A1 |
20010017856 | Asokan et al. | Aug 2001 | A1 |
20010021188 | Fujimori et al. | Sep 2001 | A1 |
20010044339 | Cordero et al. | Nov 2001 | A1 |
20010046213 | Sakoda | Nov 2001 | A1 |
20020002074 | White et al. | Jan 2002 | A1 |
20020006114 | Bjelland et al. | Jan 2002 | A1 |
20020013838 | Kushida et al. | Jan 2002 | A1 |
20020016826 | Johansson et al. | Feb 2002 | A1 |
20020035604 | Cohen et al. | Mar 2002 | A1 |
20020055989 | Stringer-Calvert et al. | May 2002 | A1 |
20020075844 | Hagen | Jun 2002 | A1 |
20020085097 | Colmenarez et al. | Jul 2002 | A1 |
20020097732 | Worster et al. | Jul 2002 | A1 |
20020107786 | Lehmann-Haupt et al. | Aug 2002 | A1 |
20020107935 | Lowery et al. | Aug 2002 | A1 |
20020119821 | Sen et al. | Aug 2002 | A1 |
20020128471 | Ashley et al. | Sep 2002 | A1 |
20020143855 | Traversat et al. | Oct 2002 | A1 |
20020147810 | Traversat et al. | Oct 2002 | A1 |
20020161821 | Narayan et al. | Oct 2002 | A1 |
20020183004 | Fulton et al. | Dec 2002 | A1 |
20020184310 | Traversat et al. | Dec 2002 | A1 |
20020184311 | Traversat et al. | Dec 2002 | A1 |
20030027634 | Matthews, III | Feb 2003 | A1 |
20030028585 | Yeager et al. | Feb 2003 | A1 |
20030045359 | Leen et al. | Mar 2003 | A1 |
20030046292 | Subramanian et al. | Mar 2003 | A1 |
20030051052 | Shteyn et al. | Mar 2003 | A1 |
20030055892 | Huitema et al. | Mar 2003 | A1 |
20030055978 | Collins | Mar 2003 | A1 |
20030079003 | Burr | Apr 2003 | A1 |
20030084282 | Taruguchi | May 2003 | A1 |
20030097408 | Kageyama et al. | May 2003 | A1 |
20030104829 | Alzoubi et al. | Jun 2003 | A1 |
20030115258 | Baumeister et al. | Jun 2003 | A1 |
20030126229 | Kantor et al. | Jul 2003 | A1 |
20030126245 | Feltin et al. | Jul 2003 | A1 |
20030135625 | Fontes et al. | Jul 2003 | A1 |
20030152034 | Zhang et al. | Aug 2003 | A1 |
20030158961 | Nomura et al. | Aug 2003 | A1 |
20030162556 | Libes | Aug 2003 | A1 |
20030177187 | Levine et al. | Sep 2003 | A1 |
20030182421 | Faybishenko et al. | Sep 2003 | A1 |
20030182428 | Li et al. | Sep 2003 | A1 |
20030191828 | Ramanathan et al. | Oct 2003 | A1 |
20030217096 | McKelvie et al. | Nov 2003 | A1 |
20030217135 | Chatani et al. | Nov 2003 | A1 |
20030227939 | Yukie et al. | Dec 2003 | A1 |
20030229779 | Morais et al. | Dec 2003 | A1 |
20030229789 | Morais et al. | Dec 2003 | A1 |
20030233281 | Takeuchi et al. | Dec 2003 | A1 |
20040007618 | Oram et al. | Jan 2004 | A1 |
20040015548 | Lee | Jan 2004 | A1 |
20040018839 | Andric et al. | Jan 2004 | A1 |
20040024879 | Dingman et al. | Feb 2004 | A1 |
20040063497 | Gould | Apr 2004 | A1 |
20040085947 | Ekberg et al. | May 2004 | A1 |
20040087369 | Tanaka | May 2004 | A1 |
20040088369 | Yeager et al. | May 2004 | A1 |
20040103179 | Damm et al. | May 2004 | A1 |
20040110563 | Tanaka et al. | Jun 2004 | A1 |
20040133631 | Hagen et al. | Jul 2004 | A1 |
20040139228 | Takeda et al. | Jul 2004 | A1 |
20040162871 | Pabla et al. | Aug 2004 | A1 |
20040181463 | Goldthwaite et al. | Sep 2004 | A1 |
20040207880 | Thakur | Oct 2004 | A1 |
20040212589 | Hall et al. | Oct 2004 | A1 |
20040236863 | Shen et al. | Nov 2004 | A1 |
20040236945 | Risan et al. | Nov 2004 | A1 |
20040243665 | Markki et al. | Dec 2004 | A1 |
20040249891 | Khartabil et al. | Dec 2004 | A1 |
20040254977 | Zhang | Dec 2004 | A1 |
20040267876 | Kakivaya et al. | Dec 2004 | A1 |
20050007964 | Falco et al. | Jan 2005 | A1 |
20050015626 | Chasin | Jan 2005 | A1 |
20050020354 | Nguyen et al. | Jan 2005 | A1 |
20050026698 | Pirich et al. | Feb 2005 | A1 |
20050063409 | Oommen | Mar 2005 | A1 |
20050064939 | McSheffrey et al. | Mar 2005 | A1 |
20050065632 | Douglis et al. | Mar 2005 | A1 |
20050080858 | Pessach | Apr 2005 | A1 |
20050086287 | Datta | Apr 2005 | A1 |
20050086288 | Datta et al. | Apr 2005 | A1 |
20050086329 | Datta et al. | Apr 2005 | A1 |
20050086350 | Mai | Apr 2005 | A1 |
20050086369 | Mai et al. | Apr 2005 | A1 |
20050105526 | Stiemerling et al. | May 2005 | A1 |
20050141522 | Kadar et al. | Jun 2005 | A1 |
20050149481 | Hesselink et al. | Jul 2005 | A1 |
20050221858 | Hoddie | Oct 2005 | A1 |
20050250487 | Miwa | Nov 2005 | A1 |
20050251577 | Guo et al. | Nov 2005 | A1 |
20050259637 | Chu et al. | Nov 2005 | A1 |
20050262411 | Vertes | Nov 2005 | A1 |
20060015582 | Morita et al. | Jan 2006 | A1 |
20060063587 | Manzo | Mar 2006 | A1 |
20060067290 | Miwa | Mar 2006 | A1 |
20060068702 | Miwa | Mar 2006 | A1 |
20060075127 | Juncker et al. | Apr 2006 | A1 |
20060084504 | Chan et al. | Apr 2006 | A1 |
20060111979 | Chu | May 2006 | A1 |
20060209822 | Hamamoto | Sep 2006 | A1 |
20060218624 | Ravikumar et al. | Sep 2006 | A1 |
20060288103 | Gobara et al. | Dec 2006 | A1 |
20070058792 | Chaudhari et al. | Mar 2007 | A1 |
20070061460 | Khan et al. | Mar 2007 | A1 |
20070076729 | Takeda et al. | Apr 2007 | A1 |
20070077981 | Hungate et al. | Apr 2007 | A1 |
20070150552 | Harris et al. | Jun 2007 | A1 |
20070165629 | Chaturvedi et al. | Jul 2007 | A1 |
20070191109 | Crowder et al. | Aug 2007 | A1 |
20070198418 | MacDonald et al. | Aug 2007 | A1 |
20070208748 | Li | Sep 2007 | A1 |
20070213124 | Walker et al. | Sep 2007 | A1 |
20070217436 | Markley et al. | Sep 2007 | A1 |
20070237153 | Slaughter et al. | Oct 2007 | A1 |
20090077245 | Smelyansky et al. | Mar 2009 | A1 |
20090094370 | Jacob et al. | Apr 2009 | A1 |
20090111532 | Slaughter et al. | Apr 2009 | A1 |
20090138610 | Gobara et al. | May 2009 | A1 |
20090228593 | Takeda | Sep 2009 | A1 |
20090240821 | Juncker et al. | Sep 2009 | A1 |
20100039937 | Ramanujan et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
0 913 965 | May 1999 | EP |
1 107 508 | Jun 2001 | EP |
1 374 959 | May 2003 | EP |
2001 53901 | Feb 2001 | JP |
2002 10321 | Jan 2002 | JP |
2004 135778 | May 2004 | JP |
2004 136009 | May 2004 | JP |
2004 141225 | May 2004 | JP |
2005 319047 | Nov 2005 | JP |
2005 323116 | Nov 2005 | JP |
2005 323117 | Nov 2005 | JP |
2005346461 | Dec 2005 | JP |
2006136031 | May 2006 | JP |
WO 9935799 | Jul 1999 | WO |
WO 0197485 | Dec 2001 | WO |
WO 0203217 | Jan 2002 | WO |
0211366 | Feb 2002 | WO |
WO 0223822 | Mar 2002 | WO |
03069495 | Aug 2003 | WO |
2004038541 | May 2004 | WO |
W02004063843 | Jul 2004 | WO |
W02005088466 | Sep 2005 | WO |
2007041417 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100077087 A1 | Mar 2010 | US |