The invention is directed to a method that allows to label the starting materials in powder form that are used in layer additive manufacturing methods with regard to their origin as well as to the use of such a labelled powder as raw material in a layer additive manufacturing method.
In the layer-wise manufacturing of objects from raw materials in powder form, for example by means of laser sintering, there is a problem that the raw materials in powder form can not be distinguished as to their appearance, though they are different powders. For instance, a flame resistant can optionally be added to a powder in order to achieve fire resistance of the object to be generated. Normally, such an additive does not change the appearance of the powder. In such a case it can usually be determined only by an elaborate analysis of the powder, whether a flame resistant was added.
Furthermore, it can also be important to determine for an already finished object and part, respectively, from which powder it has been manufactured. This can for example be an element of a failure analysis when the object does not have the desired characteristics. Even when the object is flawless, it can e.g. be desirable to know, sometimes after years, the supplier of the laser sintering powder that was used. Here, usually there shall not be the necessity to damage the object in an analysis, for example when a sample is taken.
An addition of colour pigments to the powder in order to label differing powder characteristics is unsuitable, because thereby the final colour of the object to be generated is affected, which in many cases is undesirable.
Therefore, the object of the invention is to provide a method that allows the identification of powders used in an additive layer manufacturing method, in particular a laser sintering method, and of parts manufactured from it, without altering the appearance of the powder and of the parts.
The object is achieved by a method for labelling a powder according to claim 1 and the use of such a powder according to claim 8 or 13.
Further developments according to the invention are described in the dependent claims.
By the method according to the invention it is in particular possible to exactly relate manufactured parts to a specific starting powder that was used. Thereby also after many years, when records have got lost or supply chains can no longer be traced back completely, it can be determined from which starting material of which producer the respective parts had been manufactured. In particular, it is also possible that the powder is not only labelled corresponding to a specific producer or to a specific production date, but that an indicator to the one, who has manufactured parts with this powder, is added. By the method according to the invention it is furthermore possible to carry out an identification even when only arbitrary small fragments of parts are available.
Further features and advantages of the invention will be described in the following based on an embodiment.
According to the invention for labelling a powder that is used in an additive layer manufacturing method such as a laser sintering method as building material in such a way that its properties or its origin from a specific producer are identifiable, the powder is mixed in a standard mixer with a marker powder. In order to avoid the situation that the characteristics of the starting powder are modified in a too strong way by the marker powder, it is advantageous when the fraction of the marker powder in the mixture does not exceed a certain percentage, e.g. 20 percent by weight. Of course, an even lower fraction, e.g. 10 percent by weight or even better between 0.1 and 10 percent by weight, is even more advantageous. However, when the fraction of the marker powder drops, also the probability to find still marker particles in small samples of the entire mixture goes down. With respect to a powder identification also for small amounts of powder, it is also important that the mixing is such complete that the final product is as homogenous as possible.
As the properties of the object to be manufactured shall not be changed by adding the marker substance that serves as identification means, the marker substance needs to be colourless or else needs to be added in such a low proportion that no change of the colour of the starting powder is observable. In order to be still able to identify a powder or a part according to the invention, a substance is chosen as marker, which shows a luminescence when being irradiated with light having a wavelength outside of the visible region such as infrared light or ultraviolet light. Then, for the identification the light that is emitted from the luminescent substance, has to be analysed for its wavelength and/or intensity. Thereby, solely based on presence of a luminescent emission it can be determined whether a marker had been added to the powder. If a luminescent emission is found for an irradiation, based on the irradiated (exciting) wavelength(s) and/or the emitted wavelength(s) it can be determined, which marker had been added.
Now a powder can be labelled by adding a tracer that emits a very specific wavelength or several characteristic wavelengths or a certain wavelength region. Of course it is also possible to use a tracer that shows a luminescence in various wavelength regions. In general an identification is possible via registering a very specific spectral distribution in the emitted light.
The labelled powder can be used as building material in any layer-additive manufacturing method for manufacturing three-dimensional objects, thus e.g. in a selective laser sintering or laser melting method or a selective electron beam and infrared, respectively, sintering or melting method, or else in a 3D printing method, in which a binder is spray-applied for solidifying the material. The mentioned methods are described among others in WO 90/03893 and U.S. Pat. No. 6,375,874 B1.
In
For the excitation of the luminescence as an alternative to UV light also light having a different wavelength outside of the visible region, e.g. in the IR region, in a more preferable embodiment of the invention in the near infrared region (NIR), even more preferable between 900 nm and 1000 nm can be used. Furthermore, also an excitation of the luminescence by means of ionising radiation (particle radiation or X-ray radiation) is possible.
The detector for the analysis of the luminescent light can be a simple photodiode or else also a CCD or pixel sensor that detects the amount of light. In a most simple case the detection of the presence of a tracer happens by comparing the light emissions, with and without excitation light, of the powder or the finished product. The identification of the wavelengths of the luminescent light can e.g. be implemented by filter attachments in front of the detector, wherein each filter attachments shows a transmission only in a limited wavelength region. However, the use of other setups that provide a spectral decomposition (e.g. prisms, gratings, etc.) is possible. The spectral resolution can also be effected in the detector itself.
In order to determine the concentration of tracers in the powder or part for instance the amount of emitted luminescent light is measured without an attached filter and with an attached filter, respectively, wherein the filter shows a transmission only in the region of the luminescent spectrum. In this way the amount of luminescent light can be set in a relation to the total amount of light that is reflected from the powder or the part and is incident on the detector. A suitable calibration of the system provided, the amount of the added tracer can then be determined for the case that it is the amount of the added tracer that is used for coding the information.
In a modified embodiment two different tracers are added to the powder. The two different tracers show a light emission in different wavelength regions and/or have different exciting wavelengths. Then, a specific coding can be created by setting the proportion of the two added marker substances with respect to one another. The proportion is then determined in the analysis of the powder or part by setting the amounts of light that are emitted in both different wavelength regions in a relation to one another. In this way a corresponding encoding can be read. Of course, also more than two different tracers may be added. Furthermore, it is also possible to use a tracer that shows a luminescence in several wavelength regions.
Even if the emission regions of the two marker substances are overlapping with one another, the relative proportions of the two substances can be determined by using a spectrometer for analysing the luminescent radiation.
The described method can be applied to all possible powders, in particular to polymer powder, metal powder and sand-sintering powder. As for some of the mentioned powders very high temperatures occur during for example a sintering or melting process, with regard to a selection of the tracers there is the important requirement that the marker substances are not affected by the high temperatures that occur during the building process. It was found at a thermal resistance exists for the temperatures that normally occur in laser sintering methods, when using salts of the rare earths. These include e.g. oxides of the rare earths or oxysulfides or also fluorides, which are doped with minor additions of other elements that also originate from the group of the rare earths, in order to generate the desired luminescence.
Very advantageously, the marker substance can be admixed in such a way that the particles of the marker substance are embedded on the surface of the powder particles. In this way each individual powder particle can be marked. To this effect the marker substance and the powder particles are for example subjected to a method for the surface treatment of particles described in EP 0 555 947 A1. In the process the particles are fed into one of a plurality of impact chambers in communication with one another and equipped with a rotating disk having impact pins and also with an impingement rings, subjecting the mixture to an impact striking action, separating an air stream produced by that action from the powder mixture and discharging it continuously from the impact chamber, repeating the impact action while allowing the powder mixture to reside temporarily in the impact chamber, before causing the mixture to move, in succession, to the next chamber. Tests with such a commercial powder treatment machine NHS-1 of the company Nara showed that the duration of treatment for 8000 revolutions per minute has to be at least one minute (at room temperature).
Finally, it shall be pointed out that different marker substances or tracers can be recognized not only by the light that is emitted after an exitation, but also by the wavelength(s) that excites the luminescence.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 058 177 | Nov 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2567769 | Head | Sep 1951 | A |
2791565 | Runciman | May 1957 | A |
2946656 | Schreurs | Jul 1960 | A |
3440092 | Best et al. | Apr 1969 | A |
3527711 | Barber et al. | Sep 1970 | A |
3570056 | Hall et al. | Mar 1971 | A |
3684730 | Sobon | Aug 1972 | A |
3706825 | Hall et al. | Dec 1972 | A |
3758413 | Peters | Sep 1973 | A |
3798173 | Nath et al. | Mar 1974 | A |
4572803 | Yamazoe et al. | Feb 1986 | A |
4881951 | Monroe et al. | Nov 1989 | A |
4897300 | Boehm | Jan 1990 | A |
5210411 | Oshima et al. | May 1993 | A |
5460758 | Langer et al. | Oct 1995 | A |
5474803 | Kikuchi | Dec 1995 | A |
5677187 | Anderson et al. | Oct 1997 | A |
5753274 | Wilkening | May 1998 | A |
6165609 | Curatolo | Dec 2000 | A |
6180029 | Hampden-Smith et al. | Jan 2001 | B1 |
6211526 | Huston et al. | Apr 2001 | B1 |
6322728 | Brodkin et al. | Nov 2001 | B1 |
6375874 | Russell et al. | Apr 2002 | B1 |
6387339 | Kaneyoshi et al. | May 2002 | B1 |
6639353 | Chadha | Oct 2003 | B1 |
6656588 | Laine et al. | Dec 2003 | B1 |
6666991 | Atarashi et al. | Dec 2003 | B1 |
6672343 | Perret | Jan 2004 | B1 |
6824714 | Turck | Nov 2004 | B1 |
6974641 | Choy et al. | Dec 2005 | B1 |
6982117 | Smith | Jan 2006 | B2 |
7147801 | Kozee et al. | Dec 2006 | B2 |
7157854 | Wedding | Jan 2007 | B1 |
7279234 | Dean | Oct 2007 | B2 |
7357887 | May | Apr 2008 | B2 |
7443903 | Leonardo et al. | Oct 2008 | B2 |
7449238 | Villalobos et al. | Nov 2008 | B1 |
20010036591 | Schulz et al. | Nov 2001 | A1 |
20010042853 | Hampden-Smith et al. | Nov 2001 | A1 |
20020195747 | Hull | Dec 2002 | A1 |
20030118440 | Zhao et al. | Jun 2003 | A1 |
20030126804 | Rosenflanz et al. | Jul 2003 | A1 |
20030183807 | Shankar et al. | Oct 2003 | A1 |
20030194578 | Tam | Oct 2003 | A1 |
20040080256 | Hampden-Smith et al. | Apr 2004 | A1 |
20040137228 | Monsheimer et al. | Jul 2004 | A1 |
20040156986 | Yadav | Aug 2004 | A1 |
20040232583 | Monsheimer et al. | Nov 2004 | A1 |
20050247912 | Akiyama et al. | Nov 2005 | A1 |
20050277710 | Joyce et al. | Dec 2005 | A1 |
20060073975 | Thieme et al. | Apr 2006 | A1 |
20060105170 | Dobson et al. | May 2006 | A1 |
20060189113 | Vanheusden et al. | Aug 2006 | A1 |
20070183918 | Monsheimer et al. | Aug 2007 | A1 |
20070238056 | Baumann et al. | Oct 2007 | A1 |
20070273951 | Ribi | Nov 2007 | A1 |
20080057356 | Shimomura et al. | Mar 2008 | A1 |
20080085828 | Khan et al. | Apr 2008 | A1 |
20080131546 | Perret et al. | Jun 2008 | A1 |
20080138604 | Kenney | Jun 2008 | A1 |
20080152889 | Brand | Jun 2008 | A1 |
20080274028 | Lin et al. | Nov 2008 | A1 |
20080281019 | Giller et al. | Nov 2008 | A1 |
20090118813 | Scheuermann et al. | May 2009 | A1 |
20090166329 | Cors et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1 209 341 | Aug 1986 | CA |
1 212 021 | Sep 1986 | CA |
1235936 | Nov 1999 | CN |
1594163 | Mar 2005 | CN |
33 01 357 | Aug 1984 | DE |
199 62 953 | Jul 2001 | DE |
103 50 024 | May 2005 | DE |
10 2004 016 249 | Oct 2005 | DE |
0 555 947 | Aug 1993 | EP |
1110996 | Jun 2001 | EP |
1 494 000 | Jan 2005 | EP |
1 431 352 | Apr 2008 | EP |
1 939 267 | Jul 2008 | EP |
1 942 172 | Jul 2008 | EP |
2455852 | May 1976 | GB |
EP 0555947 | Aug 1993 | JP |
2007-113327 | May 2007 | JP |
WO-9003893 | Apr 1990 | WO |
WO-9828124 | Jul 1998 | WO |
WO-9846544 | Oct 1998 | WO |
WO-2006119759 | Nov 2006 | WO |
WO-2007024856 | Mar 2007 | WO |
WO-2008010044 | Jan 2008 | WO |
Entry |
---|
Mixer Mill MM 200. Product Description [online]. Retsch, captured Aug. 12, 2007 via Internet Archive Wayback Machine (retrieved on Jun. 10, 2014). Retrieved from the Internet: http://web.archive.org/web/20071028184535/http://www.retsch.com/products/milling/ball-mills/mm-200/. |
Smith, Edgar Von. “Victor Von-Richter's Text-Book of Inorganic Chemistry Ed.” vol. 1. (London) pp. 356-357. |
Dubey, Vikas; Kaur, Jagjeet; Agrawal, Sadhana. “Effect of Europium Doping Levels on Photoluminescence and Thermoluminescence of Strontium Yttrium Oxide Phosphor”. Materials Science in Semiconducting Processing. vol. 31 (2015) pp. 27-37. |
Wise et al., “Chemical taggant detection and analysis by laser-induced breakdown spectroscopy”, Applied Optics, Nov. 1, 2008, vol. 47, No. 31, Applied Optics, pp. G15-G20. |
Extended European Search Report dated Dec. 27, 2011, issued on corresponding European Patent Application No. 11008886.1. |
Exner et al., “Selective Laser Sintering—Fast Generation of Precise Parts—an Overview”, Laser Technik Journal, vol. 5, No. 4, Sep. 2008. |
Number | Date | Country | |
---|---|---|---|
20100140550 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
61201832 | Dec 2008 | US |