Claims
- 1. A method for hot consolidating material (10) of metallic and nonmetallic compositions and combinations thereof to form a densified compact (10') of a predetermined density wherein a quantity of such material (10) which is less dense than the predetermined density is heated and disposed in a compaction cavity in a pressure-transmitting medium (22, 24) to which external pressure is applied to the entire exterior of the medium (22, 24) to cause a predetermined densification of the material by hydrostatic pressure applied by a medium (22, 24) in response to the medium being substantially fully dense and incompressible and capable of elastic flow at least just prior to the predetermined densification, said method including the steps of utilizing an elastomeric for the pressure-transmitting medium (22, 24) to define a first component (22) of elastomeric medium disposed within a pot die cavity (26) and a second component (24) of the elastomeric medium acted upon by a ram (16) movable into and out of the pot die cavity (26) in close sliding engagement therewith, positioning the first (22) and second (24) elastomeric components so that the ram (16) enters the cavity (26) of the pot die (14) prior to the first (22) and second (24) elastomeric components being compressed between said ram and pot die, heating the material (10) prior to placement in the compaction cavity defined by the first and second components (22, 24) of the elastomeric medium, encapsulating the material (10) in at least a portion of a formed and self-sustaining thermal insulating barrier means (32, 34) before placing the heated material into the compaction cavity, placing the thermal barrier means (32, 34) with the heated material encapsulated therein into the compaction cavity of the elastomeric medium, and applying pressure to the medium (22, 24) by moving the ram into the pot die and crumbling the barrier means (32, 34) into incompressibility while surrounding the material (10) to limit heat transfer between the material (10) and the elastomeric medium (22, 24), successively opening and closing the first and second components (22, 24) of elastomeric medium upon opening and closing of the ram (16) and pot die (14) in a press to successively form a plurality of densified compacts with a plurality of formed barrier means.
- 2. A method as set forth in claim 1 further characterized by encapsulating the material (10) in a thermal insulating barrier means and including a first thermal insulating jacket (32) for limiting heat loss from the material (10) and a second thermal insulating jacket (34) surrounding the first jacket (32) for protecting the elastomeric medium (22, 24) from heat from the first jacket (32).
- 3. A method as set forth in claim 2 further characterized by heating and encapsulating the material (10) in the first jacket (32) prior to disposing the first jacket (32) and material (10) within the second jacket (34) within the medium (22, 24).
- 4. A method as set forth in claim 3 further characterized by encapsulating the material (10) in a sealed container (12) and thereafter disposing the container (12) with the material (10) therein within the first jacket (32).
- 5. A method as set forth in claim 4 further characterized by casting the first jacket (32) about the container (12) so that the first jacket (32) is a monolithic material.
- 6. A method as set forth in claim 5 further characterized by disposing the first jacket (32) in the second jacket (34) of a plurality of sections mated together to surround the first jacket (32).
- 7. A method as set forth in any one of claims 1 through 6 further characterized by utilizing a thermal barrier means (32, 34) which is at least in part fluidic and capable of flow just prior to the predetermined densification.
- 8. A method as set forth in any one of claims 1 through 6 further characterized by utlizing a thermal barrier means (32, 34) which is at least in part reinforced with fibers dispersed therein.
- 9. A method as set forth in any one of claims 1 through 6 further characterized by providing a plurality of lubrication grooves (38) in the surface of at least one of the components (22, 24) of elastomeric medium to facilitate movement thereof relative to the adjacent supporting surface of the ram (16) or pot die (14).
- 10. A method as set forth in any one of claims 1 through 6 further characterized by disposing a seal (36) of a harder material than the elastomeric medium (22) within and below the extremity of the cavity (26) of the pot die (14) so that after the ram (16) enters the pod die (14) and applies pressure to the elastomeric medium the seal (36) is forced into sealing engagement with the cavity (26) of the pot die (14) at the juncture thereof with the ram (16) to prevent leakage of the elastomeric medium (22) between the ram (16) and pot die (14).
Parent Case Info
This application is a continuation of Ser. No. 419,435, filed 9-20-82, now abandoned.
US Referenced Citations (7)
Foreign Referenced Citations (1)
Number |
Date |
Country |
14975 |
Sep 1980 |
EPX |
Non-Patent Literature Citations (1)
Entry |
Jones, W. D., Fundamental Principles of Powder Metallurgy, Edward Arnold Publishers, Ltd., London, pp. 339-341. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
419435 |
Sep 1982 |
|