None.
Gas-liquid chromatography, commonly referred to as gas chromatography or GC, is a process used for analyzing a complex sample by separating the analytes within the sample to determine the identity of the analytes in the sample. Other information about the analytes, such as the concentration of each analyte within the sample, may also be obtained. A gas chromatograph is used for separating the sample by injecting the sample onto a column through which the sample passes. Different chemical analytes of the sample pass in a mobile phase at different rates depending on their various chemical and physical properties and their interaction with a specific column filling, called the stationary phase. During the process of gas chromatography, the analytes of the sample are separated as a consequence of being partitioned between the mobile gaseous phase and the stationary phase held in the column or by passing through a series of columns. The function of the mobile phase is to transport the sample through the column but not to interact with it. The sample's motion through the column is inhibited by the adsorption of the analytes either onto the column walls or onto packing materials within the column. The rate at which the analytes progress along the column depends on the strength of adsorption, which in turn depends on the properties of the analyte. Since each type of analyte has a different rate of progression, the various analytes of the sample are separated as they progress along the column and reach the end of the column at different times. A detector is used to monitor the outlet stream from the column, thus, the time at which each analyte reaches the outlet identifies the analyte and may determine the concentration of that analyte as well.
When a sample is complex and has multiple analytes it may be difficult to separate out and identify a particular analyte of interest. In multidimensional gas chromatography the sample undergoes a series of separation steps. The sample is introduced to at least two columns allowing for a better separation of the analytes. Increasing the separation of the sample increases the accuracy and the precision of the results. Multiple columns and separation steps allow for a more effective separation of the analytes from the sample, but this process does not necessarily target a particular analyte. Therefore, it would be beneficial to have a method that improves the separation of the sample and allows for the targeting of specific analytes.
The equipment used for chromatography can be expensive and, as complex samples progress through the chromatograph, build-up occurs. It would be beneficial to employ a method that keeps the equipment cleaner and reduces the need for maintenance.
In one of many illustrative, non-limiting aspects of the present invention, there is provided a method for identifying the composition of a sample. The method includes introducing the sample onto a first column whereby the sample is separated into at least two segments, introducing at least two segments to a heartcut device whereby at least two segments are selectively separated into at least two heartcut fractions, introducing at least one of the fractions onto a second column whereby at least one fraction is further separated into at least two analytes, introducing at least one analyte from the second column to a gas chromatography connector, introducing at least one analyte from the connector to a third column, and introducing at least one analyte from the third column into a detector whereby at least one analyte is analyzed and identified.
In another of many illustrative, non-limiting aspects of the present invention, there is provided a chromatograph for identifying the composition of a sample. The chromatograph includes a first column whereby the sample is separated into at least two segments, a heartcut device whereby the segments are introduced and then selectively separated into at least two heartcut fractions, a second column whereby at least two heartcut fractions are introduced and further separated into at least two analytes, a gas chromatography connector whereby at least one analyte is introduced from the second column, a third column whereby at least one analyte is introduced from the connector, and a detector whereby at least one analyte is introduced from the third column and then analyzed to identify at least one analyte.
In the accompanying drawings that form a part of the specification and that are to be read in conjunction therewith:
There is provided herein a method for separating analytes of a complex sample and determining information about the analytes. A device for separating analytes of a complex sample is also provided. The method of the present invention is used to improve the separation of analytes from the sample. Improved separation means improved results and better efficiency of the chromatography process. The method also improves the lifetime of the columns and other equipment, reducing the need for maintenance.
In one embodiment, as illustrated in
In one embodiment, injection device 20 is operably connected to first column 30 that in turn is operably coupled to heartcut device 40. Heartcut device 40 is operably coupled to second column 60 that in turn is operably coupled to connector 70. Connector 70 is operably coupled to third column 80 that in turn is operably coupled to detector 100. These are in a downstream series with each other.
The method of the present invention may be used to selectively target specific analytes in a sample. Heartcut device 40 aids in selectively targeting analytes for analysis and identification. Targeted analyte analysis has a variety of applications such as it may be used in the agricultural industry for determining the composition of pesticides or used to determine the composition of pollutants. Other industry applications include, but are not limited to, the petroleum industry, the food industry, and the flavoring industry. It will be appreciated by one skilled in the art that the method of the present invention may be used in any situation where current methods of gas chromatography are used.
Having described the invention in detail, those skilled in the art will appreciate that modifications of the invention may be made without departing from the spirit and scope thereof. Therefore, it is not intended that the scope of the invention be limited to the specific embodiments and examples described. Rather, it is intended that the appended claims and their equivalents determine the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3119251 | Bowers | Jan 1964 | A |
3234779 | Dawson, Jr. | Feb 1966 | A |
4883504 | Gerstel | Nov 1989 | A |
5135549 | Phillips et al. | Aug 1992 | A |
5240606 | Lapidus et al. | Aug 1993 | A |
5492555 | Strunk et al. | Feb 1996 | A |
5846292 | Overton | Dec 1998 | A |
6004514 | Hikosaka et al. | Dec 1999 | A |
6296771 | Miroslav | Oct 2001 | B1 |
6494078 | Klee | Dec 2002 | B1 |
6497138 | Abdel-Rahman et al. | Dec 2002 | B1 |
6730228 | Petro et al. | May 2004 | B2 |
6808635 | Brann | Oct 2004 | B2 |
6855258 | Petro et al. | Feb 2005 | B2 |
6923907 | Hobbs et al. | Aug 2005 | B2 |
6976384 | Hobbs et al. | Dec 2005 | B2 |
7018540 | Brann | Mar 2006 | B2 |
7214320 | Gregori et al. | May 2007 | B1 |
7217360 | Brann | May 2007 | B2 |
7383718 | McCurry et al. | Jun 2008 | B2 |
20020194898 | Klee | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
1566944 | Jan 2005 | CN |
850608 | Sep 2006 | GB |
2006234830 | Sep 2007 | JP |
WO-2006078859 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090126457 A1 | May 2009 | US |