METHOD FOR IDENTIFYING THE QUANTITATIVE CELLULAR COMPOSITION IN A BIOLOGICAL SAMPLE

Information

  • Patent Application
  • 20160024578
  • Publication Number
    20160024578
  • Date Filed
    April 22, 2014
    11 years ago
  • Date Published
    January 28, 2016
    9 years ago
Abstract
The present invention provides an epigenetic haemogram, also referred to as an epigenetic blood cell count that identifies the quantitative, comprehensive picture of cellular composition in a biological sample, wherein advantageously a normalization standard is used. The normalization standard is a nucleic acid molecule comprising at least one marker-region being specific for each of the blood cells to be detected, and at least one control-region being cell-unspecific, wherein said regions are present in the same number of copies on said molecule and/or a natural blood cell sample of known composition. Furthermore, the present invention relates to a kit and the use of a kit for performing the epigenetic assessment of comprehensive, quantitative cellular composition of a biological sample. The biological sample is derived from e.g. a mammalian body fluid, including peripheral, capillary or venous blood samples or subfractions thereof, such as peripheral blood mononuclear cells or peripheral blood monocytes, or a tissue sample, organ sample, or from frozen, dried, embedded, stored or fresh body fluids or tissue samples.
Description

The present invention provides an epigenetic haemogram, also referred to as an epigenetic blood cell count that identifies the quantitative, comprehensive picture of cellular composition in a biological sample, wherein advantageously a normalization standard is used. The normalization standard is a nucleic acid molecule comprising at least one marker-region being specific for each of the blood and/or immune cells to be detected, and at least one control-region being cell-unspecific, wherein said regions are present in the same number of copies on said molecule and/or a natural blood cell sample of known composition. Furthermore, the present invention relates to a kit and the use of a kit for performing the epigenetic assessment of comprehensive, quantitative cellular composition of a biological sample. The biological sample is derived from e.g. a mammalian body fluid, including peripheral, capillary or venous blood samples or subfractions thereof, such as peripheral blood mononuclear cells or peripheral blood monocytes, or a tissue sample, organ sample, or from frozen, dried, embedded, stored or fresh body fluids or tissue samples.


BACKGROUND OF THE INVENTION

A “blood count”, “complete blood count”, or “blood cell profile” commonly designates a set of tests to determine the number, ratio and appearances of blood cells and/or their cellular subgroups (e.g., neutrophils, eosinophils, basophils, CD19 or CD3 cells, and their subgroups, such as CD3+CD4+ and/or CD3+/CD8+ cells). Such a blood count is used in clinical diagnostics as a broad screening test for disorders or a determination of the general health status of an individual. In general, a “blood count” includes assays directed at hematocrit, quantification of hemoglobin, total blood cells, and red blood cell index (e.g. mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red blood cell distribution).


White blood cells (also referred to as leukocytes) are part of the cellular immune system (we explicitly define all immune cells, including B-cells as cellular immune system) and play a key role in defending an mammals from pathological effects caused either by foreign organisms (in particular for example: viruses, bacteria, parasites, etc.), but also from aberrations of diseased self-cells, such as tumor cells. In addition, immune cells are themselves subject to diseases, either as primary (congenital) immune diseases, such as the IPEX syndrome or as secondary (acquired) immune diseases, such as for example AIDS, HIV. In the former, the immune system itself is impaired, whereas in the latter external factors (such as virus infections, radiation, chemotherapies or environmental factors) lead to a weakening of the immune system. Several types of leukocytes exist and they either derive from the myeloid lineage—e.g. neutrophil, eosinophil and basophil granulocytes, mast cells and macrophages—or derive from the lymphoid lineage including all lymphocyte subpopulations—such as for example T-cells, B-cells, NK cells. Since the composition of the immune system, and its cellular members, has been subjected to many analyses, aberrations of this normal immune cell count (or ratio) can be recognized easily, is used diagnostically, and may be used for clinical decision-making. Thus, the ratio and count of these cells are regularly analyzed in clinical settings—both as routine diagnostic or analytical tool as well as in clinical research or trials—in order to detect any abnormalities or apparent changes that may be caused by a disease or a disease treatment or other internal or external factors. For example, blood counts are used to diagnose the onset/occurrence of leuko- or lymphopenias or leuko- or lymphocytosis, such as granulocytosis. Furthermore, blood counts are taken to monitor the treatment success of all diseases that result from, cause or whose treatment may result in changes of the overall or specific leuko- or lymphocyte counts. For example, for diagnosing or monitoring infections, anemia; leukemia or the effects of chemotherapies, a so-called “differential” whole blood count is used in order to analyze and identify immune cells and subpopulations thereof. In some primary and secondary immune disorders, this procedure may be the only available diagnostic tool. The differential blood count includes assays directed at a quantification of total white blood cells, neutrophil granulocytes, lymphocytes, monocytes, eosinophil granulocytes, and basophil granulocytes.


Routinely, for soluble cells, i.e., mainly blood but also solubilized tissues or body fluids such a specific immune cell profile is measured by flow cytometry, or by immunohistochemistry (IHC) for solid tissues. Both technologies work on the basis of protein epitopes exposed on cell membranes that are specific for each subtype of cell subpopulation. Recently, research focused on the biological role of leukocyte subpopulations, and this results in a strong demand for clinical as well as for research applications allowing to identifying such populations.


Technically, in routine diagnostics, hematocrit, hemoglobin as well as total white blood counts are determined by an automatic cell counter based on light detection and electrical impedance. A differential white blood count, including neutrophil, eosinophil, basophil granulocytes, monocytes and mast cells are determined either via manual microscopic counting or automatic counting of blood smears.


Additional methods, allowing for the detection of T cell populations are MHC multimetric analyses, the Cytokine-Capture Assay, individual T cell detections (ELISPOT-Assay) or the merely qualitative detection and localization of immune cells (immunohistochemical analyses). Like flow cytometry, these assays are based on a detection of proteins; no specific expression level-independent markers are used. It is noteworthy that all of these assays as well as all assays based on the detection of mRNA, vary from cell to cell. This is because even cells that are undoubtedly positive for a certain protein present time wise varying amounts of protein. Hence, a threshold for “positivity” has to be determined for each and every protein marker depending on the affinity and unspecific binding properties of the given antibody as well as on the average amount of surface expression of the target protein.


Even though almost all cells in an individual contain the exact same complement/composition of DNA code, higher organisms must impose and maintain different patterns of gene expression in the various types of tissue. Most gene regulation is transitory, depending on the current state of the cell and changes in external stimuli. Persistent regulation, on the other hand, is a primary role of epigenetics—heritable regulatory patterns that do not alter the basic genetic coding of the DNA. DNA methylation is the archetypical form of epigenetic regulation; it serves as the stable memory for cells and performs a crucial role in maintaining the long-term identity of various cell types. Recently, other forms of epigenetic regulation were discovered. In addition to the “fifth base” 5-methylcytosine (mC), a sixth (5-hydroxymethylcytosine, hmC), seventh (5-formylcytosine, fC) and eighth (5-carboxycytosine, cC) can be found (Michael J. Booth et al. Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution Science 18 May 2012, Vol. 336 no. 6083 pp. 934-937). The primary target of mentioned DNA modifications is the two-nucleotide sequence Cytosine-Guanine (a ‘CpG site’); within this context cytosine (C) can undergo a simple chemical modification to become formylated, methylated, hydroxymethylated, or carboxylated. In the human genome, the CG sequence is much rarer than expected, except in certain relatively dense clusters called ‘CpG islands’. CpG islands are frequently associated with gene promoters, and it has been estimated that more than half of the human genes have CpG islands (Antequera and Bird, Proc Natl Acad Sci USA 90: 11995-9, 1993).


For one of the recently described modification of cytosine, 5-hydroxymethylation, the utility of oxidative bisulfite sequencing to map and quantify 5hmC at CpG islands was shown (Michael J. Booth et al. Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution Science 18 May 2012, Vol. 336 no. 6083 pp. 934-937).


In the context of the present invention, the term “bisulfite convertible chromatin” shall mean a chromatin structure (e.g. a sufficiently opened structure) that allows bisulfite to chemically modify cytosines. Consequently, the term “DNA bisulfite convertibility” relates to the extent of cytosine bases in said chromatin and/or the respective nucleic acid that is part of said chromatin, that can be (or have been) converted using a bisulfite treatment. The term also relates to the extent of cytosine bases in a reference nucleic acid (such as a plasmid) that can be (or have been) converted using a bisulfite treatment. In turn, the term “non-bisulfite convertible chromatin” or “non-bisulfite convertible nucleic acid” relates to the extent of cytosine bases that cannot be (or could not been) converted using a bisulfite treatment.


As mentioned above, recently three new cytosine modifications were discovered. Therefore, it is expected that future scientific findings will lead to a more precise interpretation of epigenetic patterns of bisulfite convertibility described in the past. These past result of cytosine modification encompass bisulfite convertible (non-methylated, non-modified) and non-convertible (methylated, modified) cytosine. Both termini need to be reinterpreted, as described. According to the novel scientific findings (i) non-bisulfite convertible cytosine encompasses 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC), and (ii) bisulfite convertible cytosine encompasses 5-formylcytosine (fC), 5-carboxycytosine (cC) as well as non-modified cytosine.


Additionally, earlier inventions are based on (i) the ratio of bisulfite convertible cytosine to whole amount of chromatin (cell-type independent, 100% bisulfite convertible DNA locus) or (ii) on the ratio of bisulfite convertible cytosine (fC, cC, non-modified cytosine) to non-bisulfite convertible cytosine (hmC and mC). These ratios are used to characterize cell type, cell differentiation, cell stage as well as pathological cell stages. Therefore, new techniques will result in novel, more specific ratios and might supplement current cell specific, cell state specific as well as pathological patterns of epigenetic modifications and therefore, define potential novel biomarkers. Novel ratios to be discovered as biomarkers can be defined as:





Biomarker Ratio=a/b


a=Σ(C and/or mC and/or hmC and/or fC and/or cC)


b=Σ(C and/or mC and/or hmC and/or fC and/or cC),


whereby a and b differs from each other by one to four kinds of modifications. Discovery of novel DNA modifications will certainly broaden this enumeration.


For the purpose of the present application, epigenetic modifications in the DNA sequence is referred to by the terminology of (i) bisulfite convertible cytosine (5-formylcytosine, (fC) and/or 5-carboxycytosine (cC)) and (ii) non-bisulfite convertible cytosine ((including 5-methylcytosine (mC), 5-hydroxymethylcytosine, (hmC)). As both kinds of methylation, mC and hmC are not bisulfite convertible it is not possible to distinguish between these two. Likewise, IC, cC as well as non-modified cytosine are bisulfite convertible and can also not be distinguished from each other as well.


Furthermore, apart from the modifications of DNA also histones undergo posttranslational modifications that alter their interaction with DNA and nuclear proteins. Modifications include methylation, acetylation, phosphorylation, ubiquitination, sumoylation, citrullination, and ADP-ribosylation. The core of the histones H2A, H2B, and H3 can also be modified. Histone modifications act in diverse biological processes such as gene regulation, DNA repair, chromosome condensation (mitosis) and spermatogenesis (meiosis). Also for these modifications a specific pattern of modification is specific for different cell types, cell stages, differentiation status and such a pattern can be analyzed for bisulfite convertibility or similar methods in order to identify certain cells and cell stages. The present invention also encompasses a use of these modifications.


It is expected that further variants of DNA modifications will be discovered in future. Each type of modification will be either bisulfite-convertible or not. These novel modifications can also be used as biomarker readout. Additionally, it is expected that novel methods for bisulfite modification will be established, resulting in a different set of convertible and non-convertible DNA.


The variety of indications for which reporting of the cellular immune status is clinically or analytically helpful is very large. For almost every disease the cellular immune status is either directly relevant or—such as in cancer—becomes relevant due to the impact of drugs that may cause secondary immunological disorders and aberrations. This broad significance of the overall immune status in diseases settings results in a significant demand for methods to measure these parameters, i.e., the leukocyte subtypes and subpopulations.


The current way of addressing this demand is by flow cytometric and immunohistochemical methods, which are well-established and have been developed into high throughput systems for hospital use, are standard procedures in reference laboratories and are, for more simple applications, made available for practitioners. However, certain problems and requirements limit the applicability of flow cytometry and immunohistochemistry.


a) For flow cytometry, cells need to be intact. This means that the blood sample has to be measured in a “fresh” state, any delay in measurement may lead to deviation of results. As a rule of thumb, samples should be measured within 8 hours, since after that time frame granulocytes (one main cellular fraction in the blood) begin to disintegrate. As an alternative to fresh handling, it is possible to cryopreserve blood samples, but there are significant issues associated with respect to performance and reproducibility. As a consequence, flow cytometry in clinical routine is avoided and many potentially meaningful analyzes are omitted, whereas in clinical trials, where immune markers are prime biomarker candidates for treatment predictions, are often left out, or if required by regulations extra facilities need to be set up.


b) Antigen expression is not a digital (on-off), but an analog (low, medium, high) process. Therefore, thresholds defining positive versus negative signals must be determined. For certain markers, this is unproblematic, for others thresholds are very difficult and imprecise.


c) For flow cytometry, it also poses problems that many cell types are not simply identified by a surface (cluster of differentiation—CD) molecule, but some cell types are characterized by intra- or extracellular soluble proteins, e.g. transcription factors or cytokines. Current markers for Tfh, Th1, Th2 cells, and Tregs belong to this category of cell types—the application of fully standardized procedures is even more difficult. This is because the cell-type specific markers need to be captured in order to be associated to the cell.


d) Furthermore, flow cytometry is dependent on the solubility of the analyzed substrate (cell suspensions). With respect to this, tissue cells may be solubilized by enzymatic digestion, but this often leads to the loss of their surface molecules—rendering the CD markers, as prime targets for flow cytometric analysis useless.


e) Often, neither surface- nor intra- or extracellular markers are 100% cell-type specific. “Leaky” expression of certain gene products has been reported (Wiezcorek et al., Cancer Res. 2009 Jan. 15; 69(2):599-608), rendering the quantification somewhat imprecise.


f) Since immunohistochemistry is based on the same principle as flow cytometry, specificity problems overlap. However, the main problem with this technology is that it is considered only semiquantitative. In particular, a particular problem is that an overall cell counting is not feasible due to the presence of various different cell layers, which are difficult to distinguish and count correctly.


As far as aspect e) is concerned, the inventors have previously published a publication proving that flow cytometry detects expressed surface epitopes, but it cannot distinguish between cell-type specific epitope expression and cell-type independent induction of epitope expressions as well as it cannot detect specific-cells that currently not express or less express certain surface markers. In vitro stimulation of CD4+CD25+CD45RA+ T cells, for example, leads to a high expression level of FOXP3 whereby the FOXP3 gene is still methylated and therefore inactivated (Baron et al., Epigenetics. 2006 January-March; 1(1):55-60). Additionally, for in vitro differentiated Th17 cells no demethylation of IL-17A promotor was observed despite high levels of IL-17A transcripts (Janson P. C. J. et al. Profiling of CD4+ T cells with epigenetic immune lineage analysis. The Journal of Immunology. 2010, 92-102). On the other side it is disclosed that methylation is connected with marker expression (Hamerman, Page, Pullen. Distinct methylation states of the CD8β gene in peripheral T cells and Intraepithelial Lymphocytes. The Journal of Immunology 1997, P1240-1246; Janson P. C. J. et al. Profiling of CD4+ T cells with epigenetic immune lineage analysis. The Journal of Immunology. 2010. 92-102; Melvin et al. Hypomethylation in IFN-Gamma Gen correlates with expression of IFN-G, including CD8 cells., Eur J Immunol. 1995 February; 25(2):426-30; Landolfi M M et al. CD2CD4CD8lymph node T lymphocytes in MRL lpr/lpr mice are derived from a CD2+CD4+CD8+ thymic precursor J Immunol. 1993 Jul. 15; 151(2):1086-96; and Carbone A M et al. Demethylation in CD8 suggests that CD4+ derives from CD8+ cells. Role of methylation pattern during cell development. Science. 1988 Nov. 25; 242(4882):1174-6).


In view of the above mentioned demands in both clinical diagnostics and pharmaceutical research, a new method to provide a precise and comprehensive quantification of a variety of cell types in a sample is desired, in order to establish a more precise and thus markedly improved haemogram. Further objects and advantages will become apparent to the person of skill upon reading the present disclosure, and particularly the examples below.


In a first aspect thereof, this object is solved by the present invention by a method for producing an epigenetic haemogram, comprising the steps of epigenetically detecting blood cells in a biological sample, and quantifying said blood cells as detected using a normalization standard, wherein said normalization standard is a nucleic acid molecule comprising at least one marker-region being specific for each of the blood cells to be detected, and at least one control-region being cell-unspecific, wherein said regions are present in the same number of copies on said molecule and/or a natural blood cell sample of known composition.


Key and basis of the present invention is the use of a variety of different cell-type specific bisulfite-convertible DNA marker. These markers are employed for the identification and quantification of a single blood and immune cell types.


In principle, it was previously shown how a quantification of cell types and blood cell counting based on known epigenetic procedures is performed ((Wiezcorek et al., Cancer Res. 2009 Jan. 15; 69(2):599-608, Sehouli et al. Epigenetics: 2011 February; 6(2):236-46.). In brief, either a cell type specifically modified gene region is specifically (amplified and) counted and hence quantitated along with the opposite species of the cell type specific gene region. To provide for an independent quantification, these two measurements arc then put into relation to provide the percentile part of the cell type in the given (blood) sample:





Copy number of bisulfite convertible DNA of cell-type specific genomic region/(copy number of bisulfite convertible DNA of cell-type specific genomic region)+(Copy number of non-bisulfate convertible DNA of cell-type specific genomic region)=% cell type


Alternatively, the number of copies of bisulfite convertible DNA of a cell-type specific gene region is measured and divided by the copy number of bisulfite-convertible DNA of a cell-type non-specific gene region in the given sample. The latter can be determined by measuring all DNA copies using a completely bisulfite-convertible, cell-unspecific gene region or a region that is known to be uniformly bisulfite-unconvertible or bisulfite-convertible in all cell types.





Copy number of bisulfite convertible DNA of cell-type specific genomic region/Copy number of a bisulfite convertible DNA of cell-type unspecific genomic region=% cell type


Hence, when a single specific bisulfite-convertible genomic marker is known, the previously established system allows the relative (percentile (%)) quantification of any one cell type in a given sample. For this, any given standardization of copy numbers or copy equivalents can be used. The resulting percentile share of the cell type in question correlates with the share of cells measured with a different method. Here, “correlating” means that—according to Spearman correlation—the lowest share measured by the epigenetic technology corresponds to the lowest share measured by—for example—flow cytometry. Such system has been shown to be very stable, technically robust and reliable. Therefore, whenever there is a highly cell-specific bisulfite convertible DNA marker achieved, in theory it should be possible to make an accurate and precise determination of the amount of those cells that own the specific bisulfite convertible genomic marker region.


It is known that the efficiency and performance of Real time (RT-)PCR systems differ depending on the RT-PCR components, including primers, probes, and the purity of DNA. Therefore, standards are employed in order to account for the problem to know at which Cp (crossing point) or Ct (threshold cycle) value a given (known) amount of standard DNA can be detected. A dilution series of said standard DNA gives a standard curve, and allows for the normalization of differently performing/efficient RT-PCR systems. Since the quantification is performed on an equivalent system, differences in performance are normalized. However, the problem addressed concerns an (RT-)PCR that is performed on DNA aiming at the detection of biologically and/or chemically altered DNA. The complexity of this biologically and/or chemically altered DNA differs from normal/natural genomic DNA (starting by the simple fact that the complexity of the DNA molecules differ, since a plasmid consists of double stranded DNA of four bases (CTGA), whereas genomic DNA consists of double stranded five bases (CTGACm), and bisulfite converted DNA merely consists of only three single stranded bases (TGA)). Thus, the efficiency of amplification differs between the target DNA (i.e., human chromosomal genomic or bisulfite-converted DNA) and the standard DNA, if the standard is a plasmid or genomic DNA, but more importantly, the “amplification efficiency difference” between (plasmid) standard and the target DNA differs from amplification target to amplification target. (i.e., primer pair, probe etc.). This leads to a number of observations, when qPCR is performed on bisulfite treated and amplified DNA, such as, for example:


When different blood cells in a sample shall be measured, independently of method as used, the total cell number should be equivalent. However, in a given sample that is equally distributed for the performance of different qPCR-assays, despite the use of individual standards for each reaction the total number of copies as detected is different. This leads to the following problem (here shown with CD3 as an example) in case of (e.g.) blood samples that are measured using different RT-PCR systems:









TABLE 1





Calculation of overall DNA copy numbers and quantitative cell content following


epigenetic qPCR using bisulfite-treated, amplified DNA of a blood sample. (CP)


crossing point, (CN − BC) copy numbers bisulfite converted CD3+ marker DNA region,


(CN − NBC) copy numbers non-bisulfite converted CD3+ marker DNA region,


(CN − GAPDH) copy numbers bisulfite converted GAPDH marker DNA region.
















PCR for CD3+ bisulfite
PCR for CD3+ non-bisulfite


converted DNA
converted DNA
















copy



copy





numbers



numbers





acc. to
mean copy


acc. to
mean copy


sample

plasmid
numbers
sample

plasmid
numbers


ID
CP
standard
(CN − BC)
ID
CP
standard
(CN − NBC)





WBL02
31.81
114.00
264.67
WBL02
27.01
1410.00
1413.33


WBL02
30.31
323.00

WBL02
26.99
1430.00



WBL02
30.17
357.00

WBL02
27.03
1400.00



WBL03
29.21
692.00
693.00
WBL03
27.46
1070.00
1053.33


WBL03
29.3 
650.00

WBL03
27.53
1020.00



WBL03
29.12
737.00

WBL03
27.45
1070.00












PCR for GAPDH bisulfite converted DNA


















copy








numbers








acc. to
mean copy











Calculation overall DNA copy numbers
sample

plasmid
numbers













sample
CN − BC + CN − NBC
CN − GAPDH
ID
CP
standard
(CN − GAPDH)





WBL02
1678
1420
WBL02
27.3 
1520.00
1420.00


WBL03
1746.33
1383.33
WBL02
27.48
1350.00






WBL02
27.44
1390.00






WBL03
27.47
1360.00
1383.33





WBL03
27.43
1390.00






WBL03
27.42
1400.00










Calculation of % CD3+ cell content










CN − BC × 100
CN − BC × 100


sample

(CN − BC + CN − NBC)


CN − GAPDH






WBL02
15.8%
  18%


WBL03
36.6%
50.1%









As indicated in Table 1, calculated overall CD3+ DNA copy numbers differ between the two used standardization systems: bisulfite-converted vs. non-converted DNA and bisulfite-converted CD3+ marker region to bisulfite-converted GAPDH (overall cell) marker region. For the first blood sample (WBL02), number of CD3+ DNA copies calculated via number of GAPDH bisulfite converted DNA (1420 copies) is smaller than calculated via bisulfite converted added to non-bisulfite converted CD3+ DNA copy numbers (1678 copies). For the second sample (WBL03) the situation is similar. Differences become more obvious when using these calculated copy numbers for quantification of CD3+ cells within these two blood samples. For sample WBL02, quantification via bisulfite converted to non-converted DNA copy numbers results in 36.6% CD3+cells, whereas quantification via bisulfite converted CD3+ DNA copy numbers to bisulfite converted GAPDH DNA copy numbers results in 50.1% CD3+ cells. Both results and methods differ strongly.


As mentioned, even if normalization on a bisulfite-converted plasmid standard is performed, the different performances/efficiencies of the different assays do not lead to the same copy number.


This problem becomes particularly apparent, when purified cell types are measured with “their” specific epigenetic cell type markers, and compared to the total amount of cells in the sample (as measured by an cell-type unspecific marker (GAPDH)) as well as measured by non-bisulfite convertible DNA of a cell-type specific marker region (here FOXP3).









TABLE 2





Assessment of quantitative amount of regulatory T cell (Treg)


within two samples of purified Tregs. DNA was isolated, bisulfite


treated and relative amount of bisulfite converted and non-


converted DNA assessed via qPCR. Copy numbers of bisulfite


converted DNA in cell-specific FOXP3 regions were set in relation


to copy numbers of bisulfite converted DNA in cell-unspecific


GAPDH region as well as to bisulfite non-converted DNA in cell-


type specific FOXP3 regions to obtain quantitative number of Tregs.


(CP) crossing point), (CN-BC) copy numbers bisulfite converted


cell-type specific FOXP3 DNA region, (CN-NBC) copy numbers


non-bisulfite converted cell-type specific FOXP3 DNA region


(CN-GAPDH) copy numbers bisulfite converted GAPDH DNA region.







PCR for FOXP3 bisulfite converted DNA











mean copy numbers


sample

acc. to plasmid


ID
CP
standard (CN-BC)





88
27.52
2366.6


95
29.73
513.34










PCR for FOXP3 non-bisulfite converted DNA











mean copy numbers


sample

acc. to plasmid


ID
CP
standard (CN-NBC)





88
32.82
72.54


95
35.48
10.92










PCR for GAPDH bisulfite converted DNA











mean copy numbers


sample

acc. to plasmid


ID
CP
standard (CN-GAPDH)





88
26.6
2320.00


95
28.91
483.67










Calculation of % Treg cell content









sample
CN-BC × 100

CN-BC × 100



ID

(CN-BC + CN-NBC)

CN-GAPDH





88
97.03%
102%


95
97.92%
106%









As can be seen from table 2, again, results for both of the quantification methods differ strongly (97% vs. 102% and 97% vs. 106%).


Finally, when different cell fractions, e.g. blood leukocytes, are measured that, when added up, should make up all cells in the sample as present, the above problem makes it impossible to provide for a correct “complete blood count”. As an example for this, for two blood samples the leukocytes were quantified (Table 3, sample 04 and sample 08). Here, the term leukocytes summarize all the five types of white blood cells: granulocytes, monocytes, B-lympocytes, natural killer cells, and CD3+ T-lymphocytes. Accordingly, it was expected that the single cell counts sum up to 100%, representing a (complete) leukocytogram. However, when using epigenetic qPCR analyses, this is often not the case (see Table 3). The sum of individual quantities of leukocytes often differs from 100%.









TABLE 3







Assessment of the quantitative cell composition of two blood samples.


DNA was isolated, bisulfite treated and relative amount of bisulfite


converted DNA assessed via qPCR. Copy numbers of bisulfite converted


DNA in cell-specific regions were set in relation to bisulfite converted


copy numbers of the cell-unspecific DNA region for GAPDH to obtain


quantitative number of leukocytes. (CN-BC) copy numbers bisulfite


converted cell-type specific marker DNA region, (CN-GAPDH)


copy numbers bisulfite converted GAPDH marker DNA region.


Calculation of Leukocytogram (% of cells)












sample04
sample08





CN-BC × 100


CN-BC × 100




cell type
CN-GAPDH
CN-GAPDH















granulozytes
79.74%
81.29%



monozytes
7.94%
11.05%



B cells
1.63%
1.68%



natural killer cells
2.74%
2.04%



T cells
23.25%
22.09%



Sum:
115.3
118.15










When summarizing the above mentioned problems of epigenetic cell quantification, a precise blood counting tool provides the following:


1. allows for the assessment of a precise, comprehensive blood and immune cell count,


2. overcomes differences in assay performance and/or efficiency between standards as used and the biological sample to be analyzed,


3. is independent of membrane integrity of cells to be counted (intact or non-intact cells), and


4. is independent of type of cell containing sample (fresh, frozen, embedded, stored, fluids, solid tissues).


The present invention provides such a tool, and respective methods. According to the present invention, assessing the epigenetic haemogram comprises measurement of the absolute amount of cells by normalization of qPCR results on a bisulfite-unconverted or -converted normalization standard. The normalization standards consist of a nucleic acid molecule comprising at least one marker-region being specific for each of the blood cells to be detected, and at least one control-region being cell-unspecific, wherein said regions are present in the same number of copies, on said molecule and/or a natural blood cell sample of known composition.


In a first step of a preferred embodiment of the method, qPCR assay-specific correction factors are determined to achieve normalization and comparability of all qPCR assays as well as to correct for differences in assay efficiencies. In a second step, DNA of biological sample is isolated, purified and bisulfite treated. This is followed by qPCR specific for bisulfite-converted cell-type specific and/or cell-type unspecific genomic marker regions. The qPCR amplification results are then normalized with said normalization standard, which represents the relative amount of copies of marker DNA, and therefore the relative amount of specific cells. The normalization standard contains bisulfite-converted genomic marker regions or contains native, bisulfite-unconverted, marker regions. Before starting the qPCR, in the latter case the nucleic acid will be bisulfite treated in parallel to the biological sample as analyzed is treated. In a next step, following qPCR, the normalized relative amount of copies of marker DNA is corrected by an assay specific correction factor as described herein in order to correct for differences in assay efficiencies indicating the absolute amount of cells.


The present method allows for a quantification of non-intact but also intact blood cells in biological samples, such as, for example, dried, frozen, embedded, stored as well as fresh body fluids, dried blood spots, blood clots and tissue samples. The sample does not contain purified or enriched cells. Furthermore, the method of the present invention provides for a blood count, wherein the identity and quantity of cells is based on a clear yes/no information on the genomic level that is independent from protein expression levels.


The present invention thus provides a blood and/or immune cell count to be used as an analytical and diagnostic tool for medical use and as a basis for decisions in therapy.


Preferred is a method according to the present invention, furthermore comprising the step of obtaining a comprehensive blood picture, based on said detecting and quantifying. The blood cell count thus identifies the comprehensive picture of the cellular composition based on a number of epigenetic parameters. The combination of these epigenetic parameters is used to identify the cell composition of a blood or tissue sample, i.e. an epigenetic haemogram, and said epigenetic haemogram is provided based on the analysis of the bisulfite convertibility of cell-specific genomic regions.


Preferably, said epigenetic haemogram resembles a leukocytogram and/or a T-lymphocytogram and/or a granulocytogram and/or a monocytogram and/or a B-lymphocytogram and/or a NK cytogram.


Preferably, the method according to the present invention furthermore comprises the use of a bisulfite-unconverted or -converted normalization standard for the normalization, e.g. of the qPCR results. The term “bisulfite-unconverted” normalization standard encompasses natural DNA molecules containing the original/primary biologic modifications, such as formylation, carboxylation, methylation, or hydroxymethylation and that is not bisulfite-treated, and therefore bisulfite-unconverted. The term “bisulfite-converted” normalization standard encompasses DNA molecules containing (genomic) marker sequences corresponding to already bisulfite-converted cell-type specific and unspecific marker regions.


The bisulfite-unconverted or bisulfite-converted nucleic acid molecule is preferably selected from a plasmid, a yeast artificial chromosome (YAC), human artificial chromosome (HAC), P1-derived artificial chromosome (PAC), a bacterial artificial chromosome (BAC), and a PCR-product. Bisulfite-converted normalization standard is a plasmid, yeast artificial chromosomes (YAC), human artificial chromosome (HAC), P1-derived artificial chromosome (PAC), bacterial artificial chromosome (BAC) or a PCR-product.


The natural blood cell sample preferably is a blood sample of known cellular composition, and/or of known composition of blood cell types, and is preferably produced in advance, i.e. the amount and number blood cell types as combined is pre-determined.


In a preferred embodiment of the method according to the invention, the normalization standard, i.e. the plasmid, YAC, HAC, PAC, BAC, and PCR-product, contains cell-specific and unspecific genomic marker regions (to be analyzed in accordance with the epigenetic haemogram) in the same known number of copies on said molecule. In one embodiment, each of these standards is a single molecule containing the same number of all cell-type specific and unspecific genomic marker regions of interest in the epigenetic haemogram to be established. The natural blood cell sample (preferably mammalian, such as human) used as the bisulfite-unconverted normalization standard contains cells in a known composition and quantity, whereby cells can be pre-purified and pre-mixed to obtain a sample of known composition, that is also pre-determined.


During analytical processing, the bisulfite-unconverted normalization standard is bisulfite-treated in parallel and in the same fashion than the bisulfite treatment of the biological sample to be analyzed.


Then, qPCR on the unknown biological sample as well as on the (now) bisulfite-treated bisulfite-unconverted normalization standard is performed using specific primers that help to detect cell-type specific or unspecific bisulfite-converted genomic regions. In contrast, the bisulfite-converted normalization standard will (obviously) not be bisulfite-treated, as it already contains specific marker sequences that correspond to bisulfite-converted marker sequences recognized by qPCR primers that are specific for bisulfite-converted genomic regions.


In a preferred embodiment, the normalization standard comprises a predetermined amount of blood cells of the types to be detected and analyzed according to the haemogram. Preferably, a normalization standard is used consisting of a defined copy number and same stoichiometric amount of specific cells and/or of cell-type specific and/or cell-type unspecific marker regions. Preferred is a single plasmid containing the same copy number and/or stoichiometric amount of cell-type specific and/or cell-type unspecific marker regions for all cell types of interest for the haemogram.


A preferred embodiment of the method according to the invention furthermore comprises the step of correcting said epigenetic haemogram as produced with an assay specific correction factor. Said assay-specific correction factor (for the cells as detected and analyzed) is determined by comparing the known quantitative amount of cells in said mammalian natural cell sample as provided with the relative amount of copy numbers of bisulfite-converted cell-type specific marker DNA of said mammalian natural cell sample assessed by the qPCR using the normalization standard. Using this approach, the present method allows for an accurate quantification of cells, as any assay-specific variations that may have occurred are taken into account. Depending from the kind of normalization standard as used, the assay specific correction factors can differ. The more the normalization standard and its analytical processing are adapted to the biological sample and its processing, the more the assay specific correction factors will approach 1, or even can be neglected. In a preferred embodiment, a bisulfite-unconverted normalization standard is used as it resembles the complexity and impureness of natural cell samples, and therefore the qPCR efficiency between a biological sample and standard should be aligned. Most preferred is the use of a mammalian natural cell sample of known cell composition and quantity as described herein.


The method according to the present invention then comprises the step of determining the relative amount (of copies) of cell-type specific and unspecific DNA within the biological sample of unknown composition. This is achieved by qPCR on isolated, purified and bisulfite-converted DNA of said biological sample under the use of primers specific for bisulfite-converted cell-type specific and unspecific DNA marker sequences. qPCR amplification results for all target cell types are the normalized on said bisulfite-unconverted or converted standard indicating the relative amount of target cells. According to standards and assays used, specific assay correction factors are applied on relative amount of target cells to receive the absolute amount and percentage of the content of cells according to said haemogram as established. Thereby, the absolute, comprehensive cellular composition in said biological sample is determined. Depending from the normalization standard used, the assay correction factor differs from 1, or is approximately 1, and then can be neglected. Other methods for determining the relative amount (of copies) of cell-type specific and unspecific DNA comprise a method selected from specific enzymatic digests or dye exclusion technologies, bisulfate sequencing, next generation sequencing, nanopore sequencing, single molecule real-time sequencing, analyses of epigenetic modifications in promoter regions, using primers specific for bisulfite-converted DNA, using blocking oligonucleotides specific for bisulfite-converted DNA, using fluorescence-labeled, quenched oligonucleotide probes, using primers for single nucleotide primer extension specific for bisulfate-converted DNA, digital or quantitative PCR analysis, and specific selective (nucleic acid and/or chromatin) precipitation.


Preferred is a method according to the present invention, wherein the determination of the relative amount of target cells is based on comparing the amounts of copies of said bisulfite-converted cell-specific regions as determined with the amounts of copies of the bisulfate-converted regions that are unspecific for a cell-type as determined, thereby identifying the relative amount of a specific cell type in relation to all cells present in the sample.


In one embodiment according to the present invention, the relative amount of target cells is determined based on comparing the amounts of copies of said bisulfate-converted cell-specific regions as determined with the amounts of copies of bisulfite-unconverted cell-specific regions as determined, thereby identifying the relative amount of target cells in relation all other cells present in the sample.


In a preferred embodiment of the method according to the invention, further a knowledge base comprising information about cell-specific assay-correction factors estimated/calculated during previous assessments of epigenetic assays is generated. These values may be advantageously used in order to select particularly suitable normalization standards.


In a particularly preferred embodiment of the method according to the present invention, cell-type marker regions are detected that discriminate a specific cell type and/or at least one specific subpopulation of cells from other cells of a leukocytogram, a T-lymphocytogram, a granulocytogram, a monocytogram, a B-lymphocytogram and/or a NK-cytogram. Preferably, a) the leukocytogram consists of T-lymphocytes, natural killer cells, B-lymphocytes, monocytes and/or granulocytes, b) the T-lymphocytogram consists of CD3+CD4+, CD3+CD8+, CD8CD4, and/or CD8+CD4+ c) the granulocytogram consists of basophilic, eosinophilic, neutrophilicgranulocytes, and/or granulocytic myeloid-derived suppressor cells, d) the monocytogram consists of CD14+ monocytes, CD 14monocytes, macrophages, monocytic myeloid-derived suppressor cells, plasmacytoid dendritic cells, myeloid dendritic cells, and/or overall dendritic cells, c) the B-lymphocytogram consists of naïve B cells, pre-B cells, memory B cells, transitional B cells and/or immature B cells, and f) the NK cytogram consists of CD56dim and/or CD56bright NK cells.


Preferably, within the haemogram as determined sub-haemograms (or subpopulations) can be determined. Preferred is a T-helper-cytogram comprising, e.g., Th1, Th2, Th9, Th17, Th19, Th 21, Th22, Tfh, CD4+ natural killer cells (NKT), naïve CD4+, memory CD4+, effector CD4+ cells, and/or CD4+ regulatory T cells, or a T-cytotoxogram comprising, e.g., naïve CD8+, effector CD8+, memory CD8+, CD8+ natural killer cells (NKT), and/or CD8+ regulatory T cells. Furthermore, sub-populations of monocytes can be determined, comprising classical monocytcs (CD 14), intermediate monocytes (CD 14+) and/or non-classical monocytes (CD 14++) or a dendritogram comprising myeloid dendritic cells, and plasmacytoid dendritic cells. Future scientific studies may discover and identify yet unknown blood cells and leukocyte subgroups and may will assign new functions to certain blood cells and/or will assign known blood cells to different leukocyte subpopulations.


To determine the relative amount of bisulfite-convertible and/or non-bisulfite convertible DNA or nucleic acid comprises a method selected from specific enzymatic digests or dye exclusion technologies, bisulfite sequencing, next generation sequencing, nanopore sequencing, single molecule real-time sequencing, analyses of epigenetic modifications in promoter regions, using primers specific for bisulfite-converted DNA, using blocking oligonucleotides specific for bisulfite-converted DNA, using fluorescence-labeled, quenched oligonucleotide probes, using primers for single nucleotide primer extension specific for bisulfite-converted DNA, digital or quantitative PCR analysis, and specific selective (nucleic acid and/or chromatin) precipitation.


Further preferred is a method according to the present invention, wherein said normalization standard is bisulfite-unconverted and contains at least one bisulfite-convertible CpG position.


Further preferred is a method according to the present invention, wherein said quantifying of cell types in said biological sample is based on the normalization of the relative amount of cell-type specific and unspecific chromatin using the bisulfite-unconverted normalization standard or using the bisulfite-converted normalization standard.


Even further preferred is a method according to the present invention, wherein said normalization using the bisulfite-unconverted normalization standard is indicative for the absolute amount and/or percentage of content of cells within said biological sample


Even further preferred is a method according to the present invention, wherein said biological sample is a sample of unknown cellular composition.


The biological sample as analyzed in the context of the present invention is any sample that contains cells to be analyzed, i.e. cells of the blood and/or immune system, such as cells of a leukocytogram, selected from T-lymphocytes, natural killer cells, B lymphocytes, monocytes, and/or granulocytes, and combinations thereof; a T-lymphocytogram, selected from CD3+CD4+, CD4+ memory, CD4+ effector cells, CD4+ naïve, CD3+CD8+, CD8+ memory, CD8+ effector cells, CD8+ naïve, CD3+CD8CD4, CD3+CD8+CD4+, NKT cells, iTreg, Treg, Tfh, Th1, Th2, TH9, Th17, Th19, Th21, Th22, memory and/or effector T helper cells, and combinations thereof, a granulocytogram, selected from basophilic, eosinophilic, neutrophilic, overall neutrophil granulocytes, and/or granulocytic myeloid-derived suppressor cells, and combinations thereof, a monocytogram, selected from CD14+ monocytes, CD14− monocyes, macrophages, plasmacytoid dendritic cells, monocytic myeloid-derived suppressor cells, intermediate monocyets, classical monocytes, non-classical monocytes, and/or overall dendritic cells, and combinations thereof, a B-lymphocytogram, selected from naïve B cells, pre B cells, memory B cells, transitional B cells and/or immature B cells, and combinations thereof, and a NK cytogram, selected from CD56dim and/or CD56bright NK cells.


The term “cell-specific region(s)” herein shall mean genetic regions in the genome of cells and/or nucleic acids that are selected to discriminate on an epigenetic level one cell type and/or subpopulations of cells from all other cell types and/or subpopulations of cells. These regions include the genes of certain markers (such as, for example, certain protein markers), such as 5′ untranslated regions, promoter regions, introns, exons, intron/exon borders, 3′ regions, CpG islands, and in particular include specific regions as amplified after bisulfite treatment (amplicons) that are “informative” about the one cell type and/or subpopulations of cells. Examples for these cell-specific regions are known from the literature, such as, for example, the gene CD3 γ, δ and ε (WO 2010/069499); the granulysine gene (WO 2010/125106); the CCR6 gene (WO 2011/135088); the FOXP3 gene (WO 2004/050706 and Wieczorek et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 2009 Jan. 15; 69(2):599-608.)


Cell-specific marker region usually are DNA regions that contain single CpGs or CpG islands that are bisulfite-convertible only in a specific cell type and therefore indicative for the specific cell type. Additionally, these cell-specific marker regions discriminate one cell type from all other blood cells as well as other tissue cells.


According to the present invention, cells of the epigenetic haemogram are identified and quantified by analyzing the bisulfite convertibility of at least on CpG position in said cell-specific genomic regions.


Thus, preferred is a method according to the present invention, wherein a bisulfite conversion of at least one CpG position within a region as listed in the following table 4 is indicative for the respective blood cell type as listed in said table. These are e.g. the following genomic marker regions for the given cell types:









TABLE 4







cell-specific genomic regions

































SEQ















ID















Dis-















cov-















ery















frag











cyto-



ment/








Gran-


toxic



SEQ



Marker-



ENSEMBL
ulo-
Mono-
CD4+
T-
B-
NK-
NK
ID


Pos
ID
TargetID
SYMBOL
Accession
(ENSG #)
cytes
cytes
cells
cells
cells
cells
T's
ROI





 1
NK_nm1
cg08766149
GZMB
NM_004131
00100453
0.91
0.90
0.87
0.89
0.57
0.13

 1/2


 2
NK_nm2
cg22917487
CX3CR1
NM_001337
00168329
0.92
0.92
0.94
0.92
0.57
0.13

 3/4


 3
NK_nm3
cg12445208
ZNF583
NM_152478
00198440
0.77
0.83
0.76
0.64
0.73
0.18
0.54
 5/6


 4
NK_nm4
cg02196805
CSF2
NM_000758
00164400
0.78
0.78
0.50
0.60
0.77
0.22
0.52
 7/8


 5
NK_nm5
cg23617121
OSBPL5
NT_009237
00021762
0.95
0.95
0.92
0.89
0.85
0.22
0.81
 9/10


 6
NK_nm6
cg20697204
FLJ40172
NM_173649
00239605
0.78
0.89
0.91
0.83
0.73
0.23

 11/12


 7
NK_nm7
cg11801011
SHANK1
NM_016148
00161681
0.68
0.62
0.64
0.72
0.56
0.26

 13/14


 8
NK_nm8
cg07873128
OSBPL5
NT_009237
00021762
0.93
0.94
0.93
0.93
0.60
0.27

 15/16


 9
NK_nm9
cg03368758
LDB2
NM_001290
00169744
0.74
0.78
0.75
0.71
0.67
0.27
0.68
 17/18


 10
NK_nm10
cg00515905
EPS8L3
NM_024526
00198758
0.92
0.93
0.92
0.94
0.84
0.29

 19/20


 11
NK_nm11
cg22228134
GZMH
NM_033423
00100450
0.83
0.90
0.90
0.89
0.53
0.30

 21/22


 12
NK_nm12
cg26379475
SH2D1B
NM_053282
00198574
0.79
0.79
0.64
0.64
0.59
0.32
0.61
 23/24


 13
NK_nm13
cg04384208
FCGR3A
NM_000569
00203747
0.84
0.87
0.82
0.83
0.71
0.32

 25/26


 14
NK_nm14
cg00453258
FAM26C
NM_001001412
00185933
0.71
0.71
0.85
0.82
0.92
0.33

 27/28


 15
NK_nm15
cg06827976
FGR
NM_005248
00000938
0.78
0.83
0.88
0.80
0.78
0.35
0.60
 29/30


 16
NK_nm16
cg12491710
LIM2
NM_030657
00105370
0.95
0.94
0.93
0.93
0.86
0.36

 31/32


 17
NK_nm17
cg18250832
NMUR1
NM_006056
00171596
0.76
0.72
0.78
0.74
0.77
0.38

 33/34


 18
NK_nm18
cg15544721
PPP1R9A
XM_371933
00158528
0.64
0.76
0.85
0.88
0.53
0.38

 35/36


 19
NK_nm19
cg25943702
BRD1
NM_014577
00100425
0.80
0.84
0.80
0.78
0.73
0.38
0.71
 37/38


 20
NK_nm20
cg04230060
SUSD1
NM_022486
00106868
0.69
0.69
0.91
0.87
0.71
0.39
0.84
 39/40


 21
NK_nm21
cg06229674
ARP10
NM_181773
00100298
0.94
0.95
0.93
0.92
0.50
0.40

 41/42


 22
NK_nm22
cg14701962
C1orf111
NM_182581
00171722
0.81
0.85
0.79
0.77
0.74
0.41
0.69
 43/44


 23
NK_nm23
cg16522484
C14orf49
NM_152592
00176438
0.72
0.80
0.74
0.74
0.53
0.42

 45/46


 24
NK_nm24
cg26738080
TNNC1
NM_003280
00114854
0.84
0.76
0.87
0.86
0.66
0.42

 47/48


 25
NK_nm25
cg13525683
TIAF1
NM_004740
00221995
0.81
0.83
0.78
0.77
0.75
0.42
0.75
 49/50


 26
NK_nm26
cg23352030
PRIC285
NM_033405
00130589
0.85
0.82
0.95
0.94
0.90
0.43

 51/52


 27
NK_nm27
cg23282949
RENBP
NM_002910
00102032
0.72
0.76
0.91
0.85
0.86
044
0.81
 53/54


 28
NK_nm28
cg00491404
EPS8L3
NM_024526
00198758
0.88
0.83
0.88
0.87
0.79
0.45

 55/56


 29
NK_nm29
cg25903122
MGC2747
NM_024104
00214046
0.87
0.92
0.92
0.89
0.68
0.48

 57/58


 30
NK_nm30
cg22202141
FCGR3A
NM_000569
00203747
0.90
0.87
0.88
0.89
0.58
0.48

 59/60


 31
NK_nm3l
cg11094938
ATP2A1
NM_173201
00196296
0.91
0.85
0.90
0.90
0.92
0.49

 61/62


 32
NK_nm32
cg23580000
ADCY7
NM_001114
00121281
0.80
0.81
0.96
0.94
0.92
0.49

 63/64


 33
NK_m1
cg12167564
LYST
NM_000081
00143669
0.30
0.13
0.47
0.50
0.36
0.68
0.37
 65/66


 34
NK_m2
cg18881723
SLAMF1
NM_003037
00117090
0.03
0.03
0.03
0.05
0.08
0.66

 67/68


 35
NK_m3
cg18096388
PDCD1
NM_005018
00188389
0.41
0.50
0.11
0.20
0.36
0.65
0.25
 69/70


 36
NK_m5
cg27016307
HRC
NM_002152
00130528
0.46
0.44
0.21
0.33
0.30
0.56
0.11
 71/72


 37
NK_m6
cg18818531
FOSL1
NM_005438
00175592
0.40
0.42
0.17
0.17
0.37
0.56
0.25
 73/74


 38
NK_m7
cg27067618
CYP4F3
NM_000896
00186529
0.15
0.29
0.38
0.41
0.40
0.55
0.23
 75/76


 39
NK_m8
cg04790129
ITGB2
NM_000211
00160255
0.13
0.24
0.35
0.40
0.13
0.54
0.39
 77/78


 40
NK_m9
cg25944100
MS4A3
NM_006138
00149516
0.10
0.20
0.46
0.41
0.40
0.54
0.38
 79/80


 41
NK_m10
cg09076123
NCF2
NM_000433
00116701
0.03
0.07
0.28
0.31
0.24
0.53
0.13
 81/82


 42
NK_m11
cg05275752
GALM
NM_138801
00143891
0.19
0.18
0.29
0.44
0.30
0.52
0.33
 83/84


 43
NK_m12
cg19030554
NME3
NM_002513
00103024
0.15
0.36
0.29
0.34
0.49
0.51

 85/86


 44
NKT_n1
cg02833725
ISG20L2
NM_030980
00143319
0.81
0.86
0.52
0.55
0.63
0.88
0.15
 87/88


 45
NKT_n2
cg06736444
SRRM2
NM_016333
00167978
0.84
0.87
0.59
0.59
0.53
0.86
0.25
 89/90


 46
NKT_n3
cg14862827
SUSD1
NM_022486
00106868
0.62
0.62
0.59
0.71
0.55
0.65
0.17
 91/92


 47
NKT_n4
cg06154597
MGC4618
NM_032326
00127419
0.82
0.84
0.61
0.58
0.83
0.62
0.27
 93/94


 48
NKT_n5
cg17267907
DEFA1
NM_004084
00239839
0.80
0.83
0.71
0.54
0.77
0.56
0.32
 95/96


 49
NKT_n6
cg15210427
CST9L
NM_080610
00101435
0.82
0.88
0.56
0.63
0.62
0.79
0.34
 97/98 


 50
NKT_n7
cg08603768
WNT8A
NM_031933
00061492
0.81
0.81
0.54
0.51
0.59
0.66
0.28
 99/100


 51
NKT_n8
cg14366490
TXNL6
NM_138454
00171773
0.81
0.81
0.51
0.56
0.58
0.74
0.30
101/102


 52
NKT_n9
cg25827666
NTRK1
NM_001007792
00198400
0.86
0.86
0.63
0.64
0.82
0.57
0.36
103/104


 53
NKT_n10
cg10624445
CNGB1
NM_001297
00070729
0.83
0.86
0.58
0.58
0.64
0.82
0.35
105/106


 54
NKT_n11
cg01605984
SURF5
NM_181491
00148297
0.77
0.86
0.51
0.55
0.62
0.81
0.32
107/108


 55
NKT_n12
cg20661303
LEFTY2
NM_003240
00143768
0.74
0.75
0.59
0.65
0.77
0.86
0.39
109/110


 56
NKT_n13
cg12240237
WBSCR23
NM_025042
00006704
0.84
0.86
0.51
0.53
0.60
0.77
0.36
111/112


 57
NKT_n14
cg14375111
TMEM43
NM_024334
00170876
0.92
0.95
0.62
0.61
0.65
0.89
0.45
113/114


 58
NKT_n15
cg19464252
FBS1
NM_022452
00156860
0.86
0.90
0.62
0.54
0.55
0.83
0.40
115/116


 59
NKT_n16
cg14076161
PRB4
NM_002723
00230657
0.82
0.78
0.52
0.53
0.64
0.76
0.36
117/118


 60
NKT_n17
cg10848367
SCGB1D2
NM_006551
00124935
0.78
0.78
0.55
0.60
0.56
0.68
0.34
119/120


 61
NKT_n18
cg00626119
NTRK1
NM_001007792
00198400
0.79
0.82
0.59
0.61
0.80
0.57
0.38
121/122


 62
NKT_n19
cg13881341
FUT1
NM_000148
00174951
0.88
0.86
0.65
0.67
0.69
0.80
0.45
123/124


 63
NKT_n20
cg10779183
ELA3A
NM_005747
00142789
0.84
0.85
0.58
0.64
0.70
0.72
0.42
125/126


 64
NKT_m13
cg00754253
HRASLS5
NM_054108
00168004
0.09
0.37
0.33
0.40
0.44
0.50
0.70
127/128


 65
NKT_m12
cg13492227
FGF11
NM_004112
00161958
0.17
0.20
0.50
0.45
0.31
0.38
0.69
129/130


 66
NKT_m1
cg07233761
ESM1
NM_007036
00164283
0.09
0.08
0.37
0.38
0.05
0.16
0.68
131/132


 67
NKT_m2
cg03973663
LYN
NM_002350
00254087
0.12
0.11
0.39
0.42
0.24
0.14
0.66
133/134


 68
NKT_m6
cg09082287
DNAJC6
NM_014787
00116675
0.15
0.15
0.41
0.35
0.30
0.24
0.66
135/136


 69
NKT_m7
cg14289511
FLJ45256
NM_207448
00224310
0.09
0.10
0.45
0.40
0.23
0.12
0.62
137/138


 70
NKT_m8
cg03682712
LOXL1
NM_005576
00129038
0.04
0.12
0.47
0.46
0.23
0.10
0.62
139/140


 71
NKT_m3
cg16907566
COL14A1
NM_021110
00187955
0.14
0.14
0.28
0.35
0.19
0.13
0.62
141/142


 72
NKT_m5
cg22854223
CD82
NM_002231
00085117
0.04
0.04
0.42
0.43
0.13
0.19
0.61
143/144


 73
NKT_m15
cg01305421
IGF1
NM_000618
00017427
0.07
0.06
0.42
0.47
0.24
0.36
0.61
145/146


 74
NKT_m17
cg05989054
GAMT
NM_000156
00130005
0.08
0.08
0.44
0.37
0.11
0.17
0.55
147/148


 75
NKT_m4
cg26482939
GNA15
NM_002068
00060558
0.06
0.04
0.24
0.28
0.09
0.10
0.55
149/150


 76
NKT_m16
cg20876010
CACHD1
NM_020925
00158966
0.12
0.12
0.31
0.28
0.20
0.18
0.54
151/152


 77
NKT_m19
cg15526708
TGFBR1
NM_004612
00106799
0.15
0.13
0.31
0.36
0.13
0.15
0.54
153/154


 78
NKT_m14
cg22799850
FBXL13
NM_145032
00161040
0.07
0.07
0.31
0.48
0.07
0.18
0.54
155/156


 79
NKT_m18
cg13105904
KIAA0323
NM_015299
00100441
0.13
0.20
0.13
0.28
0.16
0.30
0.53
157/158


 80
NKT_m20
cg22268231
SPIB
NM_003121
00269404
0.13
0.08
0.36
0.45
0.06
0.14
0.53
159/160


 81
NKT_m10
cg10784030
INPP5B
NM_005540
00204084
0.08
0.08
0.23
0.17
0.11
0.13
0.49
161/162


 82
NKT_m11
cg19766460
C21orf128
NM_152507
00184385
0.04
0.04
0.06
0.24
0.04
0.06
0.44
163/164


 83
B_nm1
cg00226923
FGD2
NM_173558
00146192
0.93
0.96
0.95
0.96
0.10
0.95

165/166


 84
B_nm2
cg03860768
BLK
NM_001715
00136573
0.83
0.88
0.87
0.86
0.1I
0.82

167/168


 85
B_nm3
cg16280667
BLR1
NM_001716
00160683
0.88
0.87
0.87
0.90
0.14
0.89

169/170


 86
B_nm4
cg14127336
TCL1A
NM_021966
00100721
0.92
0.92
0.92
0.92
0.14
0.93

171/172


 87
B_nm5
cg22679120
SNX8
NM_013321
00106266
0.64
0.65
0.59
0.63
0.15
0.72
0.64
173/174


 88
B_nm6
cg16698623
MGMT
NT_008818
00170430
0.95
0.94
0.96
0.97
0.15
0.93

175/176


 89
B_nm7
cg10115873
DNAJB7
NM_145174
00172404
0.68
0.80
0.80
0.75
0.16
0.79

177/178


 90
B_nm8
cg27394566
PLD4
NM_138790
00166428
0.72
0.56
0.88
0.89
0.16
0.85

179/180


 91
B_nm9
cg14102807
CD19
NM_001770
00177455
0.88
0.90
0.92
0.93
0.16
0.89

181/182


 92
B_nm10
cg17399166
CD1D
NM_001766
00158473
0.89
0.81
0.88
0.88
0.17
0.87

183/184


 93
B_nm11
cg22194129
CLEC4C
NM_130441
00198178
0.85
0.88
0.90
0.92
0.17
0.85

185/186


 94
B_nm12
cg15121304


00197549
0.89
0.85
0.73
0.80
0.18
0.64

187/188


 95
B_nm13
cg18979762
EGLN1
NM_022051
00135766
0.80
0.84
0.83
0.81
0.19
0.72

189/190


 96
B_nm14
cg03221619
FCER2
NM_002002
00104921
0.80
0.73
0.75
0.71
0.19
0.76
0.59
191/192


 97
B_nm15
cg07597976
CD19
NM_001770
00177455
0.72
0.63
0.63
0.68
0.20
0.60
0.58
193/194


 98
B_nm16
cg00126698
BTK
NM_000061
00010671
0.63
0.62
0.86
0.77
0.20
0.76
0.81
195/196


 99
B_nm17
cg16098726
GP9
NM_000174
00169704
0.71
0.82
0.92
0.91
0.20
0.87

197/198


100
B_nm18
cg02630207
FLJ10379
NM_018079
00068784
0.73
0.74
0.71
0.68
0.21
0.65
0.67
199/200/


101
B_nm19
cg07790638
LOC91431
NM_138698

0.85
0.87
0.83
0.82
0.21
0.79

201/202


102
B_nm20
cg06667406
AASS
NM_005763
00008311
0.85
0.84
0.85
0.83
0.22
0.81

203/204


103
B_nm21
cg26574610
VPREB3
NM_013378
00128218
0.81
0.84
0.87
0.89
0.22
0.83

205/206


104
B_nm22
cg07426848
S100A3
NM_002960
00188015
0.88
0.89
0.93
0.92
0.22
0.87

207/208


105
B_nm23
cg23984130



0.80
0.80
0.69
0.60
0.24
0.59
0.68
209/210


106
B_nm24
cg00113020
LILRB4
NM_006847
00186818
0.78
0.77
0.77
0.69
0.24
0.56
0.73
211/212


107
B_nm25
cg25769980
TLR6
NM_006068
00174130
0.90
0.90
0.87
0.87
0.25
0.81

213/214


108
B_nm26
cg16873863
SLC22A18
NM_183233
00110628
0.59
0.61
0.75
0.76
0.25
0.74
0.71
215/216


109
B_nm27
cg22295573
AQP4
NM_001650
00171885
0.87
0.90
0.87
0.89
0.25
0.84

217/218


110
B_nm28
cg18075299
C14orf54
NM_173526
00172717
0.84
0.89
0.85
0.89
0.26
0.86

219/220


111
B_nm29
cg02399455
SRI
NM_198901
00075142
0.88
0.87
0.90
0.86
0.26
0.78

221/222


112
B_nm30
cg10762615
FBXW10
NM_031456
00171931
0.88
0.89
0.88
0.85
0.26
0.83

223/224


113
B_nm31
cg18557145
CD72
NM_001782
00137101
0.80
0.87
0.89
0.91
0.26
0.83
0.84
225/226


114
B_nm32
cg00374717
ARSG
NM_014960
00141337
0.90
0.91
0.85
0.85
0.26
0.85

227/228


115
B_nm33
cg19437319
KIAA0196
NM_014846
00164961
0.90
0.89
0.86
0.84
0.26
0.87

229/230


116
B_nm34
cg14959707
ZC3H7A
NM_014153
00122299
0.89
0.89
0.89
0.92
0.27
0.89

231/232


117
B_nm35
cg18152830
TNFRSF13B
NM_012452
00240505
0.92
0.91
0.86
0.91
0.27
0.91
0.86
233/234


118
B_nm36
cg16593081
DYX1C1
NM_001033559
00256061
0.91
0.92
0.89
0.88
0.28
0.87

235/236


119
B_nm37
cg26394380
SFTPB
NM_000542
00168878
0.66
0.80
0.72
0.75
0.29
0.86
0.70
237/238


120
B_nm38
cg01909245
LSP1
NM_002339
00130592
0.87
0.84
0:64
0.63
0.30
0.71
0.62
239/240


121
B_nm39
cg03270204
DDR1
NM_001954
00204580
0.94
0.92
0.84
0.92
0.31
0.94

241/242


122
B_nm40
cg11042320
PDGFRB
NM_002609
00113721
0.67
0.74
0.73
0.79
0.32
0.63
0.73
243/244


123
B_nm41
cg08251036
MGAT5
NM_002410
00152127
0.83
0.87
0.83
0.79
0.32
0.68
0.83
245/246


124
B_nm42
cg05921699
CD79A
NM_001783
00105369
0.84
0.81
0.80
0.67
0.32
0.70
0.78
247/248


125
B_nm43
cg25211252
KCNMB3
NM_014407
00171121
0.86
0.83
0.83
0.83
0.34
0.83
0.80
249/250


126
B_nm44
cg21960110
HBZ
NM_005332
00130656
0.85
0.88
0.80
0.69
0.36
0.81
0.57
251/252


127
B_m1
cg27398547
C14orf39
NM_174978
00179008
0.27
0.19
0.22
0.21
0.73
0.26

253/254


128
B_m2
cg22226839
ATP2B4
NM_001684
00058668
0.16
0.18
0.25
0.23
0.72
0.34

255/256


129
B_m3
cg11997899
DLX5
NM_005221
00105880
0.30
0.23
0.29
0.21
0.72
0.28

257/258


130
B_m4
cg19350340
ASPM
NM_018136
00066279
0.14
0.13
0.16
0.20
0.72
0.22

259/260


131
B_m5
cg00049986
C14orf10
NM_017917
00092020
0.17
0.11
0.21
0.17
0.70
0.20

261/262


132
B_m6
cg08360728
GPATC3
NM_022078
00198746
0.28
0.31
0.33
0.24
0.69
0.31

263/264


133
B_m7
cg01222684
TTC1
NM_003314
00113312
0.06
0.05
0.10
0.05
0.66
0.14

265/266


134
B_m8
cg00571634
WDR5B
NM_019069
00196981
0.18
0.18
0.16
0.16
0.65
0.20

267/268


135
B_m9
cg18908499
C1orf150
NM_145278
00169224
0.13
0.13
0.20
0.16
0.65
0.23

269/270


136
B_m10
cg00678539
MNS1
NM_018365
00138587
0.12
0.13
0.19
0.18
0.60
0.15

271/272


137
B_m11
cg19756611
DACH1
NM_004392
00165659
0.17
0.07
0.15
0.14
0.59
0.26

273/274


138
B_m12
cg23668631
CAMKK1
NM_032294
00004660
0.10
0.22
0.36
0.44
0.58
0.44
0.35
275/276


139
B_m13
cg18967846
CLDN12
NM_012129
00157224
0.14
0.14
0.16
0.10
0.58
0.24

277/278


140
B_m14
cg25482967
MRPS10
NM_018141
00048544
0.12
0.09
0.14
0.11
0.56
0.17

279/280


141
B_m15
cg06751597
SNAP23
NM_003825
00092531
0.07
0.07
0.11
0.09
0.56
0.07

281/282


142
B_m16
cg22285621
SSH3
NM_018276
00172830
0.01
0.08
0.05
0.11
0.55
0.07

283/284


143
B_m17
cg17378989
ERCC1
NM_202001
00012061
0.11
0.12
0.12
0.12
0.55
0.17

285/286


144
B_m18
cg03825921
RAB4A
NM_004578
00168118
0.11
0.11
0.14
0.13
0.55
0.18

287/288


145
B_m19
cg11250058
RAPH1
NM_203365
00173166
0.06
0.08
0.07
0.24
0.55
0.09

289/290


146
B_m20
cg03643709
VPS18
NM_020857
00104142
0.18
0.13
0.19
0.10
0.54
0.22

291/292


147
B_m21
cg24641737
DENND2D
NM_024901
00162777
0.03
0.03
0.04
0.03
0.54
0.05

293/294


148
B_m22
cg07732037
MPHOSPH9
NM_022782
00051825
0.27
0.47
0.06
0.10
0.53
0.25
0.09
295/296


149
B_m23
cg05091653
SP100
NM_003113
00067066
0.08
0.06
0.04
0.05
0.52
0.06

297/298


150
B_m24
cg16007628
ZNF207
NM_001032293
00010244
0.13
0.15
0.17
0.15
0.52
0.18
0.22
299/300


151
B_m25
cg26954174
CARD15
NM_022162
00167207
0.07
0.07
0.25
0.38
0.51
0.14
0.26
301/302


152
B_m26
cg01988129
ADHFE1
NM_144650
00147576
0.16
0.18
0.20
0.22
0.50
0.20
0.19
303/304


153
CD8_nm1
cg18149207
RORC
NM_005060
00143365
0.83
0.87
0.65
0.31
0.65
0.75

305/306


154
CD8_nm2
cg02519218
CHFR
NT_024477
00072609
0.85
0.84
0.52
0.39
0.60
0.71
0.62
307/308


155
CD8_nm3
cg21755709
C21orf124
NM_032920
00136014
0.66
0.71
0.65
0.43
0.63
0.64
0.66
309/310


156
CD8_nm4
cg24019564
RUNX3
NT_004610
00020633
0.55
0.75
0.67
0.44
0.74
0.51
0.62
311/312


157
CD8_nm5
cg19700658
UCP3
NM_003356
00175564
0.83
0.84
0.69
0.44
0.78
0.54
0.54
313/314


158
CD8_nm6
cg14027234
CD248
NM_020404
00174807
0.83
0.83
0.82
0.45
0.71
0.82

315/316


159
CD8_nm7
cg03024246
JRKL
NM_003772
00183340
0.69
0.78
0.77
0.45
0.53
0.63
0.67
317/318


160
CD8_nm8
cg21232015
CHFR
NT_024477
00072609
0.87
0.88
0.61
0.46
0.63
0.81
0.73
319/320


161
CD8_nm9
cg12108912
MGC10993
NM_030577
00144120
0.82
0.85
0.50
0.47
0.57
0.73
0.77
321/322


162
CD8_nm10
cg17505463
GGT3
NM_002058
00197421
0.82
0.80
0.59
0.47
0.69
0.66
0.60
323/324


163
CD8_nm11
cg07232688
LRRC39
NM_144620
00122477
0.71
0.75
0.72
0.47
0.59
0.50
0.64
325/326


164
CD8_m1
cg26848126
CYSLTR1
NM_006639
00173198
0.12
0.04
0.18
0.72
0.26
0.10

327/328


165
CD8_m3
cg25511807
MMP7
NM_002423
00137673
0.09
0.09
0.43
0.62
0.27
0.44

329/330


166
CD8_m4
cg16604516
FBLN2
NM_001004019
00163520
0.19
0.15
0.40
0.61
0.16
0.15

331/332


167
CD8_m5
cg23771929
FREQ
NM_014286
00107130
0.20
0.21
0.46
0.60
0.28
0.34
0.46
333/334


168
CD8_m6
cg20340242
IL1R2
NM_004633
00115590
0.03
0.04
0.44
0.60
0.18
0.42

335/336


169
CD8_m7
cg09106999
CDK2
NM_001798
00123374
0.07
0.08
0.48
0.60
0.29
0.29

337/338


170
CD8_m8
cg00516481
PDE9A
NM_002606
00160191
0.19
0.18
0.49
0.57
0.18
0.32
0.46
339/340


171
CD8_m9
cg22054164
ECE1
NM_001397
00117298
0.17
0.09
0.28
0.57
0.17
0.42

341/342


172
CD8_m10
cg06415153
PITPNM2
NM_020845
00090975
0.19
0.12
0.39
0.56
0.22
0.40

343/344


173
CD8_m11
cg22778947
FSD1NL
NM_031919
00106701
0.16
0.18
0.50
0.55
0.18
0.33

345/346


174
CD8_m12
cg03627896
LOC283932
NM_175901

0.34
0.41
0.31
0.53
0.21
0.31
0.12
347/348


175
CD8_m13
cg00833777
ITGAM
NM_000632
00169896
0.08
0.09
0.42
0.52
0.25
0.16

349/350


176
CD8_m14
cg01356829
IL12RB2
NM_001559
00081985
0.08
0.07
0.38
0.52
0.15
0.12
0.16
351/352


177
CD8_m15
cg18661868
FES
NM_002005
00182511
0.08
0.11
0.34
0.51
0.29
0.13

353/354


178
CD8_m16
cg08899626
LDB2
NM_001290
00169744
0.05
0.09
0.18
0.51
0.18
0.12

355/356


179
CD8_m17
cg14700707
NOTCH4
NM_004557
00204301
0.05
0.05
0.39
0.50
0.14
0.35
0.30
357/358


180
CD4_nm1
cg03602500
FLJ00060
NM_033206
00104970
0.86
0.85
0.26
0.52
0.66
0.87

359/360


181
CD4_nm2
cg16470760
CD4
NM_000616
00010610
0.74
0.70
0.31
0.61
0.68
0.66
0.67
361/362


182
CD4_nm3
cg02989940
ERAF
NM_016633
00169877
0.90
0.87
0.39
0.64
0.55
0.79
0.72
363/364


183
CD4_nm4
cg22972055
UNC84A
NM_025154
00164828
0.91
0.93
0.42
0.64
0.50
0.89

365/366


184
CD4_nm5
cf29335340
PTPN6
NM_002831
00111679
0.66
0.73
0.42
0.64
0.59
0.78
0.57
367/368


185
CD4_nm6
cg08214029
CCL18
NM_002988
00006074
0.74
0.78
0.42
0.76
0.58
0.80
0.72
369/370


186
CD4_nm7
cg02385474
PCNXL2
NM_024938
00135749
0.78
0.78
0.43
0.52
0.54
0.65
0.62
371/372


187
CD4_nm8
cg01782486
ZBTB7B
NM_015872
00160685
0.75
0.82
0.44
0.88
0.52
0.81
0.83
373/374


188
CD4_nm9
cg25598083
ACOT2
NM_006821
00119673
0.85
0.86
0.44
0.55
0.65
0.72
0.54
375/376


189
CD4_nm10
cg07327347
AQP8
NM_001169
00103375
0.88
0.65
0.46
0.70
0.67
0.79
0.54
377/378


190
CD4_nm11
cg12703269
PSTPIP1
NM_003978
00140368
0.82
0.82
0.46
0.61
0.80
0.84
0.59
379/380


191
CD4_nm12
cg23909633
IL24
NM_181339
00162892
0.87
0.87
0.48
0.65
0.74
0.76
0.80
381/382


192
CD4_nm13
cg18669588
PTK9L
NM_007284
00247596
0.80
0.83
0.50
0.64
0.75
0.77
0.62
383/384


193
CD4_m1
cg25655096
GPR92
NM_020400
00184574
0.44
0.19
0.69
0.49
0.19
0.13

385/386


194
CD4_m2
cg05697976
MLSTD1
NM_018099
00064763
0.09
0.14
0.62
0.50
0.42
0.36
0.48
387/388


195
CD4_m3
cg10521852
EDG4
NM_004720
00064547
0.07
0.08
0.61
0.41
0.22
0.22
0.35
389/390


196
CD4_m4
cg08159444
PNMA5
NM_052926
00198883
0.26
0.06
0.61
0.48
0.48
0.46

391/392


197
CD4_m5
cg00443307
KLRG1
NM_005810
00139187
0.37
0.22
0.60
0.38
0.34
0.35
0.29
393/394


198
CD4_m6
cg04541607
CRYBB1
NM_001887
00100122
0.06
0.10
0.59
0.46
0.14
0.47

395/396


199
CD4_m7
cg03085312
RARA
NM_001024809
00131759
0.16
0.15
0.59
0.38
0.18
0.17
0.39
397/398


200
CD4_m8
cg20764656
GPX2
NM_002083
00176153
0.04
0.06
0.58
0.47
0.17
0.12
0.34
399/400


201
CD4_m9
cg07837085
SLAMF7
NM_021181
00026751
0.06
0.07
0.57
0.35
0.27
0.07

401/402


202
CD4_m10
cg18440048
ZNF70
NM_021916
00187792
0.12
0.17
0.56
0.21
0.13
0.20
0.34
403/404


203
CD4_m11
cg18752880
C1QTNF3
NM_181435
00082196
0.06
0.29
0.56
0.46
0.46
0.15
0.21
405/406


204
CD4_m12
cg24576425
GALNT5
NM_014568
00136542
0.11
0.08
0.56
0.46
0.26
0.24
0.46
407/408


205
CD4_m13
cg18055007
DDAH2
NM_013974
00226634
0.11
0.08
0.55
0.21
0.15
0.13
0.14
409/410


206
CD4_m14
cg14913610
KLRG1
NM_005810
00139187
0.06
0.07
0.55
0.43
0.18
0.16
0.17
411/412


207
CD4_m15
cg00563926
TGFBR3
NM_003243
00069702
0.11
0.10
0.55
0.15
0.18
0.17
0.38
413/414


208
CD4_m16
cg05252264
FCAR
NM_002000
00186431
0.06
0.08
0.55
0.47
0.21
0.38

415/416


209
CD4_m17
cg16465939
KCNQ1
NT_009237
00053918
0.05
0.05
0.54
0.22
0.28
0.11

417/418


210
CD4_m18
cg19963522
PIP3-E
NM_015553
00074706
0.09
0.11
0.54.
0.38
0.19
0.32
0.46
419/420


211
CD4_m19
cg05512099
PLEKHF1
NM_024310
00166289
0.15
0.19
0.54
0.42
0.18
0.11
0.21
421/422


212
CD4_m20
cg07376232
AMICA1
NM_153206
00160593
0.05
0.03
0.52
0.36
0.21
0.20

423/424


213
CD4_m21
cg18059933
TP53INP1
NM_033285
00164938
0.23
0.16
0.50
0.43
0.10
0.10
0.31
425/426


214
MOC_nm1
cg02780988
KRTHA6
NM_003771
00126337
0.71
0.08
0.69
0.64
0.54
0.64
0.62
427/428


215
MOC_nm2
cg18854666
SLC11A1
NM_000578
00018280
0.61
0.14
0.94
0.94
0.79
0.92

429/430


216
MOC_nm3
cg18589858
SLCO2B1
NM_007256
00137491
0.73
0.15
0.89
0.86
0.58
0.81

431/432


217
MOC_nm4
cg22456522
LILRB3
NM_006864
00204577
0.84
0.17
0.80
0.83
0.68
0.80

433/434


218
MOC_nm5
cg27443224
CCL21
NM_002989
00137077
0.67
0.17
0.63
0.60
0.52
0.52
0.64
435/436


219
MOC_nm6
cg22954818
APOBEC3A
NM_145699
00128383
0.55
0.20
0.65
0.61
0.50
0.65
0.64
437/438


220
MOC_nm7
cg05445326
TM4SF19
NM_138461
00145107
0.91
0.21
0.93
0.93
0.58
0.64

439/440


221
MOC_nm8
cg10045881
CHI3L2
NM_001025197
00064886
0.61
0.21
0.66
0.73
0.62
0.69
0.77
441/442


222
MOC_nm9
cg11051139
LOC144501
NM_182507
00167767
0.58
0.21
0.76
0.77
0.74
0.70
0.71
443/444


223
MOC_nm11
cg01193293
SIGLEC7
NM_014385
00168995
0.65
0.29
0.66
0.66
0.60
0.50

445/446


224
MOC_nm12
cg04387658
CD86
NM_006889
00114013
0.55
0.33
0.76
0.72
0.58
0.57
0.80
447/448


225
MOC_nm13
cg22319147
CDH5
NM_001795
00179776
0.56
0.34
0.95
0.95
0.72
0.90

449/450


226
MOC_nm14
cg13253729
Rgr
NM_153615
00159496
0.85
0.41
0.94
0.93
0.53
0.90

451/452


227
MOC_nm15
cg00412772
C19orf33
NM_033520
00167644
0.57
0.42
0.74
0.72
0.52
0.62

453/454


228
MOC_nm16
cg07986773
NUP50
NM_153645
00093000
0.85
0.42
0.90
0.89
0.77
0.83

455/456


229
MOC_nm17
cg06407137
CD300LB
NM_174892
00178789
0.78
0.42
0.84
0.79
0.80
0.74
0.85
457/458


230
MOC_nm18
cg12564453
CETP
NM_000078
00087237
0.61
0.44
0.95
0.94
0.65
0.66

459/460


231
MOC_nm19
cg02497428
IGSF6
NM_005849
00140749
0.92
0.48
0.95
0.95
0.77
0.94

461/462


232
MOC_nm20
cg16501235
C1orf54
NM_024579
00118292
0.83
0.48
0.86
0.82
0.75
0.83
0.81
463/464


233
MOC_meth1
cg05044994
FLJ42393
NM_207488
00213132
0.47
0.74
0.16
0.24
0.32
0.17

465/466


234
MOC_meth2
cg23213217
DEGS1
NM_144780
00143753
0.04
0.73
0.04
0.03
0.24
0.38

467/468


235
MOC_meth3
cg24921858
BCL2L14
NM_030766
00121380
0.48
0.64
0.44
0.42
0.22
0.46

469/470


236
MOC_mcth4
cg07747299
C21orf56
NM_032261
00160284
0.47
0.63
0.39
0.35
0.34
0.37
0.27
471/472


237
MOC_meth5
cg20839025
PRSS7
NM_002772
00154646
0.43
0.63
0.43
0.38
0.40
0.31
0.32
473/474


238
MOC_meth6
cg15551881
TRAF1
NM_005658
00056558
0.08
0.62
0.16
0.06
0.48
0.21

475/476


239
MOC_meth7
cg17233935
DSCR10
NM_148676
00233316
0.46
0.62
0.39
0.32
0.32
0.38
0.31
477/478


240
MOC_meth8
cg07376029
GC
NM_000583
00145321
0.47
0.61
0.25
0.37
0.31
0.39
0.31
479/480


241
MOC_meth9
cg14893161
FLJ32569
NM_152491
00162877
0.36
0.59
0.35
0.22
0.40
0.30
0.25
481/482


242
MOC_meth10
cg24884084
SPRR1B
NM_003125
00169469
0.45
0.57
0.39
0.43
0.24
0.41

483/484


243
MOC_meth11
cg12022621
LAX1
NM_017773
00122188
0.48
0.56
0.02
0.03
0.34
0.10

485/486


244
MOC_meth12
cg16399745
CNAP1
NM_014865
00010292
0.45
0.54
0.27
0.26
0.29
0.13
0.10
487/488


245
MOC_meth13
cg10117369
LAX1
NM_017773
00122188
0.46
0.53
0.02
0.05
0.43
0.15

489/490


246
MOC_meth14
cg24988345
SCHIP1
NM_014575
00250588
0.44
0.51
0.22
0.27
0.26
0.14
0.25
491/492


247
MOC_meth15
cg03427831
MTHFR
NM_005957
00177000
0.36
0.50
0.27
0.25
0.24
0.13
0.08
493/494


248
MOC_meth16
cg05546044
MAPK1
NM_002745
00100030
0.30
0.50
0.15
0.18
0.16
0.12

495/496


249
GRC_nm1
cg22381196
DHODH
NM_001361
00102967
0.05
0.72
0.89
0.84
0.78
0.78
0.87
497/498


250
GRC_nm2
cg06270401
DYRK4
NM_003845
00010219
0.06
0.80
0.84
0.82
0.79
0.81
0.75
499/500


251
GRC_nm3
cg22266967
S100P
NM_005980
00163993
0.08
0.56
0.71
0.69
0.58
0.66
0.60
501/502


252
GRC_nm4
cg21283680
SH3BP5
NM_004844
00131370
0.12
0.60
0.77
0.72
0.61
0.64
0.74
503/504


253
GRC_nm5
cg20720686
POR
NM_000941
00127948
0.15
0.52
0.80
0.77
0.76
0.74
0.74
505/506


254
GRC_nm6
cg12949760
KCNQ1
NT_009237
00053918
0.17
0.58
0.76
0.77
0.60
0.77
0.66
507/508


255
GRC_nm7
cg01718139
UNQ3033
NM_198481
00189068
0.18
0.72
0.78
0.72
0.78
0.78
0.74
509/510


256
GRC_nm8
cg05681757
FGD4
NM_139241
00139132
0.19
0.71
0.66
0.69
0.67
0.74
0.57
511/512


257
GRC_nm9
cg00145118
GNPDA1
NM_005471
00113552
0.19
0.51
0.60
0.67
0.58
0.62
0.74
513/514


258
GRC_nm10
cg10758292
DEFA1
NM_004084
00206047
0.20
0.90
0.76
0.75
0.78
0.83
0.75
515/516


259
nGRC_nm11
cg22438810
LCN2
NM_005564
00148346
0.20
0.81
0.74
0.72
0.65
0.60
0.64
517/518


260
GRC_nm12
cg02593766
EPN3
NM_017957
00049283
0.20
0.67
0.81
0.71
0.76
0.83
0.73
519/520


261
GRC_nm13
cg06625767
F12
NM_000505
00131187
0.21
0.65
0.87
0.87
0.86
0.86
0.89
521/522


262
GRC_nm14
cg18934187
STARD6
NM_139171
00174448
0.22
0.74
0.77
0.62
0.62
0.55
0.72
523/524


263
GRC_nm15
cg26306976
ITGB1BP1
NM_022334
00119185
0.22
0.92
0.90
0.87
0.81
0.87
0.72
525/526


264
GRC_nm16
cg09948350
FLJ25084
NM_152792
00244617
0.23
0.67
0.72
0.64
0.59
0.66
0.71
527/528


265
GRC_nm17
cg13265003
SLC37A1
NM_018964
00160190
0.24
0.75
0.81
0.81
0.69
0.79
0.74
529/530


266
GRC_nm18
cg25600606
HIPK3
NM_005734
00110422
0.25
0.86
0.91
0.84
0.77
0.89
0.88
531/532


267
GRC_nm19
cg12788313
MST1
NM_020998
00173531
0.26
0.64
0.92
0.93
0.82
0.89

533/534


268
GRC_nm20
cg17051440
CLDN2
NM_020384
00165376
0.27
0.61
0.79
0.77
0.68
0.57
0.71
535/536


269
GRC_nm21
cg24422489
FCGR2A
NM_021642
00143226
0.27
0.68
0.80
0.73
0.68
0.70
0.81
537/538


270
GRC_nm22
cg15361231
GLRX2
NM_016066
00023572
0.27
0.64
0.83
0.75
0.62
0.67
0.77
539/540


271
GRC_nm23
cg10591659
NYX
NM_022567
00188937
0.28
0.88
0.89
0.82
0.76
0.59
0.84
541/542


272
GRC_nm24
cg20098659
CLEC9A
NM_207345
00197992
0.29
0.86
0.89
0.89
0.53
0.86

543/544


273
GRC_nm25
cg16504798
MYO1F
NM_012335
00142347
0.30
0.56
0.88
0.79
0.77
0.69

545/546


274
GRC_nm26
cg15379858
ChGn
NM_018371
00147408
0.31
0.92
0.93
0.93
0.93
0.94
0.87
547/548


275
GRC_nm27
cg07423149
CHI3L1
NM_001276
00133048
0.32
0.51
0.79
0.84
0.78
0.72
0.76
549/550


276
GRC_nm28
cg17823175
AZU1
NM_001700
00172232
0.35
0.52
0.85
0.85
0.85
0.87
0.83
551/552


277
GRC_nm29
cg21685427
SGK2
NM_016276
00101049
0.36
0.60
0.90
0.90
0.91
0.91
0.87
553/554


278
GRC_nm30
cg11849692
LDB1
NM_003893
00198728
0.36
0.71
0.60
0.79
0.57
0.89

555/556


279
GRC_nm31
cg22286764
C3orf35
NM_178339
00198590
037
0.81
0.94
0.95
0.67
0.95

557/558


280
GRC_nm32
cg18530324
KIAA0427
NM_014772
00134030
0.38
0.52
0.86
0.87
0.78
0.80

559/560


281
GRC_nm33
cg22630748
INHBE
NM_031479
00139269
0.39
0.74
0.94
0.93
0.93
0.93
0.90
561/562


282
GRC_nm34
cg03311899
GPR109A
NM_177551
00182782
0.43
0.54
0.95
0.93
0.92
0.91
0.95
563/564


283
GRC_nm35
cg00840516
HYAL2
NM_003773
00261921
0.43
0.75
0.91
0.88
0.89
0.84

565/566


284
GRC_nm36
cg02039171
CEBPE
NM_001805
00092067
0.43
0.80
0.94
0.95
0.95
0.94
0.92
567/568


285
GRC_nm37
cg05826823
CIZ1
NM_012127
00148337
0.46
0.83
0.94
0.92
0.81
0.85

569/570


286
GRC_m1
cg02212836
LY86
NM_004271
00112799
0.90
0.14
0.08
0.14
0.07
0.42

571/572


287
GRC_m2
cg08136806
KRT6E
NM_173086
00170465
0.65
0.48
0.32
0.39
0.41
0.39
0.27
573/574


288
GRC_m3
cg18959422
MYBPH
NM_004997
00133055
0.64
0.41
0.41
0.48
0.37
0.42
0.34
575/576


289
GRC_m4
cg05106502
SCAP1
NM_003726
00141293
0.61
0.49
0.03
0.03
0.10
0.04

577/578


290
GRC_m5
cg10896774
C7orf34
NM_178829
00165131
0.55
0.45
0.18
0.22
0.23
0.38
0.12
579/580


291
GRC_m6
cg00323915
GIMAP4
NM_018326
00133574
0.55
0.42
0.17
0.28
0.43
0.20
0.19
581/582


292
GRC_m7
cg12605747
RPL4
NM_000968
00174444
0.54
0.41
0.36
0.33
0.31
0.26
0.34
583/584


293
GRC_m8
cg15625636
GPR65
NM_003608
00140030
0.54
0.32
0.12
0.20
0.29
0.31
0.25
585/586


294
GRC_m9
cg12810837
CLEC2D
NM_001004419
00069493
0.52
0.45
0.11
0.15
0.18
0.14
0.16
587/588


295
GRC_m10
cg26839325
BMP15
NM_005448
00130385
0.52
0.45
0.24
0.24
0.24
0.27
0.18
589/590


296
eGRC_nm1
NA
PRG2

00186652
NA
NA
NA
NA
NA
NA
NA
591/592


297
OTL_nm1
cg07728874
CD3D
NM_000732.3
00167286
0.87
0.91
0.14
0.11
0.91
0.87
0.21
593/594


298
OTL_nm2
cg24841244
CD3D
NM_000732.3
00167286
0.83
0.84
0.10
0.07
0.86
0.80
0.16
595/596


299
OTL_nm3
cg15880738
CD3G
NM_000073.1
00160654
0.87
0.88
0.07
0.06
0.88
0.84
0.12
597/598


300
OTL_nm4
cg07545925
CD3G
NM_000073.1
00160654
0.78
0.76
0.22
0.32
0.66
0.66
0.23
599/600


301
OTL_nm05
cg24612198
CD3E
NM_000733.2
00198851
0.74
0.79
0.10
0.14
0.63
0.60
0.11
601/602


302
OTL_nm06
cg04759756
SLA2
NM_032214.2
00101082
0.91
0.91
0.21
0.12
0.91
0.73
0.20
603/604


303
OTL_nm07
cg08539991
ZBTB32
NM_014383.1
00011590
0.84
0.89
0.18
0.19
0.58
0.75
0.17
605/606


304
OTL_nm08
cg18350391
IL32
NM_001012631.1
00008517
0.82
0.87
0.15
0.13
0.82
0.68
0.18
607/608


305
OTL_nm09
cg19812619
ITGB7
NM_000889.1
00139626
0.90
0.90
0.29
0.25
0.63
0.71
0.28
609/610


306
OTL_nm10
cg20366831
APBA3
NM_004886.3
00011132
0.68
0.81
0.20
0.21
0.74
0.65
0.24
611/612


307
OTL_nm11
cg22670733
CHRNA3
NM_000743.2
00080644
0.78
0.82
0.22
0.22
0.82
0.80
0.45
613/614


308
OTL_nm12
cg16173109
FLJ38379
XR_001026.1
00204098
0.87
0.86
0.11
0.28
0.72
0.72
0.53
615/616


309
OTL_nm13
cg00620024
PPP6C
NM_002721.3
00119414
0.86
0.85
0.18
0.28
0.69
0.74
0.44
617/618


310
OTL_nm14
cg15503752
ST6GALNA
NM_018414.2
00070526
0.75
0.74
0.13
0.25
0.59
0.66
0.17
619/620





C1












311
OTL_nm15
cg15055101
SH2D3A
NM_005490.1
00125731
0.77
0.82
0.19
0.34
0.72
0.70
0.48
621/622


312
OTL_nm16
cg18149207
RORC
NM_005060.3
00143365
0.85
0.87
0.52
0.24
0.75
0.74
0.58
623/624


313
OTL_nm17
cg16854606
DAND5
NM_152654.2
00179284
0.66
0.77
0.34
0.31
0.79
0.65
0.27
625/626


314
OTL_m1
cg24091474
TYROBP
NM_003332.2
00011600
0.12
0.08
0.84
0.84
0.27
0.10
0.60
627/628


315
OTL_m2
cg25957124
DNAH3
NM_017539.1
00158486
0.05
0.04
0.82
0.82
0.05
0.31
0.86
629/630


316
OTL_m3
cg01526089
P2RX1
NM_002558.2
00108405
0.03
0.04
0.86
0.84
0.52
0.32
0.85
631/632


317
OTL_m4
cg12971694
CD72
NM_001782.1
00137101
0.11
0.08
0.80
0.77
0.09
0.21
0.67
633/634


318
OTL_m5
cg19906550
SLC22A18
NM_183233.1
00110628
0.03
0.04
0.72
0.78
0.32
0.24
0.63
635/636


319
OTL_m6
cg17468997
NCF1
NM_000265.1
00158517
0.12
0.10
0.79
0.82
0.06
0.38
0.81
637/638


320
OTL_m7
cg19399532
FLJ35530
NM_207467.1
00204482
0.07
0.06
0.70
0.80
0.06
0.39
0.79
639/640


321
OTL_m8
cg09208010
MMP14
NM_004995.2
00157227
0.09
0.08
0.80
0.80
0.36
0.28
0.82
641/642


322
OTL_m9
cg15512851
FGD2
NM_173558.2
00146192
0.12
0.08
0.76
0.73
0.08
0.20
0.64
643/644


323
OTL_m10
cg20191453
AMT
NM_000481.2
00145020
0.16
0.17
0.87
0.85
0.51
0.25
0.89
645/646


324
OTL_m11
cg24453664
CD59
NM_203331.1
00085063
0.07
0.10
0.79
0.79
0.37
0.29
0.82
647/648


325
OTL_m12
cg10257049
C5orf4
NM_032385.1
00170271
0.07
0.07
0.75
0.75
0.28
0.21
0.74
649/650


326
OTL_m13
cg16003913
MPG
NM_001015052.1
00103152
0.05
0.15
0.82
0.81
0.41
0.32
0.82
651/652


327
OTL_m14
cg14088811
SPI1
NM_003120.1
00066336
0.10
0.07
0.77
0.74
0.08
0.41
0.79
653/654


328
OTL_m15
cg15146752
EPHA2
NM_004431.2
00142627
0.26
0.27
0.90
0.86
0.41
0.35
0.87
655/656


329
OTL_m16
cg02082571
CLEC4A
NM_016184.2
00111729
0.23
0.14
0.85
0.87
0.44
0.47
0.83
657/658


330
OTL_m17
cg16989646
SLC25A15
NM_014252.1
00102743
0.04
0.07
0.69
0.59
0.04
0.11
0.54
659/660


331
OTL_m18
cg03574571
CD22
NM_001771.1
00012124
0.12
0.09
0.85
0.75
0.21
0.49
0.75
661/662


332
OTL_m19
cg13703437
FYB
NM_199335.2
00082074
0.12
0.13
0.86
0.81
0.36
0.45
0.84
663/664


333
OTL_m20
cg21237418
RAB34
NM_031934.3
00109113
0.04
0.04
0.69
0.61
0.09
0.18
0.75
665/666


334
OTL_m21
cg01129847
C19orf35
NM_198532.1
00188305
0.08
0.12
0.69
0.62
0.18
0.06
0.53
667/668


335
OTL_m22
cg16139316
S100A9
NM_002965.2
00163220
0.06
0.07
0.84
0.73
0.49
0.37
0.85
669/670


336
OTL_m23
cg00666746
SYDE1
NM_033025.4
00105137
0.08
0.07
0.71
0.58
0.18
0.11
0.58
671/672


337
OTL_m24
cg20050826
K6IRS2
NM_080747.1
00170486
0.14
0.18
0.77
0.69
0.19
0.27
0.59
673/674


338
OTL_m25
cg12876594
NPR2
NM_000907.2
00139626
0.23
0.19
0.79
0.76
0.31
0.26
0.77
675/676


339
OTL_m26
cg17105014
GYPC
NM_002101.3
00136732
0.13
0.14
0.76
0.70
0.35
0.26
0.68
677/678


340
OTL_m27
cg03886110
PECAM1
NM_000442.2
00261371
0.05
0.07
0.77
0.50
0.35
0.09
0.47
679/680


341
OTL_m28
cg14324675
LST1
NM_205838.1
00204482
0.05
0.04
0.63
0.71
0.24
0.36
0.65
681/682


342
OTL_m29
cg08519905
CD9
NM_001769.2
00010278
0.10
0.12
0.71
0.61
0.11
0.35
0.68
683/684
















TABLE 4A





Natural Killer Cells-Markers























Basophil


Marker-
Target-


Granu-


ID
ID
SYMBOL
Accession
locytes





NK_
cg2443


0.97


nm33
0034








NK_
cg2727
ANKRD28
NM_
0.92


nm34
4718

015199






NK_
cg0780
DNM3
NM_
0.90


nm35
2362

015569






NK_
cg1329
CTBP2
NM_
0.95


nm36
2607

001083914






NK_
cg0406
RHOBTB1
NM_
0.91


nm37
4701

014836






NK_
cg0336
LDB2
NM_
0.90


nm9
8758

001290






NK_
cg1789
LARP4B
NM_
0.97


nm39
3934

015155






NK_
cg1636
CXXC5
NM_
0.87


nm40
0310

016463






NK_
cg2354
RNF165
NM_
0.85


nm41
9472

152470






NK_
cg1362
EIF3G
NM_
0.94


nm42
0110

003755






NK_
cg2306
EIF2C2
NM_
0.97


nm43
0465

012154






NK_
cg2127
MYO1E
NM_
0.88


nm44
5838

004998






NK_
cg1525
FAM120B
NM_
0.88


nm45
9233

032448






NK_
cg1179


0.88


nm46
0417








NK_
cg0606
EIF3B
NM_
0.89


nm47
8163

001037283






NK_
cg1425
ADAM8
NM_
0.89


nm48
9466

001109






NK_
cg1059
ZDHHC14
NM_
0.90


nm49
2926

153746






NK_
cg0525
SLC15A4
NM_
0.91


nm50
3716

145648






NK_
cg1716
RASA3
NM_
0.92


nm51
2797

007368






NK_
cg0046


0.94


nm52
2849








NK_
cg1005
C1GALT1
NM_
0.91


nm53
5950

020156






NK_
cg1991
COLQ
NM_
0.86


nm54
5997

080538






NK_
cg0670
MAST3
NM_
0.97


nm55
6159

015016






NK_
cg2301
MAD1L1
NM_
0.92


nm56
5664

003550






NK_
cg2182
RFC2
NM_
0.69


nm57
8319

181471






NK_
cg0542
AKAP10
NM_
0.75


nm58
1487

007202






NK_
cg2446
SBNO2
NM_
0.84


nm59
7387

014963






NKT_
cg0558


0.89


nm21
5475








NKT_
cg2006
PDGFA
NM_
0.91


nm22
3728

002607






NKT_
cg0087
C14orf
NM_
0.91


nm23
9541
166
016039






NKT_
cg2621


0.92


nm24
5982








NKT_
cg0845
TBC1D22B
NM_
0.85


nm25
5089

017772






NKT_
cg0904


0.87


nm26
6550








NKT_
cg2731 
LDHAL6A
NM_
0.89


nm27
6453

001144071






NKT_
cg0306
ST7
NM_
0.90


nm28
9731

018412






NKT_
cg2364


0.89


nm29
2827








NKT_
cg1221 
ZAK
NM_
0.88


nm30
9570

016653






NKT_
cg1654


0.89


nm3l
8262








NKT_
cg0584
NCRNA
NR_
0.87


nm32
4859
00119
002811






NKT_
cg1574
TBC1D23
NM_
0.88


nm33
0507

018309






NKT_
cg0740


0.84


nm34
6728








NKT_
cg1399 
SAMD4A
NM_
0.82


nm35
4599

001161577






NKT_
cg0334
GCK
NM_
0.84


nm36
5391

000162






NKT_
cg0789
PTK2
NM_
0.91


nm37
1862

153831






NKT_
cg2550
AOAH
NM_
0.87


nm38
3323

001637






NKT_
cg2403
C3orf30
NM_
0.90


nm39
7746

152539






NKT_
cg1338
SGMS1
NM_ 
0.88


nm40
2516

147156






NKT_
cg2591


0.85


nm41
8166








NKT_
cg0825


0.90


nm42
0738








NKT_
cg1908
RCAN2
NM_
0.86


nm43
3007

005822






NKT_
cg0622
ELFN1
NM_001
0.80


nm44
8763

128636






NKT_
cg1924
UBE2E2
NM_
0.82


nm45
3780

152653






NKT_
cg1157
CLIP1
NM_
0.89


nm46
1124

002956






NKT_
cg1756


0.89


nm47
9413








NKT_
cg1408
KCNQI
NM_
0.86


nm48
9425

000218






NKT_
cg2689
GPR89A
NM_
0.85


nm49
4807

001097613






NKT_
cg0279
OSBPL10
NM_
0.86


nm50
1542

017784






NKT_
cg2458
IL9
NM_
0.86


nm51
5690

000590






NKT_
cg1890
TNKS2
NM_
0.87


nm52
4552

025235






NKT_
cg1807


0.88


nm53
7068








NKT_
cg0390
KCNQ1
NM_
0.83


nm54
5757

000218






NKT_
cg1263


0.91


nm55
0243








NKT_
cg1239


0.83


nm56
9350








NKT_
cg0082


0.86


nm57
9600








NKT_
cg2472
PLEKHA7
NM_
0.86


nm58
2886

175058






NKT_
cg1656


0.87


nm59
5562








NKT_
cg1336


0.79


nm60
2028















Eosino-
Neutro-





sinophil
phil

Non-


Marker-
Granu-
Granu-
Classical
Classical


ID
locytes
locytes
Monocytes
Monocytes





NK_
0.97
0.97
0.97
0.95


nm33









NK_
0.89
0.91
0.91
0.87


nm34









NK_
0.91
0.92
0.92
0.90


nm35









NK_
0.91
0.92
0.93
0.92


nm36









NK_
0.90
0.93
0.93
0.91


nm37









NK_
0.85
0.88
0.88
0.86


nm9









NK_
0.96
0.96
0.96
0.96


nm39









NK_
0.82
0.85
0.87
0.84


nm40









NK_
0.86
0.87
0.88
0.88


nm41









NK_
0.91
0.92
0.92
0.93


nm42









NK_
0.97
0.97
0.97
0.96


nm43









NK_
0.90
0.89
0.89
0.89


nm44









NK_
0.86
0.88
0.89
0.87


nm45









NK_
0.90
0.88
0.89
0.89


nm46









NK_
0.87
0.90
0.90
0.87


nm47









NK_
0.71
0.96
0.96
0.93


nm48









NK_
0.94
0.95
0.95
0.92


nm49









NK_
0.91
0.92
0.93
0.89


nm50









NK_
0.91
0.92
0.94
0.92


nm51









NK_
0.94
0.95
0.94
0.92


nm52









NK_
0.92
0.92
0.91
0.89


nm53









NK_
0.87
0.88
0.88
0.87


nm54









NK_
0.97
0.98
0.97
0.94


nm55









NK_
0.94
0.96 
0.94
0.94


nm56









NK_
0.92
0.92
0.91
0.90


nm57









NK_
0.85
0.90
0.90
0.89


nm58









NK_
0.91
0.93
0.92
0.88


nm59









NKT_
0.86
0.89
0.90
0.90


nm21









NKT_
6.89
0.89
0.91
0.90


nm22









NKT_
0.90
0.89
0.90
0.84


nm23









NKT_
0.91
0.90
0.90
0.91


nm24









NKT_
0.84
0.90
0.88
0.84


nm25









NKT_
0.89
0.87
0.89
0.88


nm26









NKT_
0.90
0.90
0.88
0.86


nm27









NKT_
0.86
0.86
0.87
0.87


nm28









NKT_
0.92
0.90
0.91
0.90


nm29









NKT_
0.87
0.91
0.93
0.91


nm30









NKT_
0.79
0.80
0.84
0.84


nm3l









NKT_
0.90
0.88
0.87
0.87


nm32









NKT_
0.79
0.86
0.82
0.76


nm33









NKT_
0.85
0.89
0.87
0.83


nm34









NKT_
0.80
0.81
0.81
0.82


nm35









NKT_
0.86
0.87
0.82
0.83


nm36









NKT_
0.91
0.90
0.91
0.87


nm37









NKT_
0.88
0.84
0.88
0.89


nm38









NKT_
0.90
0.90
0.88
0.87


nm39









NKT_
0.86
0.89
0.89
0.89


nm40









NKT_
0.84
0.85
0.84
0.83


nm41









NKT_
0.92
0.92
0.93
0.93


nm42









NKT_
0.85
0.86
0.87
0.85


nm43









NKT_
0.76
0.77
0.80
0.78


nm44









NKT_
0.82
0.85
0.89
0.84


nm45









NKT_
0.88
0.90
0.89
0.88


nm46









NKT_
0.88
0.89
0.88
0.89


nm47









NKT_
0.87
0.89
0.90
0.86


nm48









NKT_
0.89
0.89
0.89
0.90


nm49









NKT_
0.86
0.85
0.86
0.84


nm50









NKT_
0.85
0.87
0.87
0.87


nm51









NKT_
0.82
0.89
0.90
0.89


nm52









NKT_
0.87
0.89
0.85
0.86


nm53









NKT_
0.86
0.86
0.85
0.84


nm54









NKT_
0.86
0.88
0.91
0.91


nm55









NKT_
0.80
0.81
0.86
0.86


nm56









NKT_
0.83
0.79
0.87
0.88


nm57









NKT_
0.81
0.84
0.83
0.85


nm58









NKT_
0.83
0.84
0.87
0.87


nm59









NKT_
0.78
0.76
0.76
0.77


nm60














Marker-
NK

CD4 + Th



ID
classical
B-Cells
naive
CD4 + Th1





NK_
0.09
0.97
0.97
0.97


nm33









NK_
0.08
0.90
0.92
0.90


nm34









NK_
0.12
0.90
0.91
0.86


nm35









NK_
0.16
0.93
0.94
0.89


nm36









NK_
0.16
0.92
0.91
0.91


nm37









NK_
0.16
0.88
0.89
0.93


nm9









NK_
0.22
0.97
0.97
0.95


nm39









NK_
0.15
0.86
0.85
0.86


nm40









NK_
0.18
0.92
0.84
0.86


nm41









NK_
0.27
0.94
0.94
0.91


nm42









NK_
0.33
0.97
0.97
0.97


nm43









NK_
0.27
0.86
0.88
0.90


nm44









NK_
0.30
0.89
0.89
0.87


nm45









NK_
0.31
0.88
0.88
0.85


nm46









NK_
0.33
0.89
0.90
0.87


nm47









NK_
0.17
0.93
0.87
0.96


nm48









NK_
0.22
0.93
0.86
0.91


nm49









NK_
0.22
0.91
0.92
0.91


nm50









NK_
0.31
0.91
0.92
0.91


nm51









NK_
0.35
0.94
0.95
0.93


nm52









NK_
0.13
0.90
0.92
0.92


nm53









NK_
0.07
0.87
0.86
0.81


nm54









NK_
0.19
0.98
0.98
0.98


nm55









NK_
0.04
0.95
0.93
0.95


nm56









NK_
0.08
0.74
0.67
0.91 


nm57









NK_
0.21
0.90
0.76
0.86


nm58









NK_
0.23
0.91
0.83
0.88


nm59









NKT_
0.83
0.81
0.90
0.81


nm21









NKT_
0.85
0.89
0.90
0.69


nm22









NKT_
0.87
0.84
0.87
0.72


nm23









NKT_
0.83
0.81
0.89
0.59


nm24









NKT_
0.86
0.81
0.84
0.51


nm25









NKT_
0.83
0.87
0.88
0.51


nm26









NKT_
0.80
0.82
0.91
0.55


nm27









NKT_
0.84
0.82
0.87
0.56


nm28









NKT_
0.82
0.80
0.91
0.60


nm29









NKT_
0.83
0.82
0.88
0.57


nm30









NKT_
0.79
0.82
0.90
0.61


nm3l









NKT_
0.82
0.80
0.86
0.55


nm32









NKT_
0.77
0.80
0.88
0.59


nm33









NKT_
0.83
0.86
0.85
0.57


nm34









NKT_
0.81
0.80
0.87
0.54


nm35









NKT_
0.82
0.80
0.85
0.57


nm36









NKT_
0.84
0.81
0.88
0.58


nm37









NKT_
0.83
0.87
0.88
0.50


nm38









NKT_
0.73
0.83
0.89
0.60


nm39









NKT_
0.79
0.75
0.88
0.67


nm40









NKT_
0.80 
0.78
0.84
0.48


nm41









NKT_
0.86
0.78
0.89
0.62


nm42









NKT_
0.84
0.77
0.87
0.49


nm43









NKT_
0.75
0.74
0.81
0.49


nm44









NKT_
0.83
0.87
0.84
0.46


nm45









NKT_
0.72
0.83
0.87
0.51


nm46









NKT_
0.90
0.83
0.91
0.53


nm47









NKT_
0.80
0.76
0.85
0.57


nm48









NKT_
0.85
0.80
0.87
0.57


nm49









NKT_
0.77
0.82
0.87
0.49


nm50









NKT_
0.85
0.78
0.88
0.62


nm51









NKT_
0.88
0.89
0.88
0.50


nm52









NKT_
0.84
0.77
0.87
0.51


nm53









NKT_
0.77
0.79
0.84
0.58


nm54









NKT_
0.84
0.77
0.89
0.51


nm55









NKT_
0.73
0.79
0.82
0.54


nm56









NKT_
0.79
0.84
0.84
0.49


nm57









NKT_
0.75
0.81
0.82
0.55


nm58









NKT_
0.81
0.76
0.85
0.48


nm59









NKT_
0.74
0.73
0.73
0.47


nm60
















CD4 +
CD4 +
CD8 +




Th
Th
Cyto-


Marker-
CD4 +
Central
Effect.
toxic


ID
Th2
Mem.
Mem.
T-Cells





NK_
0.97
0.96
0.95
0.93


nm33









NK_
0.91
0.91
0.92
0.89


nm34









NK_
0.87
0.90
0.90
0.83


nm35









NK_
0.89
0.91
0.91
0.87


nm36









NK_
0.92
0.91
0.91
0.89


nm37









NK_
0.91
0.93
0.93
0.91


nm9









NK_
0.96
0.96
0.96
0.93


nm39









NK_
0.87
0.86
0.86
0.87


nm40









NK_
0.85
0.87
0.86
0.83


nm41









NK_
0.90
0.95
0.94
0.93


nm42









NK_
0.97
0.97
0.97
0.94


nm43









NK_
0.90
0.90
0.89
0.90


nm44









NK_
0.86
0.87
0.89
0.90


nm45









NK_
0.87
0.89
0.87
0.89


nm46









NK_
0.86
0.87
0.89
0.89


nm47









NK_
0.96
0.96
0.96
0.96


nm48









NK_
0.92
0.94
0.93
0.91


nm49









NK_
0.91
0.91
0.92
0.91


nm50









NK_
0.93
0.92
0.92
0.93


nm51









NK_
0.92
0.94
0.94
0.95


nm52









NK_
0.92
0.93
0.89
0.91


nm53









NK_
0.82
0.85
0.83
0.82


nm54









NK_
0.98
0.98
0.98
0.88


nm55









NK_
0.95
0.94
0.96
0.92


nm56









NK_
0.92
0.92
0.92
0.90


nm57









NK_
0.88
0.89
0.90
0.85


nm58









NK_
0.90
0.93
0.90
0.88


nm59









NKT_
0.83
0.86
0.86
0.67


nm21









NKT_
0.85
0.82
0.79
0.63


nm22









NKT_
0.80
0.81
0.77
0.70


nm23









NKT_
0.70
0.74
0.67
0.59


nm24









NKT_
0.62
0.61
0.48
0.60


nm25









NKT_
0.70
0.63
0.60
0.69


nm26









NKT_
0.65
0.68
0.60
0.69


nm27









NKT_
0.70
0.67
0.61
0.68


nm28









NKT_
0.79
0.77
0.74
0.59


nm29









NKT_
0.61
0.67
0.60
0.68


nm30









NKT_
0.79
0.71
0.71
0.68


nm3l









NKT_
0.54
0.66
0.59
0.68


nm32









NKT_
0.74
0.68
0.61
0.66


nm33









NKT_
0.67
0.68
0.64
0.68


nm34









NKT_
0.57
0.66
0.62
0.67


nm35









NKT_
0.58
0.70
0.61
0.69


nm36









NKT_
0.67
0.72
0.62
0.66


nm37









NKT_
0.61
0.67
0.60
0.61


nm38









NKT_
0.76
0.75
0.71
0.66


nm39









NKT_
0.74
0.72
0.69
0.61


nm40









NKT_
0.60
0.68
0.59
0.58


nm41









NKT_
0.70
0.71
0.68
0.63


nm42









NKT_
0.59
0.64
0.60
0.65


nm43









NKT_
0.51
0.51
0.45
0.52


nm44









NKT_
0.50
0.63
0.54
0.69


nm45









NKT_
0.62
0.60
0.56
0.66


nm46









NKT_
0.70
0.63
0.59
0.70


nm47









NKT_
0.70
0.75
0.70
0.70


nm48









NKT_
0.47
0.64
0.63
0.61


nm49









NKT_
0.53
0.61
0.56
0.61


nm50









NKT_
0.59
0.68
0.67
0.67


nm51









NKT_
0.62
0.58
0.53
0.74


nm52









NKT_
0.56
0.63
0.52
0.69


nm53









NKT_
0.66
0.73
0.68
0.62


nm54









NKT_
0.57
0.66
0.61
0.69


nm55









NKT_
0.65
0.62
0.58
0.64


nm56









NKT_
0.55
0.60
0.55
0.61


nm57









NKT_
0.57
0.66
0.61
0.59


nm58









NKT_
0.52
0.64
0.59
0.67


nm59









NKT_
0.51
0.55
0.44
0.61


nm60












Marker-




ID
NK T-Cells
Discovery Fragment





NK_
0.80
CGCTCCCCAAGTGCTGA


nm33

CCACGCGCGCCCCCACG




GCTCCCCGACAGCTCC





NK_
0.87
AGTAGGTAAAAACACTG


nm34

ATGCACTCTGCTTACCA




TGTAAGCCTCTTAACG





NK_
0.83
CGGCTCCAAATCAAAAG


nm35

CTGTGGAAGGAGGTAAT




TAGCAGGGACTCTAGA





NK_
0.85
TTTTGTTGGTTCCTCACG


nm36

TGGGCAGAAGAGTGAA




TGCTCAGTCCCCATCG





NK_
0.84
AGCTGATACTGCGTGAG


nm37

TGTGGTGTTGCACGCCC




TGGCACAGATCAAGCG





NK_
0.90
CCCTTCACAACCTGATT


nm9

GCTAAGCTTGTTAGCAT




AGAGGTGGTCTAACCG





NK_
0.87
AAAACCGTACGTCTGGG


nm39

AGGGGTCGCAGAGCGCT




GTGTTAACCACAAACG





NK_
0.84
CCATTACCACTGGCTTT


nm40

GTTACAATCTATTACAA




CAATAGCAGTTGGCCG





NK_
0.84
CGGAAGGGCAACAGAA


nm41

CAAAAGCAGCGTACAAT




GAGCAGATGGCCCGGGC





NK_
0.87
GGGGATAATTACGAGGT


nm42

GCCGGGAGGTGCCCACC




CACCAGCCTGGCGTCG





NK_
0.93
CAGAGGGCTCTGAGCGG


nm43

GCTGTGTGCCGGGCGAG




AACACTGCCTGGGCCG





NK_
0.87
CGCAGCTTATTTGTCAC


nm44

TGAGAAAGTTCAAGTTA




GTGCTCTAATTCCACC





NK_
0.85
CGGGGCAGCTGCCTGCA


nm45

CTGAGCTCTGAGGCCTT




TGAAGTGGACCAGAGA





NK_
0.85
TTAAGGGCCAACCCTGA


nm46

CCACAGCTGAGCCGTGT




GAAGAGGCTGACAGCG





NK_
0.88
CGGCTACAAGCTTGACA


nm47

AGCAGCACACATTCCGG




GTCAACCTCTTTACGG





NK_
0.92
CGGCGTCTCCAGGCCTG


nm48

CGGCCAAGCGTGCTTGC




CCTTGGTGACCACATT





NK_
0.92
GGCGCTCTGCCTGCAGC


nm49

TATCTCCGTGTCAATGG




CATCCTTTGATAGTCG





NK_
0.79
CGCCAGAGTAATGGGTA


nm50

AGCACTTAGTTCTCATC




TTGGGCTGTTTGAAAG





NK_
0.91
CGCTAAACGGTGCCACA


nm51

GTTTTACTCTCTTGGAA




CTGTCCCACATGGGTT





NK_
0.92
CGAGGCATCGGCCCGTT


nm52

TTGTGTCTGGTAAGGGC




CAGAGTCCTGGTTCAT





NK_
0.81
CGCTCACTGCTTACTTA


nm53

AATGGACAGTTTTAAGT




TTCAGTTTTAAGCTCA





NK_
0.73
CGTGCAGGCATTCTCAC


nm54

TCACACTGGGCAGCCCG




CTGTCGGGTCTCTCTA





NK_
0.70
CGAGCTCGGCCTCTGGC


nm55

CCACGAGTGCGCCGCCC




CGCCTCCCCATCCAGC





NK_
0.80
CGCGGACCCCGCTTCTG


nm56

TCACCCCTAACCTCACT




GTTGGGTCCGGGACCT





NK_
0.84
CGGGGCACAGACGTCCC


nm57

AGAAGCAAACATGCAA




GTCACGGGAGTTTATTT





NK_
0.83
TCTATATCTGATCCATC


nm58

AGCAAATCTGTTAGGTC




TACCTCACACATATCG





NK_
0.82
GTGGGTCTCACTCAGCT


nm59

GGGCGCTGGGGCCCTGG




TGGAGAATGGCTGTCG





NKT_
0.27
CGGTAGACAAATGATAG


nm21

ACATTTGTTGAATCAAG




CTGTGAGTTGGAGATC





NKT_
0.13
GTCTTTGCCTGACACCT


nm22

TCTGTGAGGTTTGCGGG




CTTCATTTTAAATCCG





NKT_
0.17
GGGGTTATATATTTTTG 


nm23

ACCAAATTCACCATTAC




TCATTTGGCATTTTCG





NKT_
0.15
GCGTACACACCCTGATA


nm24

AGGTGTCAAGAACCTCC




GTTTGAGTACCCCTCG





NKT_
0.15
CCTGCTGTAGATGTGTC


nm25

ACAGCTAAATTCTTGAA




TGGATTTTTATCATCG





NKT_
0.22
GAACCAAGCACTGCTTC


nm26

CTGGGAGAGTGATGMA




GCATGACTCAAAGGCG





NKT_
0.23
CGCAAACCCACCCTCTA


nm27

TCCGGGTGAGCACCATC




TAGTCAGCTGCCAGCA





NKT_
0.24
CGTGGGATCTCTGTTCA


nm28

TTTTGGTATATTACTTTG




CTTTCTGGGCTGAGC





NKT_
0.26
CGCATACTTTCAGGGAG


nm29

AGGCACTATTCTTGGCT




TTAAGTTCATGAGTAA





NKT_
0.25
CGGGGGGAGAATTAAG


nm30

CCAAAGAAGTATATTTA




TGAATCAGCAAATGTGG





NKT_
0.24
CGGCTTGAACCCTCAGC


nm3l

TTCTACAGTTGTGTCAC




CCATGTGTCTGTTTCT





NKT_
0.24
GGCCGAGGTGAAACCAT


nm32

TGGTTTTTAACCTTGACT




ACTGATTAAAATCCG





NKT_
0.24
ATCAGCACCAAAGCTTT


nm33

GTCTGAACTTATTTTGCT




ACTATTGTTAGGACG





NKT_
0.27
CGACTGTGGGGAATGAA


nm34

TAAGATTACAATAAAAC




CTGAGGAATTTAATGC





NKT_
0.26
CGAGTGAGTCCAAACTC


nm35

CTTAGAAAGTTGGTTGC




TAAGGACTTGGAAAAG





NKT_
0.28
CCCTTCCCCAAGTTCCA


nm36

TACAGACCCCTGGATTG




TATGAAATGCAAATCG





NKT_
0.14
CGGAGAGCAAACAGGG


nm37

CTAACACAGAAAGCCCT




TGTAAAAAACAGAACGA





NKT_
0.15
CGAGGAAGGTATGGTA


nm38

GAAATGCATCCATTACC




AAGAAGAAAAGTAATCT





NKT_
0.20
CACATCACTATATGGAA


nm39

CACGACTATACTTTCAA




AAGATGACCAATCTCG





NKT_
0.20
CGTGCCCAGCTTTTCTA


nm40

TGGGAAAAATTGTTCTT




CAGACAGAGCATGAAT





NKT_
0.17
CGTCATTATCTGGCAAT


nm41

AGTTGTTGGATGTGTTT




GCTGCCATGCCACGAG





NKT_
0.26
CGTAGGTTTCCAAGAAA


nm42

GATAGGGTGACAAAATT




GCCTGTCACTCCGATT





NKT_
0.21
CGGATTTCTATTCAGCC


nm43

CATGCCCGGGATGCATT




AGGATGCCCAGAACAT





NKT_
0.14
GGGAGTGGCCCAGCCCG


nm44

GTTTGCTCAGTGACCAG




GATGTTTCCACAGTCG





NKT_
0.21
GTGCTCTGGTTACATCA


nm45

GCAAACATGTTCTACAA




TCAAGGTAAAAACTCG





NKT_
0.23
CGAGTACTAAAAGGTCA


nm46

AATGTGTCAAGTCTAGA




ACTAGTACTCTTTTTT





NKT_
0.26
CGCACCATCACACCGTC


nm47

AGCAACTTGTGGGACCA




ACTCCCTGCACATCTG





NKT_
0.25
AGTACATCTGTTGACAA


nm48

CATGGTTTACTGAATAT




GTTGAGCCCATTTTCG





NKT_
0.23
TCTATCTTCATTTAACTT


nm49

CCAGTCCTTTGCCCTAC




AGATAATTCGTAGCG





NKT_
0.21
CGGCCAAAAGAAAGAC


nm50

ATAGAATAGAATGGTGG




TTGCTGAGGGTTGGAGA





NKT_
0.24
CGGACTGGAGCTCGCTT


nm51

GCAGACACCTTCAAATC




GAGTGGTATTTAAAGC





NKT_
0.27
ACAAACAAAAAGCTATC


nm52

TGAAAATGCTGCCATGC




TAACATATGAACCACG





NKT_
0.26
CGAATGGAAATTCAAAG


nm53

GGAGAACATCTAATGTT




CAAGTTGATGTCTATA





NKT_
0.26
CGTCCCCTCTAATACTA


nm54

TAGCTGAGAGCTTTTAA




TATGAATGGGTGTTAA





NKT_
0.28
CGACTGGTGTTGATTCT


nm55

CAGTCAATTTAAAGGAT




GAAAAGGGCTGTAAAA





NKT_
0.25
CCCAGTTCTTCAGAGTT


nm56

GTCAGGGTCACTGCTCT




GGGACCCACGGACTCG





NKT_
0.26
CGAAGGAGGGAGTGCA


nm57

TGAATTCATGTAAGGAT




GGAGATCCACATCCCAG





NKT_
0.26
CGAGTGTGGAGCTATGA


nm58

TTGGAACCTAGTTCAGG




CTCCAAAGCCACACTC





NKT_
0.28
CGGATTTTTGAGACAGT


nm59

TTGGGAATAGTTTATCC




TGTTATTATCTTCAGG





NKT_
0.24
CGTTAGGATTGCTAAAG


nm60

GCATTTTCTAAATATT




TGAGTGTAAACCACTG
















TABLE 4B





B-Cell Markers























Basophil


Marker-
Target-


Granu-


ID
ID
SYMBOL
Accession
locytes





B_
cg2290 
CYBASC3
NM_
0.88


nm45
7103

153611






B_
cg1553
NFATC1
NM_
0.87


nm46
2942

006162






B_
cg2710
NFATC1
NM_
0.89


nm47
6643

006162






B_
cg0784
TTLL10
NM_
0.92


nm48
1371

001130045






B_
cg1373
LRP5
NM_
0.98


nm49
8327

002335






B_
cg2655


0.87


nm50
2743








B_
cg0520


0.92


nm51
5074








B_
cg0772
LOC1001
NR_
0.94


nm52
1872
29637
024488






B_
cg1166
UBE2O
NM_
0.90


nm53
1493

022066






B_
cg0221
TRPV1
NM_
0.98


nm54
2339

080704






B_
cg2756
CD19
NM_
0.91


nm55
5966

001770






B_
cg2546


0.85


nm56
9923








B_
cg2249
TBCD
NM_
0.86


nm57
8365

005993






B_
cg1723
SORL1
NM_
0.89


nm58
2476

003105






B_
cg1866
C7orf50
NM_
0.88


nm59
4915

001134395






B_
cg2060
C15orf57
NM_
0.91


nm60
2300

052849






B_
cg1825
TERF1
NM_
0.89


nm61
0453

003218






B_
cg0688


0.90


nm62
9975








B_
cg1169
BAHCC1
NM_
0.99


nm63
9517

001080519






B_
cg1503
LRIG1
NM_
0.91


nm64
5590

015541






B_
cg1524
MICAL3
NM_
0.88


nm65
2630

001122731






B_
cg1382


0.88


nm66
3257








B_
cg1391
CDK19
NM_
0.88


nm67
5752

015076






B_
cg0483
GOLSYN
NM_
0.98


nm68
8847

001099743






B_
cg2228
INPP5J
NM_
0.88


nm69
1206

001002837






B_
cg1926


0.87


nm70
0718








B_
cg1976
EIF3G
NM_
0.89


nm71
6988

003755






B_
cg2045
ITPKB
NM_
0.90


nm72
2738

002221






B_
cg2669
IQSEC1
NM_
0.95


nm73
2003

300114382






B_
cg0076
IRF2
NM_
0.92


nm74
2029

002199






B_
cg1762
ZDHHC14
NM_
0.87


nm75
2855

153746






B_
cg0494 
WDFY4
NM_
0.88


nm76
7949

020945






B_
cg2513


0.96


nm77
1632








B_
cg1448
LCN8
NM_
0.93


nm78
2811

178469






B_
cg1217
PLXND1
NM_
0.96


nm79
7944

015103






B_
cg2124
C7orf50
NM_
0.96


nm80
8060

001134395






B_
cg0482
CARS2
NM_
0.95


nm81
8493

024537






B_
cg0102
RERE
NM_
0.91


nm82
4458

012102






B_
cg2568
HVCN1
NM_
0.92


nm83
3989

001040107






B_
cg2221
FRMD8
NM_
0.89


nm84
2560

031904






B_
cg1534


0.77


nm85
8679








B_
cg1621
CGNL1
NM_
0.92


nm86
0395

032866






B_
cg0816
IQSEC1
NM_
0.91


nm87
2476

001134382






B_
cg0759
CD19
NM_
0.86


nm15
7976

001770






B_
cg0776
RNF44
NM_
0.98


nm89
8103

014901






B_
cg1335
ATP10A
NM_
0.91


nm90
6455

902440






B_
cg1799
LHPP
NM_
0.87


nm91
5557

022126






B_
cg1767


0.90


nm92
9619








B_
cg2730
CD84
NM_
0.89


nm93
4328

003874






B_
cg2643
CD81
NM_
0.89


nm94
8284

004356















Eosino-
Neutro-





sinophil
phil

Non-


Marker-
Granu-
Granu-
Classical
Classical


ID
locytes
locytes
Monocytes
Monocytes





B_
0.87
0.86
0.84
0.83


nm45









B_
0.91
0.88
0.91
0.89


nm46









B_
0.92
0.93
0.90
0.87


nm47









B_
0.94
0.94
0.95
0.92


nm48









B_
0.98
0.98
0.98
0.97


nm49









B_
0.84
0.86
0.89
0.85


nm50









B_
0.92
0.93
0.92
0.88


nm51









B_
0.95
0.93
0.96
0.95


nm52









B_
0.88
0.89
0.90
0.87


nm53









B_
0.97
0.97
0.97
0.96


nm54









B_
0.89
0.91
0.91
0.89


nm55









B_
0.86
0.87
0.86
0.83


nm56









B_
0.91
0.92
0.90
0.86


nm57









B_
0.90
0.89
0.86
0.83


nm58









B_
0.90
0.88
0.89
0.87


nm59









B_
0.90
0.92
0.91
0.90


nm60









B_
0.85
0.90
0.91
0.90


nm61









B_
0.84
0.85
0.87
0.89


nm62









B_
0.97
0.97
0.97
0.97


nm63









B_
0.91
0.90
0.92
0.89


nm64









B_
0.88
0.87
0.87
0.85


nm65









B_
0.88
0.89
0.88
0.86


nm66









B_
0.85
0.90
0.90
0.90


nm67









B_
0.98
0.98
0.97
0.98


nm68









B_
0.89
0.90
0.88
0.85


nm69









B_
0.90
0.89
0.90
0.86


nm70









B_
0.90
0.89
0.90
0.85


nm71









B_
0.89
0.91
0.88
0.90


nm72









B_
0.96
0.97
0.95
0.91


nm73









B_
0.91
0.92
0.92
0.90


nm74









B_
0.88
0.89
0.89
0.89


nm75









B_
0.91
0.92
0.91
0.89


nm76









B_
0.97
0.97
0.97
0.96


nm77









B_
0.92
0.96
0.95
0.95


nm78









B_
0.96
0.94
0.86
0.68


nm79









B_
0.96
0.97
0.97
0.95


nm80









B_
0.96
0.95
0.86
0.73


nm81









B_
0.92
0.93
0.92
0.93


nm82









B_
0.77
0.92
0.92
0.91


nm83









B_
0.86
0.90
0.72
0.62


nm84









B_
0.83
0.88
0.87
0.86


nm85









B_
0.92
0.93
0.94
0.93


nm86









B_
0.92
0.91
0.78
0.74


nm87









B_
0.82
0.82
0.82
0.78


nm15









B_
0.98
0.98
0.98
0.98


nm89









B_
0.89
0.90
0.90
0.90


nm90









B_
0.90
0.87
0.89
0.87


nm91









B_
0.85
0.89
0.89
0.88


nm92









B_
0.61
0.84
0.84
0.83


nm93









B_
0.84
0.87
0.89
0.88


nm94














Marker-
NK

CD4 + Th



ID
classical
B-Cells
naive
CD4 + Th1





B_
0.86
0.04
0.87
0.85


nm45









B_
0.89
0.07
0.87
0.86


nm46









B_
0.90
0.11
0.90
0.90


nm47









B_
0.95
0.10
0.94
0.94


nm48









B_
0.97
0.03
0.97
0.93


nm49









B_
0.89
0.04
0.86
0.86


nm50









B_
0.91
0.04
0.92
0.86


nm51









B_
0.93
0.03
0.93
0.94


nm52









B_
0.91
0.04
0.89
0.89


nm53









B_
0.97
0.05
0.97
0.95


nm54









B_
0.84
0.06
0.90
0.91


nm55









B_
0.82
0.06
0.89
0.85


nm56









B_
0.91
0.07
0.88
0.89


nm57









B_
0.89
0.07
0.89
0.87


nm58









B_
0.88
0.07
0.90
0.86


nm59









B_
0.91
0.07
0.90
0.89


nm60









B_
0.82
0.08
0.89
0.88


nm61









B_
0.90
0.08
0.89
0.90


nm62









B_
0.99
0.08
0.98
0.98


nm63









B_
0.88
0.09
0.92
0.92


nm64









B_
0.88
0.09
0.88
0.86


nm65









B_
0.89
0.09
0.88
0.85


nm66









B_
0.91
0.10
0.89
0.90


nm67









B_
0.98
0.10
0.98
0.98


nm68









B_
0.89
0.10
0.89
0.88


nm69









B_
0.89
0.11
0.87
0.88


nm70









B_
0.89
0.11
0.89
0.87


nm71









B_
0.90
0.11
0.91
0.88


nm72









B_
0.96
0.12
0.97
0.96


nm73









B_
0.93
0.13
0.92
0.91


nm74









B_
0.87
0.13
0.88
0.85


nm75









B_
0.88
0.13
0.90
0.89


nm76









B_
0.96
0.03
0.97
0.90


nm77









B_
0.70
0.04
0.90
0.96


nm78









B_
0.97
0.05
0.97
0.93


nm79









B_
0.95
0.10
0.97
0.96


nm80









B_
0.85
0.05
0.96
0.92


nm81









B_
0.91
0.03
0.92
0.76


nm82









B_
0.89
0.06
0.91
0.89


nm83









B_
0.93
0.03
0.90
0.91


nm84









B_
0.95
0.03
0.82
0.86


nm85









B_
0.90
0.06
0.93
0.79


nm86









B_
0.88
0.05
0.92
0.87


nm87









B_
0.77
0.02
0.86
0.84


nm15









B_
0.96
0.15
0.98
0.98


nm89









B_
0.88
0.06
0.90
0.84


nm90









B_
0.62
0.05
0.88
0.88


nm91









B_
0.88
0.06
0.89
0.86


nm92









B_
0.88
0.04
0.89
0.86


nm93









B_
0.86
0.06
0.89
0.85


nm94
















CD4 +
CD4 +
CD8 +




Th
Th
Cyto-


Marker-
CD4 +
Central
Effect.
toxic


ID
Th2
Mem.
Mem.
T-Cells





B_
0.86
0.88
0.87
0.87


nm45









B_
0.85
0.83
0.84
0.88


nm46









B_
0.89
0.89
0.90
0.92


nm47









B_
0.93
0.94
0.94
0.93


nm48









B_
0.96
0.97
0.96
0.95


nm49









B_
0.89
0.87
0.86
0.89


nm50









B_
0.84
0.87
0.87
0.92


nm51









B_
0.94
0.91
0.93
0.94


nm52









B_
0.90
0.91
0.89
0.89


nm53









B_
0.95
0.97
0.96
0.96


nm54









B_
0.90
0.89
0.91
0.92


nm55









B_
0.87
0.84
0.85
0.87


nm56









B_
0.91
0.89
0.91
0.89


nm57









B_
0.88
0.89
0.88
0.88


nm58









B_
0.88
0.88
0.87
0.87


nm59









B_
0.91
0.91
0.92
0.91


nm60









B_
0.87
0.89
0.89
0.90


nm61









B_
0.90
0.91
0.90
0.90


nm62









B_
0.98
0.99
0.99
0.99


nm63









B_
0.88
0.92
0.91
0.91


nm64









B_
0.87
0.86
0.88
0.88


nm65









B_
0.87
0.88
0.88
0.89


nm66









B_
0.90
0.90
0.90
0.92


nm67









B_
0.98
0.97
0.98
0.98


nm68









B_
0.87
0.87
0.87
0.89


nm69









B_
0.88
0.89
0.87
0.90


nm70









B_
0.86
0.88
0.86
0.90


nm71









B_
0.88
0.90
0.90
0.90


nm72









B_
0.96
0.96
0.97
0.96


nm73









B_
0.91
0.92
0.92
0.92


nm74









B_
0.86
0.89
0.88
0.89


nm75









B_
0.90
0.90
0.89
0.88


nm76









B_
0.91
0.92
0.91
0.92


nm77









B_
0.94
0.97
0.96
0.97


nm78









B_
0.92
0.95
0.94
0.95


nm79









B_
0.97
0.97
0.97
0.97


nm80









B_
0.95
0.95
0.93
0.93


nm81









B_
0.80
0.82
0.82
0.91


nm82









B_
0.92
0.90
0.91
0.90


nm83









B_
0.94
0.93
0.93
0.93


nm84









B_
0.83
0.85
0.79
0.96


nm85









B_
0.83
0.85
0.80
0.85


nm86









B_
0.89
0.89
0.88
0.93


nm87









B_
0.85
0.88
0.87
0.88


nm15









B_
0.98
0.98
0.98
0.80


nm89









B_
0.81
0.84
0.84
0.90


nm90









B_
0.88
0.87
0.89
0.88


nm91









B_
0;82
0.83
0.84
0.89


nm92









B_
0.88
0.87
0.89
0.90


nm93









B_
0.86
0.88
0.88
0.84


nm94












Marker-




ID
NK T-Cells
Discovery Fragment





B_
0.86
AGTCATTGTGACTGAAGA


nm45

TCAGGCCCACCCAGGCAT




TGAGCTCCTCGGGCG





B_
0.85
CGGCCAGGCCCTCATCCA


nm46

CCAGAGTAGACCCCAGCA




CGAGCAGGCGTCGC





B_
0.91
GCTTTCCACGGCTGTGCGC


nm47

CTCGGGGCTGGAGCGGCC




CCAAGTGAAGACG





B_
0.92
CGCGGCCCAGGGTTCCGC


nm48

CTGGCTGGCACCACCCCTG




GAAGGGCAGCCCC





B_
0.88
CAACGTGAAGAAAACGTG


nm49

AAATTCTGTCGCTTGTTGC




AGCTGACAGCACG





B_
0.87
AAACAGGATCTCTGCAGA


nm50

TGGAGCTCAGTGTTATGTG




TTTTGGATGCTCG





B_
0.88
CGCCCTGGCCTGAAGGGA


nm51

AGAGTCTACAAGGTTTAT




AACCCAGAACCGCA





B_
0.93
CGTCCGCCTCGTCCACTCC


nm52

TGGCATTTGGGATAAACA




TCCTGTCTCAGAC





B_
0.89
CCCTGAAATCGACCCTAA


nm53

CAATAATAGAGGTTTGGA




TTTGCATGAACACG





B_
0.95
CGCCATCGAGAGACGCAA


nm54

CATGGCCCTGGTGACCCTC




CTGGTGGAGAACG





B_
0.90
TTGTGAGTCTGGAGGGTTC


nm55

CTGGAGAATGGGGCCTGA




GGCGTGACCACCG





B_
0.84
CAGGCTACTATTCCTGATG


nm56

GAGACCCCCATTTCCGTGG




CGGCCCCTGACG





B_
0.91
TCCTGAAAGTCCCTGGCAC


nm57

AGGACACCACTACGGGGC




TCAGCTGGGTGCG





B_
0.88
CGCAACCAGTATCGCTGC


nm58

AGCAACGGGAACTGTATC




AACAGCATTTGGTG





B_
0.84
CGGGCCAGCCAGGCCATG


nm59

GCATCTGCCTGCTGGGGG




CTGTTTTACTGCTG





B_
0.92
TCCTTCAGTGGATTTCTCC


nm60

CTGCTGCTGTCACTGAGCT




CCACGCTGCTCG





B_
0.88
TTTTTACAAATTGAAAGTT


nm61

TACCGCAGCCCAGCTTGA




GCCAAGTCTAACG





B_
0.89
CTTTATCCAGCAAGAAGC


nm62

CAGCTGTGTGGCAAGCAA




TGGAGGTAAGAACG





B_
0.98
CCCCGTGGGACGTGGGGC


nm63

AGGCAGCGAGCTTGAGTG




TTTGCGCTTCCTCG





B_
0.89
CGGAAAGCCCCATTCACA


nm64

GGATTTGCATTGATTTGCC




CTGATCTAGTTTG





B_
0.86
CGGGGCAGTTTTGTGGCCT


nm65

TTTGCTATTGAATCTGCCA




GATGTGTCCAAG





B_
0.84
AGAGCAAGTCAGGCACAC


nm66

CATACTCTACCTGGAACA




GCTGCTAAACTCCG





B_
0.89
CCCTGACAAAACAAACTC


nm67

TGTAAGCTGTGTCAGCCAT




GCAAGGCACCACG





B_
0.98
CGCCTTCCGTATCAAAACC


nm68

TAAATAGAAGTTGTTGTTA




CCGTGTGCCAAT





B_
0.85
CCCACTCTGTGACGCTCAG


nm69

AAGATAGCATCCCCTCCTA




AGGAACTTGCCG





B_
0.85
CGTCATTGCCAACTCCAAT


nm70

GCCTCAATGCACATGGCG




GGGCCCAGCCACA





B_
0.90
CTCCCTGAGGACCAGTTTT


nm71

TTCCCCTGGGGAGTCATCA




TGAATCACTTCG





B_
0.89
CGGCTGCCCAACCCTGACT


nm72

CCAGGCTGGACACTGGAG




ATGATGCAGACCA





B_
0.96
ACTCAGTGACTGACGTTTA


nm73

CGGTCACACGAAGGAATC




ACTACACCAAGCG





B_
0.91
CGCACGGGCTCTGCCGTTC


nm74

AGAACACAGCCACATCCC




GTGATCTCATTTG





B_
0.88
CTGAGTTTTCATCAAACAC


nm75

CTGCTGAGCAGCTGGCAC




GTGCCAGGACACG





B_
0.86
CTAGAGACAAGCGATGAG


nm76

CTGCACTGAGGATCAAGG




ATCAGGCATTAGCG





B_
0.78
CATCTGGGTGCTCTGGAAA


nm77

CCCAAGAACGGTGCCTAG




CTCGGCTCTGTCCG





B_
0.95
GGGCTCGTTCTGGCCTGCG


nm78

CTGCGAGGGCTGTGGGCA




CTGATGGGCAACG





B_
0.93
CGAGGTCGGTCTCCCACG


nm79

ACTGCCCACCATCTGGCCG




GCCACCCTGAAAG





B_
0.96
CGTGCCTGCCCCGCCGTGC


nm80

ACACACCTCAGCCCCCGG




GAGACGTGCCTGC





B_
0.83
CGCCCCCACTCAGTCACAC


nm81

GACACTGCTCTCCTGGCCC




ACTGCGGCATCC





B_
0.87
CGCTAACATTATGCTCTGT


nm82

GGCAGGTTGCCCTGTCTGC




TGTGCTCACCTT





B_
0.89
CGCTGGTFGACTGGCAGA


nm83

GCAACTTCTGGACCCAGC




AGAGTTCAGCTTTG





B_
0.92
CGTGCTCCAAGAAGTACA


nm84

AAGAAAAAGTCAAAGCTA




CAGCCGCTGACGGC





B_
0.94
CGATATAAAATGAACGCG


nm85

CGTTCAAGATTTCCTTCAA




CTCATTGTTAGCG





B_
0.76
CGGTTTACCACACCACCCT


nm86

TGACTGGGAAATGGGGCT




AAGATTTTAATAA





B_
0.86
GGCCAGGGGAGCAGTGAG


nm87

TCACTCAGGGCGGGATGG




GTGAGGGGCGTCCG





B_
0.84
CGGTCTCTACTCCAAGGG


nm15

GCTCACATTCTTGTGCAGA




AAACAGAAATGAA





B_
0.98
CGGAGCAGCTGCCGCGCC


nm89

TCGAAGTCACTGAAGCAG




ACCACACACCTGTG





B_
0.81
ACCCACAGAGAAGCTGCC


nm90

ATCTAAATAGGGCTGATTT




CGAGTTTTGGACG





B_
0.87
AGCTCCTAGGTTTGAAAA


nm91

GTTCTATGTGCGCTTGACC




GGGGGGCCTTACG





B_
0.82
CGTTAGCAAACACATAGT


nm92

AGCAGAAACACCTGTCAG




AGGACAGTGTCTCA





B_
0.86
CGGGATGGAGTTCCCATA


nm93

CCGTAGTTCAGAGGCATA




GGGACTTCTGCATT





B_
0.79
GACCCCAGGCTGCCATCTT


nm94

GGCGCTAACTTCTTCCGAG




GCAGAGCCAACG
















TABLE 4C





CD8 positive T-Cell Markers























Baso-






phil


Marker-
Target-

Acces-
Granu-


ID
ID
SYMBOL
sion
locytes





CD8_nm12
cg
CD8A
NM_
0.91



00219921

1145873






CD8_nm13
cg
CD8A
NM_
0.87



25939861

00145873






CD8_nm14
cg
CD8A
NM_
0.89



18857618

172213






CD8_nm15
cg
CD8A
NM_
0.71



03318654

001145873






CD8_nm16
cg
PHRF1
NM_
0.86



25535316

020901






CD8_nm17
cg
SBF1
NM_
0.88



07016730

002972






CD8_nm18
cg
CD8A
NM_
0.74



21648425

001145873






TEMRA_
cg


0.92


nm1
04467549








TEMRA_
cg
PDGFA
NM_
0.89


nm2
20063728

002607






TEMRA_
cg
PCID2
NM-
0.98


nm3
06567722

001127203






TEMRA_
cg
KIF3C
NM_
0.92


nm4
25002426

002254






TEMRA_
cg
C6orf10
NM_
0.92


nm5
21241195

006781






TEMRA_
cg


0.90


nm7
02051545








TEMRA_
cg


0.74


nm8
20960322








TEMRA_
cg
SOX5
NM_
0.87


nm9
06147361

152989






TEMRA_
cg
TDRD9
NM_
0.91


nm10
05173889

153046






TEMRA_
cg
MYBPH
NM_
0.91


nm11
12080492

004997






TEMRA_
cg
SEMA3A
NM_
0.84


nm12
00922200

006080






TEMRA_
cg
DEFB114
NM_
0.74


nm13
19592003

001037499






TEMRA_
cg
EHD1
NM_
0.92


nm14
14317884

006795






TEMRA_
cg
C14orf
NM_
0.89


nm15
00879541
166
016039






TEMRA_
cg
MSC
NM_
0.90


nm16
24142603

005098






TEMRA_
cg


0.89


nm17
05585475








TEMRA_
cg
SHANK2
NM_
0.91


nm18
18080819

012309






TEMRA_
cg
NINL
NM_
0.92


nm19
13486641

035176






TEMRA_
cg
SGMS1
NM_
0.87


nm20
13382516

147156






TEMRA_
cg


0.87


nm21
26215982








TEMRA_
cg
HMCN1
NM_
0.90


nm22
03221073

031935






TEMRA_
cg
CTR9
NM_
0.93


nm23
02261543

014633






TEMRA_
cg
NCRNA
NR_
0.88


nm24
03938110

027021






TEMRA_
cg


0.84


nm25
15449516








TEMRA_
cg


0.88


nm26
14365420








TEMRA_
cg


0.90


nm27
03668556








TEMRA_
cg


0.90


nm28
00472528








TEMRA_
cg
ANKRD55
NM_
0.82


nm29
05633605

024669






TEMRA_
cg
C6orf10
NM_
0.90


nm30
27064867

006781






TEMRA_
cg


0.88


nm31
18449136








TEMRA_
cg
AFF3
NM_
0.81


nm32
13361307

001025108






TEMRA_
cg
LRRK1
NM_
0.95


nm33
25663823

024652






TEMRA_
cg
PLEKHA7
NM_
0.81


nm34
24722886

175058






TEMRA_
cg


0.88


nm35
01252713








TEMRA_
cg


0.90


nm36
09851620








TEMRA_
cg
AHNAK
NM_
0.86


nm37
26484813

024060






TEMRA_
cg


0.85


nm38
25370412








TEMRA_
cg
GALR1
NM_
0.87


nm39
12522833

001480






TEMRA_
cg


0.89


nm40
26512948








TEMRA_
cg
FSTL4
NM_
0.85


nm41
06627009

015082






TEMRA_
cg
ANK3
NM_
0.86


nm42
01186212

020987






TEMRA_
cg
SYNPO
NM_
0.89


nm43
20940398

001166208






TEMRA_
cg
MUC21
NM_
0.85


nm44
04230397

001010909






TEMRA_
cg


0.84


nm45
15617591








TEMRA_
cg


0.85


nm46
22112587








TEMRA_
cg
LRP5
NM_
0.88


nm47
15302350

002335






TEMRA_
cg


0.89


nm48
19675599








TEMRA_
cg
APP
NM_
0.88


nm49
25314245

201413






TEMRA_
cg


0.83


nm50
17037931








TEMRA_
cg
SERPIN12
NM_
0.90


nm51
11375831

006217






TEMRA_
cg
LPCAT1
NM_
0.90


nm52
18766691

024830






TEMRA_
cg


0.84


nm53
10104542








TEMRA_
cg


0.88


nm54
01071903








TEMRA_
cg


0.93


nm55
12695059








TEMRA_
cg


0.89


nm56
11268546








TEMRA_
cg


0.90


nm57
19277516








TEMRA_
cg
MED13L
NM_
0.83


nm58
25180759

015335






TEMRA_
cg


0.88


nm59
16966340








TEMRA_
cg


0.83


nm60
23645373








TEMRA_
cg


0.91


nm61
23642827








TEMRA_
cg
PPAP2B
NM_
0.88


nm62
27398401

003713.4






TEMRA_
cg
OR8S1
NM_
0.88


nm63
26372842

001005203






TEMRA_
cg


0.85


nm64
02936931








TEMRA_
cg
CACHD1
NM_
0.90


nm65
10381153

020925






TEMRA_
cg
COL4A2
NM_
0.88


nm66
06951647

001846






TEMRA_
cg
EPS8
NM_
0.85


nm67
13177421

004447















Eosino-
Neutro-
Clas-
Non-



phil
phil
sical
Clas-


Marker-
Granu-
Granu-
Mono-
sical


ID
locytes
locytes
cytes
Monocytes





CD8_nm12
0.90
0.92
0.90
0.89





CD8_nm13
0.87
0.89
0.56
0.61





CD8_nm14
0.88
0.86
0.90
0.87





CD8_nm15
0.73
0.72
0.73
0.71





CD8_nm16
0.84
0.84
0.83
0.82





CD8_nm17
0.84
0.87
0.77
0.79





CD8_nm18
0.74
0.75
0.55
0.51





TEMRA_
0.94
0.94
0.65
0.67


nm1









TEMRA_
0.89
0.89
0.85
0.86


nm2









TEMRA_
0.98
0.98
0.84
0.85


nm3









TEMRA_
0.92
0.89
0.87
0.87


nm4









TEMRA_
0.90
0.91
0.88
0.86


nm5









TEMRA_
0.91
0.92
0.86
0.85


nm7









TEMRA_
0.86
0.84
0.61
0.74


nm8









TEMRA_
0.87
0.88
0.84
0.85


nm9









TEMRA_
0.88
0.90
0.86
0.82


nm10









TEMRA_
0.90
0.94
0.87
0.88


nm11









TEMRA_
0.84
0.88
0.87
0.87


nm12









TEMRA_
0.87
0.84
0.83
0.82


nm13









TEMRA_
0.82
0.85
0.82
0.79


nm14









TEMRA_
0.90
0.89
0.87
0.86


nm15









TEMRA_
0.95
0.95
0.91
0.88


nm16









TEMRA_
0.86
0.89
0.83
0.82


nm17









TEMRA_
0.88
0.90
0.87
0.86


nm18









TEMRA_
0.93
0.96
0.94
0.94


nm19









TEMRA_
0.86
0.89
0.79
0.78


nm20









TEMRA_
0.91
0.90
0.83
0.82


nm21









TEMRA_
0.88
0.89
0.87
0.85


nm22









TEMRA_
0.93
0.94
0.88
0.90


nm23









TEMRA_
0.89
0.87
0.87
0.84


nm24









TEMRA_
0.86
0.88
0.77
0.79


nm25









TEMRA_
0.92
0.91
0.90
0.88


nm26









TEMRA_
0.91
0.92
0.87
0.89


nm27









TEMRA_
0.89
0.94
0.87
0.81


nm28









TEMRA_
0.79
0.81
0.81
0.79


nm29









TEMRA_
0.91
0.91
0.89
0.86


nm30









TEMRA_
0.90
0.89
0.84
0.83


nm31









TEMRA_
0.80
0.79
0.78
0.78


nm32









TEMRA_
0.95
0.95
0.90
0.90


nm33









TEMRA_
0.81
0.84
0.75
0.72


nm34









TEMRA_
0.90
0.87
0.87
0.87


nm35









TEMRA_
0.91
0.92
0.88
0.87


nm36









TEMRA_
0.89
0.91
0.86
0.85


nm37









TEMRA_
0.86
0.84
0.85
0.82


nm38









TEMRA_
0.92
0.92
0.92
0.88


nm39









TEMRA_
0.91
0.92
0.89
0.83


nm40









TEMRA_
0.89
0.92
0.89
0.86


nm41









TEMRA_
0.85
0.82
0.81
0.83


nm42









TEMRA_
0.87
0.88
0.80
0.78


nm43









TEMRA_
0.84
0.86
0.82
0.81


nm44









TEMRA_
0.91
0.89
0.86
0.84


nm45









TEMRA_
0.87
0.90
0.83
0.82


nm46









TEMRA_
0.88
0.89
0.85
0.86


nm47









TEMRA_
0.90
0.86
0.86
0.88


nm48









TEMRA_
0.88
0.93
0.88
0.86


nm49









TEMRA_
0.84
0.84
0.85
0.83


nm50









TEMRA_
0.88
0.88
0.87
0.86


nm51









TEMRA_
0.91
0.92
0.85
0.86


nm52









TEMRA_
0.82
0.90
0.83
0.80


nm53









TEMRA_
0.89
0.90
0.85
0.85


nm54









TEMRA_
0.91
0.91
0.85
0.86


nm55









TEMRA_
0.88
0.88
0.86
0.85


nm56









TEMRA_
0.89
0.87
0.89
0.89


nm57









TEMRA_
0.91
0.92
0.83
0.83


nm58









TEMRA_
0.85
0.89
0.86
0.87


nm59









TEMRA_
0.89
0.89
0.73
0.74


nm60









TEMRA_
0.92
0.90
0.82
0.83


nm61









TEMRA_
0.90
0.90
0.86
0.84


nm62









TEMRA_
0.88
0.90
0.86
0.87


nm63









TEMRA_
0.84
0.80
0.78
0.80


nm64









TEMRA_
0.90
0.92
0.88
0.91


nm65









TEMRA_
0.87
0.86
0.89
0.85


nm66









TEMRA_
0.80
0.84
0.87
0.79


nm67














Marker-
NK
NK
B-



ID
classical
bright
Cells
MDSC





CD8_nm12
0.90
0.90
0.92
0.85





CD8_nm13
0.84
0.86
0.84
0.81





CD8_nm14
0.88
0.89
0.84
0.85





CD8_nm15
0.74
0.74
0.72
0.70





CD8_nm16
0.86
0.88
0.76
0.83





CD8_nm17
0.88
0.87
0.70
0.82





CD8_nm18
0.57
0.72
0.71
0.58





TEMRA_
0.84
0.93
0.93
0.89


nm1









TEMRA_
0.87
0.90
0.89
0.86


nm2









TEMRA_
0.96
0.98
0.98
0.97


nm3









TEMRA_
0.91
0.90
0.83
0.87


nm4









TEMRA_
0.90
0.92
0.73
0.86


nm5









TEMRA_
0.89
0.92
0.90
0.89


nm7









TEMRA_
0.78
0.80
0.89
0.82


nm8









TEMRA_
0.89
0.92
0.63
0.87


nm9









TEMRA_
0.88
0.93
0.81
0.88


nm10









TEMRA_
0.93
0.95
0.94
0.91


nm11









TEMRA_
0.83
0.84
0.74
0.86


nm12









TEMRA_
0.76
0.79
0.90
0.87


nm13









TEMRA_
0.91
0.91
0.89
0.84


nm14









TEMRA_
0.88
0.84
0.84
0.87


nm15









TEMRA_
0.93
0.95
0.93
0.90


nm16









TEMRA_
0.89
0.90
0.81
0.88


nm17









TEMRA_
0.90
0.89
0.82
0.87


nm18









TEMRA_
0.93
0.95
0.87
0.93


nm19









TEMRA_
0.86
0.89
0.75
0.84


nm20









TEMRA_
0.90
0.91
0.81
0.87


nm21









TEMRA_
0.88
0.90
0.71
0.83


nm22









TEMRA_
0.91
0.91
0.87
0.91


nm23









TEMRA_
0.87
0.86
0.75
0.85


nm24









TEMRA_
0.88
0.85
0.64
0.86


nm25









TEMRA_
0.89
0.90
0.80
0.88


nm26









TEMRA_
0.87
0.88
0.85
0.89


nm27









TEMRA_
0.90
0.93
0.81
0.86


nm28









TEMRA_
0.80
0.82
0.67
0.79


nm29









TEMRA_
0.90
0.89
0.82
0.88


nm30









TEMRA_
0.87
0.86
0.83
0.86


nm31









TEMRA_
0.81
0.82
0.82
0.80


nm32









TEMRA_
0.94
0.96
0.95
0.93


nm33









TEMRA_
0.84
0.85
0.81
0.81


nm34









TEMRA_
0.88
0.88
0.77
0.85


nm35









TEMRA_
0.89
0.91
0.84
0.89


nm36









TEMRA_
0.89
0.86
0.88
0.84


nm37









TEMRA_
0.83
0.84
0.78
0.85


nm38









TEMRA_
0.87
0.90
0.89
0.89


nm39









TEMRA_
0.87
0.89
0.75
0.86


nm40









TEMRA_
0.91
0.93
0.77
0.87


nm41









TEMRA_
0.82
0.83
0.91
0.82


nm42









TEMRA_
0.83
0.83
0.81
0.81


nm43









TEMRA_
0.84
0.85
0.72
0.83


nm44









TEMRA_
0.83
0.83
0.79
0.86


nm45









TEMRA_
0.90
0.89
0.80
0.86


nm46









TEMRA_
0.89
0.89
0.68
0.84


nm47









TEMRA_
0.90
0.90
0.79
0.89


nm48









TEMRA_
0.90
0.91
0.88
0.90


nm49









TEMRA_
0.85
0.83
0.71
0.81


nm50









TEMRA_
0.88
0.88
0.77
0.87


nm51









TEMRA_
0.89
0.90
0.64
0.87


nm52









TEMRA_
0.84
0.84
0.68
0.81


nm53









TEMRA_
0.84
0.88
0.79
0.87


nm54









TEMRA_
0.91
0.92
0.92
0.89


nm55









TEMRA_
0.88
0.87
0.75
0.85


nm56









TEMRA_
0.88
0.85
0.82
0.85


nm57









TEMRA_
0.89
0.90
0.84
0.89


nm58









TEMRA_
0.87
0.81
0.79
0.87


nm59









TEMRA_
0.84
0.85
0.83
0.83


nm60









TEMRA_
0.86
0.90
0.80
0.88


nm61









TEMRA_
0.90
0.90
0.89
0.88


nm62









TEMRA_
0.85
0.89
0.79
0.86


nm63









TEMRA_
0.87
0.87
0.69
0.84


nm64









TEMRA_
0.89
0.92
0.79
0.90


nm65









TEMRA_
0.88
0.87
0.82
0.86


nm66









TEMRA_
0.81
0.87
0.79
0.83


nm67














Marker-
CD4 + Th
CD4 +
CD4 +
CD4 +


ID
naive
act.
Th1
Th2





CD8_nm12
0.84
0.80
0.80
0.80





CD8_nm13
0.80
0.79
0.79
0.79





CD8_nm14
0.86
0.76
0.78
0.77





CD8_nm15
0.72
0.69
0.70
0.69





CD8_nm16
0.73
0.59
0.67
0.65





CD8_nm17
0.75
0.56
0.58
0.53





CD8_nm18
0.69
0.57
0.70
0.71





TEMRA_
0.93
0.90
0.83
0.87


nm1









TEMRA_
0.92
0.80
0.69
0.85


nm2









TEMRA_
0.96
0.95
0.95
0.97


nm3









TEMRA_
0.93
0.86
0.59
0.75


nm4









TEMRA_
0.80
0.92
0.92
0.92


nm5









TEMRA_
0.91
0.81
0.72
0.75


nm7









TEMRA_
0.70
0.87
0.85
0.89


nm8









TEMRA_
0.92
0.75
0.72
0.76


nm9









TEMRA_
0.88
0.70
0.58
0.62


nm10









TEMRA_
0.94
0.79
0.64
0.71


nm11









TEMRA_
0.90
0.74
0.65
0.67


nm12









TEMRA_
0.71
0.73
0.86
0.83


nm13









TEMRA_
0.93
0.64
0.63
0.64


nm14









TEMRA_
0.90
0.79
0.72
0.80


nm15









TEMRA_
0.95
0.83
0.87
0.83


nm16









TEMRA_
0.90
0.86
0.81
0.83


nm17









TEMRA_
0.89
0.68
0.60
0.64


nm18









TEMRA_
0.96
0.88
0.78
0.79


nm19









TEMRA_
0.89
0.68
0.67
0.74


nm20









TEMRA_
0.94
0.77
0.59
0.70


nm21









TEMRA_
0.92
0.74
0.66
0.76


nm22









TEMRA_
0.93
0.89
0.89
0.82


nm23









TEMRA_
0.90
0.69
0.58
0.62


nm24









TEMRA_
0.91
0.81
0.67
0.71


nm25









TEMRA_
0.90
0.70
0.61
0.64


nm26









TEMRA_
0.90
0.89
0.84
0.88


nm27









TEMRA_
0.94
0.68
0.64
0.69


nm28









TEMRA_
0.89
0.70
0.60
0.70


nm29









TEMRA_
0.92
0.68
0.82
0.82


nm30









TEMRA_
0.89
0.73
0.59
0.70


nm31









TEMRA_
0.86
0.78
0.59
0.68


nm32









TEMRA_
0.94
0.66
0.57
0.62


nm33









TEMRA_
0.86
0.65
0.55
0.57


nm34









TEMRA_
0.90
0.65
0.53
0.59


nm35









TEMRA_
0.92
0.68
0.62
0.67


nm36









TEMRA_
0.92
0.86
0.70
0.75


nm37









TEMRA_
0.87
0.68
0.59
0.64


nm38









TEMRA_
0.90
0.85
0.80
0.85


nm39









TEMRA_
0.90
0.78
0.63
0.67


nm40









TEMRA_
0.92
0.76
0.69
0.79


nm41









TEMRA_
0.89
0.85
0.71
0.71


nm42









TEMRA_
0.89
0.74
0.65
0.72


nm43









TEMRA_
0.87
0.70
0.57
0.61


nm44









TEMRA_
0.91
0.64
0.56
0.60


nm45









TEMRA_
0.90
0.75
0.65
0.73


nm46









TEMRA_
0.90
0.72
0.62
0.66


nm47









TEMRA_
0.90
0.63
0.52
0.59


nm48









TEMRA_
0.92
0.87
0.80
0.87


nm49









TEMRA_
0.86
0.62
0.54
0.57


nm50









TEMRA_
0.88
0.68
0.60
0.64


nm51









TEMRA_
0.92
0.77
0.67
0.84


nm52









TEMRA_
0.90
0.67
0.60
0.73


nm53









TEMRA_
0.87
0.73
0.64
0.70


nm54









TEMRA_
0.86
0.78
0.79
0.83


nm55









TEMRA_
0.88
0.64
0.57
0.63


nm56









TEMRA_
0.90
0.71
0.55
0.66


nm57









TEMRA_
0.93
0.84
0.79
0.82


nm58









TEMRA_
0.91
0.71
0.63
0.69


nm59









TEMRA_
0.86
0.72
0.63
0.63


nm60









TEMRA_
0.89
0.78
0.60
0.79


nm61









TEMRA_
0.90
0.67
0.57
0.59


nm62









TEMRA_
0.86
0.78
0.58
0.66


nm63









TEMRA_
0.92
0.65
0.54
0.62


nm64









TEMRA_
0.92
0.77
0.63
0.71


nm65









TEMRA_
0.90
0.66
0.57
0.66


nm66









TEMRA_
0.87
0.86
0.57
0.60


nm67















CD4 + Th
CD4 + Th
CD4 +



Marker-
Central
Effect.
NKT
CD4 +


ID
Mem.
Mem.
cells
TFH





CD8_nm12
0.85
0.85
0.76
0.81





CD8_nm13
0.84
0.82
0.69
0.82





CD8_nm14
0.82
0.79
0.74
0.77





CD8_nm15
0.71
0.72
0.75
0.71





CD8_nm16
0.64
0.68
0.59
0.61





CD8_nm17
0.61
0.59
0.58
0.53





CD8_nm18
0.70
0.75
0.56
0.60





TEMRA_
0.90
0.89
0.79
0.91


nm1









TEMRA_
0.82
0.79
0.65
0.83


nm2









TEMRA_
0.97
0.97
0.77
0.94


nm3









TEMRA_
0.78
0.76
0.53
0.87


nm4









TEMRA_
0.74
0.55
0.79
0.85


nm5









TEMRA_
0.76
0.73
0.65
0.83


nm7









TEMRA_
0.88
0.87
0.67
0.88


nm8









TEMRA_
0.75
0.74
0.66
0.78


nm9









TEMRA_
0.71
0.65
0.68
0.72


nm10









TEMRA_
0.79
0.74
0.62
0.78


nm11









TEMRA_
0.76
0.68
0.61
0.72


nm12









TEMRA_
0.73
0.57
0.66
0.80


nm13









TEMRA_
0.73
0.72
0.60
0.64


nm14









TEMRA_
0.81
0.77
0.58
0.82


nm15









TEMRA_
0.86
0.78
0.59
0.86


nm16









TEMRA_
0.86
0.86
0.70
0.87


nm17









TEMRA_
0.70
0.66
0.64
0.64


nm18









TEMRA_
0.85
0.84
0.74
0.87


nm19









TEMRA_
0.72
0.69
0.58
0.71


nm20









TEMRA_
0.74
0.67
0.57
0.82


nm21









TEMRA_
0.73
0.71
0.63
0.79


nm22









TEMRA_
0.87
0.89
0.81
0.89


nm23









TEMRA_
0.69
0.62
0.64
0.67


nm24









TEMRA_
0.72
0.68
0.58
0.85


nm25









TEMRA_
0.71
0.68
0.66
0.75


nm26









TEMRA_
0.89
0.83
0.78
0.88


nm27









TEMRA_
0.76
0.70
0.61
0.68


nm28









TEMRA_
0.74
0.71
0.59
0.72


nm29









TEMRA_
0.76
0.73
0.67
0.72


nm30









TEMRA_
0.72
0.67
0.71
0.74


nm31









TEMRA_
0.72
0.66
0.61
0.79


nm32









TEMRA_
0.70
0.63
0.55
0.65


nm33









TEMRA_
0.55
0.61
0.65
0.71


nm34









TEMRA_
0.66
0.61
0.57
0.61


nm35









TEMRA_
0.72
0.66
0.67
0.74


nm36









TEMRA_
0.79
0.71
0.67
0.87


nm37









TEMRA_
0.71
0.69
0.67
0.68


nm38









TEMRA_
0.87
0.84
0.78
0.85


nm39









TEMRA_
0.67
0.69
0.60
0.81


nm40









TEMRA_
0.81
0.77
0.76
0.76


nm41









TEMRA_
0.75
0.62
0.77
0.81


nm42









TEMRA_
0.73
0.71
0.55
0.76


nm43









TEMRA_
0.67
0.65
0.60
0.73


nm44









TEMRA_
0.69
0.62
0.60
0.64


nm45









TEMRA_
0.79
0.72
0.67
0.77


nm46









TEMRA_
0.67
0.64
0.56
0.75


nm47









TEMRA_
0.65
0.63
0.67
0.65


nm48









TEMRA_
0.88
0.83
0.75
0.89


nm49









TEMRA_
0.66
0.62
0.67
0.64


nm50









TEMRA_
0.70
0.65
0.65
0.69


nm51









TEMRA_
0.70
0.67
0.67
0.83


nm52









TEMRA_
0.75
0.73
0.70
0.70


nm53









TEMRA_
0.73
0.69
0.67
0.73


nm54









TEMRA_
0.85
0.84
0.72
0.79


nm55









TEMRA_
0.67
0.63
0.59
0.65


nm56









TEMRA_
0.76
0.66
0.66
0.72


nm57









TEMRA_
0.84
0.79
0.63
0.85


nm58









TEMRA_
0.74
0.71
0.64
0.72


nm59









TEMRA_
0.72
0.65
0.67
0.70


nm60









TEMRA_
0.77
0.74
0.61
0.82


nm61









TEMRA_
0.67
0.64
0.62
0.66


nm62









TEMRA_
0.71
0.71
0.64
0.73


nm63









TEMRA_
0.69
0.61
0.54
0.64


nm64









TEMRA_
0.74
0.69
0.67
0.78


nm65









TEMRA_
0.72
0.66
0.63
0.66


nm66









TEMRA_
0.71
0.60
0.56
0.65


nm67















CD8 +






Cyto-
CD8 +

CD8 + Th


Marker-
to- toxic
naive
CD8 +
Central


ID
T-Cells
T8n_1
act.
Mem.





CD8_nm12
0.08
0.10
0.18
0.29





CD8_nm13
0.01
0.07
0.15
0.11





CD8_nm14
0.20
0.22
0.30
0.47





CD8_nm15
0.15
0.17
0.22
0.20





CD8_nm16
0.21
0.13
0.45
0.45





CD8_nm17
0.19
0.21
0.26
0.39





CD8_nm18
0.22
0.25
0.31
0.27





TEMRA_
0.58
0.86
0.29
0.28


nm1









TEMRA_
0.93
0.85
0.38
0.35


nm2









TEMRA_
0.89
0.97
0.93
0.76


nm3









TEMRA_
0.65
0.92
0.56
0.46


nm4









TEMRA_
0.92
0.92
0.91
0.87


nm5









TEMRA_
0.71
0.91
0.46
0.55


nm7









TEMRA_
0.72
0.89
0.86
0.83


nm8









TEMRA_
0.65
0.89
0.44
0.40


nm9









TEMRA_
0.72
0.89
0.49
0.59


nm10









TEMRA_
0.76
0.92
0.60
0.69


nm11









TEMRA_
0.72
0.86
0.50
0.47


nm12









TEMRA_
0.82
0.86
0.73
0.72


nm13









TEMRA_
0.68
0.89
0.49
0.49


nm14









TEMRA_
0.70
0.89
0.49
0.42


nm15









TEMRA_
0.69
0.91
0.36
0.41


nm16









TEMRA_
0.67
0.85
0.39
0.41


nm17









TEMRA_
0.74
0.88
0.47
0.66


nm18









TEMRA_
0.84
0.95
0.56
0.75


nm19









TEMRA_
0.61
0.86
0.39
0.34


nm20









TEMRA_
0.59
0.93
0.32
0.36


nm21









TEMRA_
0.66
0.79
0.58
0.59


nm22









TEMRA_
0.82
0.92
0.71
0.73


nm23









TEMRA_
0.69
0.86
0.39
0.47


nm24









TEMRA_
0.67
0.89
0.62
0.50


nm25









TEMRA_
0.73
0.89
0.51
0.63


nm26









TEMRA_
0.81
0.88
0.80
0.81


nm27









TEMRA_
0.73
0.89
0.42
0.55


nm28









TEMRA_
0.71
0.85
0.39
0.57


nm29









TEMRA_
0.80
0.92
0.57
0.57


nm30









TEMRA_
0.74
0.88
0.45
0.55


nm31









TEMRA_
0.65
0.84
0.58
0.53


nm32









TEMRA_
0.76
0.93
0.49
0.49


nm33









TEMRA_
0.59
0.82
0.34
0.35


nm34









TEMRA_
0.69
0.89
0.43
0.58


nm35









TEMRA_
0.74
0.92
0.50
0.66


nm36









TEMRA_
0.75
0.90
0.63
0.73


nm37









TEMRA_
0.74
0.83
0.54
0.55


nm38









TEMRA_
0.87
0.86
0.80
0.83


nm39









TEMRA_
0.69
0.91
0.50
0.41


nm40









TEMRA_
0.77
0.89
0.50
0.64


nm41









TEMRA_
0.79
0.86
0.67
0.44


nm42









TEMRA_
0.70
0.83
0.46
0.52


nm43









TEMRA_
0.66
0.86
0.42
0.52


nm44









TEMRA_
0.72
0.87
0.48
0.50


nm45









TEMRA_
0.64
0.89
0.39
0.46


nm46









TEMRA_
0.65
0.90
0.51
0.52


nm47









TEMRA_
0.71
0.92
0.41
0.56


nm48









TEMRA_
0.80
0.90
0.59
0.72


nm49









TEMRA_
0.71
0.83
0.43
0.55


nm50









TEMRA_
0.74
0.89
0.53
0.68


nm51









TEMRA_
0.62
0.86
0.45
0.39


nm52









TEMRA_
0.71
0.88
0.38
0.52


nm53









TEMRA_
0.74
0.87
0.57
0.65


nm54









TEMRA_
0.65
0.88
0.39
0.54


nm55









TEMRA_
0.71
0.87
0.46
0.59


nm56









TEMRA_
0.76
0.89
0.69
0.72


nm57









TEMRA_
0.74
0.89
0.54
0.49


nm58









TEMRA_
0.70
0.86
0.54
0.69


nm59









TEMRA_
0.69
0.83
0.50
0.63


nm60









TEMRA_
0.59
0.87
0.34
0.37


nm61









TEMRA_
0.72
0.88
0.44
0.65


nm62









TEMRA_
0.75
0.87
0.60
0.67


nm63









TEMRA_
0.61
0.91
0.35
0.35


nm64









TEMRA_
0.75
0.93
0.49
0.60


nm65









TEMRA_
0.76
0.87
0.47
0.51


nm66









TEMRA_
0.67
0.83
0.45
0.45


nm67













Marker-
CD8 + Th

CD8 +


ID
Effect. Mem.
TEMRA
NK T cells





CD8_nm12
0.13
0.07
0.23





CD8_nm13
0.07
0.05
0.10





CD8_nm14
0.39
0.14
0.35





CD8_nm15
0.21
0.17
0.25





CD8_nm16
0.44
0.29
0.47





CD8_nm17
0.26
0.24
0.29





CD8_nm18
0.28
0.24
0.27





TEMRA_
0.19
0.12
0.19


nm1








TEMRA_
0.28
0.11
0.15


nm2








TEMRA_
0.59
0.22
0.42


nm3








TEMRA_
0.40
0.12
0.27


nm4








TEMRA_
0.89
0.14
0.87


nm5








TEMRA_
0.38
0.14
0.27


nm7








TEMRA_
0.66
0.11
0.74


nm8








TEMRA_
0.40
0.12
0.25


nm9








TEMRA_
0.50
0.11
0.47


nm10








TEMRA_
0.55
0.16
0.45


nm11








TEMRA_
0.51
0.11
0.41


nm12








TEMRA_
0.61
0.12
0.79


nm13








TEMRA_
0.38
0.11
0.25


nm14








TEMRA_
0.36
0.16
0.34


nm15








TEMRA_
0.43
0.20
0.30


nm16








TEMRA_
0.35
0.19
0.27


nm17








TEMRA_
0.56
0.13
0.51


nm18








TEMRA_
0.58
0.23
0.56


nm19








TEMRA_
0.29
0.13
0.22


nm20








TEMRA_
0.19
0.16
0.19


nm21








TEMRA_
0.45
0.15
0.34


nm22








TEMRA_
0.80
0.24
0.63


nm23








TEMRA_
0.40
0.13
0.38


nm24








TEMRA_
0.35
0.15
0.18


nm25








TEMRA_
0.52
0.16
0.48


nm26








TEMRA_
0.74
0.22
0.54


nm27








TEMRA_
0.38
0.16
0.32


nm28








TEMRA_
0.47
0.11
0.29


nm29








TEMRA_
0.48
0.18
0.56


nm30








TEMRA_
0.48
0.15
0.35


nm31








TEMRA_
0.51
0.12
0.39


nm32








TEMRA_
0.40
0.18
0.35


nm33








TEMRA_
0.40
0.10
0.25


nm34








TEMRA_
0.49
0.12
0.44


nm35








TEMRA_
0.57
0.17
0.54


nm36








TEMRA_
0.53
0.19
0.40


nm37








TEMRA_
0.56
0.13
0.58


nm38








TEMRA_
0.81
0.23
0.79


nm39








TEMRA_
0.46
0.16
0.30


nm40








TEMRA_
0.64
0.19
0.57


nm41








TEMRA_
0.57
0.16
0.49


nm42








TEMRA_
0.43
0.14
0.33


nm43








TEMRA_
0.43
0.13
0.26


nm44








TEMRA_
0.41
0.13
0.40


nm45








TEMRA_
0.42
0.17
0.31


nm46








TEMRA_
0.45
0.15
0.46


nm47








TEMRA_
0.49
0.15
0.45


nm48








TEMRA_
0.61
0.24
0.51


nm49








TEMRA_
0.45
0.11
0.47


nm50








TEMRA_
0.49
0.16
0.50


nm51








TEMRA_
0.43
0.19
0.34


nm52








TEMRA_
0.56
0.14
0.50


nm53








TEMRA_
0.54
0.17
0.59


nm54








TEMRA_
0.44
0.22
0.30


nm55








TEMRA_
0.43
0.14
0.42


nm56








TEMRA_
0.53
0.17
0.44


nm57








TEMRA_
0.44
0.22
0.31


nm58








TEMRA_
0.55
0.17
0.41


nm59








TEMRA_
0.47
0.14
0.40


nm60








TEMRA_
0.37
0.19
0.24


nm61








TEMRA_
0.47
0.16
0.35


nm62








TEMRA_
0.59
0.17
0.45


nm63








TEMRA_
0.36
0.13
0.20


nm64








TEMRA_
0.50
0.20
0.48


nm65








TEMRA_
0.49
0.16
0.44


nm66








TEMRA_
0.40
0.13
0.36


nm67












Marker-




ID
NK T-Cells
Discovery Fragment





CD8_nm12
0.18
TAAAATCTACAGTAC




ACCACAAGGGTCAC




AATACTGTTGTGCGC




ACATCG





CD8_nm13
0.12
CGGAAATCAGCTTGG




GGGCCTTCTAGCCCT




GCAGCTCAGAAAAG




TGTCAG





CD8_nm14
0.39
CGAGGTGGATATTAG




CAACTCCTTTAGCAG




GGCTCAATGGCGTCT




TAGAA





CD8_nm15
0.24
TCCAACCAATTGTGC




TCTCCCAATTCCAAC




AACCAAATGAAGCTT




CAACG





CD8_nm16
0.50
ATTTTTTACTTTCTAT




GTGAAATTCATCATC




AAATGAGGATGTGCA




CTCG





CD8_nm17
0.30
GCCCACCGGGGTTGC




CCTGGTGTTGCCCCC




ATCTGTAGAGAAGTT




AGGCG





CD8_nm18
0.27
CGCTGTTTTGCTCAG




GCTGGCCTTGGGACT




CCTGAGCTCCAGTGA




TCCTC





TEMRA_
0.33
TCTGTCAGAGGGCTG


nm1

TTGTGGGATTATAAG




AGCCCACTTGTGAAA




TTGCG





TEMRA_
0.13
GTCTTTGCCTGACAC


nm2

CTTCTGTGAGGTTTG




CGGGCTTCATTTTAA




ATCCG





TEMRA_
0.60
CGAGGCGCTGGCGA


nm3

AGCACGAGGCCTTCT




TCATTCGCTGCGAA




TCTTCC





TEMRA_
0.36
CGAAAGCAAGCGAG


nm4

TGAATTAGGATTTCA




AAGTGCCCTAATAGT




GTGAGT





TEMRA_
0.85
CGGCACAGATAAAA


nm5

ATACAGAGACAATG




GTTCCGACCCAGAGA




TGAGGCT





TEMRA_
0.27
GTCCGCAGTAATAAC


nm7

AACCAAAGACACAT




ATTCTCAGGCAATGA




TAACCG





TEMRA_
0.57
CATGAGAAAACTTCT


nm8

TTAAGACCACCTGTA




GAATTCTGCAATCAC




ATACG





TEMRA_
0.23
CGGAAGAATGAAAA


nm9

GCTAATATTATTGTG




TGGCATGATGACTGT




CTCTTC





TEMRA_
0.38
CGCCCCACCCCAGAA


nm10

CCAGCTAGCACCCAA




GGGCTAGGCAGCCTG




CTACT





TEMRA_
0.42
TGCTGTGGGCCTCAG


nm11

TTTTCCACCTGTTAC




AGAGAACCCCTCGCC




CTTCG





TEMRA_
0.35
CGGGAATCTGTCTGT


nm12

GTTACAAAGCAACTA




GACTCACCCTATTGG




CCTAA





TEMRA_
0.76
CGGTCGTTGTAAAAG


nm13

AGACTGTCTTGAGAG




TGAAAAGCAAATAG




ACATAT





TEMRA_
0.27
CCTTCTCTTCCCCCC


nm14

AGGCTATGACTTTGC




AGCCGTCCTGGAGTG




GTTCG





TEMRA_
0.17
GGGGTTATATATTTT


nm15

TGACCAAATTCACCA




TTACTCATTTGGCAT




TTTCG





TEMRA_
0.40
CGCGCAGGGTGGGC


nm16

GGCTTACCATAGCAA




GTGATCCTGCGATAG




GGAACG





TEMRA_
0.27
CGGTAGACAAATGAT


nm17

AGACATTTGTTGAAT




CAAGCTGTGAGTTGG




AGATC





TEMRA_
0.52
CGCCACCCCACCTTC


nm18

ATCCACGGACTCCAG




GTACTGTAGGGCTGG




GAAAG





TEMRA_
0.49
CAGTGACGTGGTGGG


nm19

GAGCGTGTGCTTGTG




TAGGGACAGCTTTCC




AGGCG





TEMRA_
0.20
CGTGCCCAGCTTTTC


nm20

TATGGGAAAAATTGT




TCTTCAGACAGAGCA




TGAAT





TEMRA_
0.15
GCGTACACACCCTGA


nm21

TAAGGTGTCAAGAAC




CTCCGTTTGAGTACC




CCTCG





TEMRA_
0.30
ACTTAGAGCCCACCA


nm22

TGAAGCATCTTTTCT




GTTGCTTACACTGACT




CACCG





TEMRA_
0.60
GGCCTTCTCTTTCTG


nm23

GATGGCTGGTCACTG




TCTGAGTCCTGATCT




GACCG





TEMRA_
0.34
CGGTATTTCAGTTAC


nm24

ACTCTGTTGATTCAA




AAGAAGGTTGTTTGT




CCAAG





TEMRA_
0.22
TTGCTCCAGCACTAC


nm25

AGAGCAGATTTGGA




GCAGTCAGGTGGGG




AAGCTCG





TEMRA_
0.44
CGGTCCTCACCTCAC


nm26

TAGATCACCATGACT




CACTGGGTAGATGGG




CTATT





TEMRA_
0.50
CGCTATTGCTAAGTA


nm27

AAACCCATGTGTTTT




CAGTCATGGTTAGCA




GCAGG





TEMRA_
0.32
CGAGGACGAATCTTG


nm28

AGGCCTCCACTGGTC




TACACGGACAGAAG




CACGCC





TEMRA_
0.32
CGTGGGAAAGTAAT


nm29

ACAGGGAGGGAACA




GCAGCCCATAAAAA




GAACGTTA





TEMRA_
0.49
CTCATCTTAAGGATG


nm30

CTTATTATCATAATG




CTTTTTATTAATTCCTA




ATCG





TEMRA_
0.38
CTCTTAACCTGGTGG


nm31

TCTTTCACTAGCTTT




ACAAAGGTGATACA




GTTTCG





TEMRA_
0.33
CGAGGCTCTGCACAG


nm32

GTAAACTCAAGGGTT




ACCCTGTGCTTTGAA




ACCTT





TEMRA_
0.38
TCAGCCCCGGAGGGC


nm33

AGGCGCCAGTCCATC




AGCTTGTATGTCTGT




CCTCG





TEMRA_
0.26
CGAGTGTGGAGCTAT


nm34

GATTGGAACCTAGTT




CAGGCTCCAAAGCCA




CACTC





TEMRA_
0.39
CGACCATTCTCACAA


nm35

GACATTGAACAGAG




AATAAGAGGAGAGA




AAAAGGC





TEMRA_
0.46
AAGTTCCCAA=TTAGAT


nm36

GACTCACTTCAGGAG




GGCCAGGAACCATTCT




GTTCG





TEMRA_
0.28
CGGCTCTGCCAGGAC


nm37

CCACCAGCCAATTCC




AAGTCGAGCAAAAG




AATCCA





TEMRA_
0.49
ACTGTTGATCCTGGG


nm38

AGTCTCTGGCCTTGT




ATTTATGACTTATCA




ATTCG





TEMRA_
0.75
ATTCTGTCTAGTCTTT


nm39

GGTCCCATAGAAATT




ATTATCTACATCAAC




CTCG





TEMRA_
0.33
ACACTTCTGGCAAAT


nm40

AGTTCATCTAATTAG




AACCATGGGAAACC




CCTCCG





TEMRA_
0.56
CGGGGATTCCAACCC


nm41

CAGGGCACCTCTCTG




GCATTCCCATTAAGG




AAGCC





TEMRA_
0.51
ATTTGTAACATCACA


nm42

AGAGTTAGAAGACC




CCATATTGCTTGAGC




TTTTCG





TEMRA_
0.35
CGAGGCTTGTGTCTCT


nm43

TGGCCACCACTGTCT




TCTGGAATTATAGGA




GTAAA





TEMRA_
0.33
CGAGTAAAATGATG


nm44

ATCCTCACTCTATGG




AAGAGAAGCAGAGC




TGGCCCC





TEMRA_
0.35
CGCCTGGAATTTCTT


nm45

GAAACACCCTTATAC




ATGCATAAAACTGTA




GGTGG





TEMRA_
0.31
CGGTCTTGGGTGGCC


nm46

CATAGGAGATTAAG




AATTTCCTATTATCC




AAGCTG





TEMRA_
0.38
CGGCCAGGCTGCAAT


nm47

GCACATGGCCGCCCT




CATTGGCAGGGTCAC




ATGAG





TEMRA_
0.40
CGCCACAAATGAGTA


nm48

AAGCAGGTCTAGCA




GGCTTGTCGTTGAG




TTACTG





TEMRA_
0.55
CGAGACACCTGGGG


nm49

ATGAGAATGAACAT




GCCCATTTCCAGAAA




GCCAAAG





TEMRA_
0.42
CCCCTTTTTCCCAGG


nm50

GACCCACAGAACTGT




GAGCAAGAAATAAA




TGTTCG





TEMRA_
0.48
CGGTCTCTGCCATTG


nm51

GTAGGAAAAGTAAT




GGACTATTTCTGGAT




AAATCA





TEMRA_
0.34
CGGAATAAAACCACT


nm52

GAAACACAATCAGG




GCTACGTGCATTACC




TGTGGC





TEMRA_
0.45
CGGATGCCTATCTGT


nm53

TCCTGACCCCCAAGG




TCCCTCAGGATCTGC




TGGGA





TEMRA_
0.52
CGCAAATCCAAACCA


nm54

TATCAGGGTTTCACA




GCTAGAGAGAAGGA




GTCAAT





TEMRA_
0.43
GGTGATTACAGCAGA


nm55

TGACCCCATCTGCCT




GGTGCCTGACTTTAT




TTTCG





TEMRA_
0.42
GGGGTTGACCATGGC


nm56

TGGTAACAGGGGACT




CTGGTTGGCCAGTGG




CATCG





TEMRA_
0.43
CGAGTTTAACCCCAC


nm57

TTGGAGCCAGAAAG




ATGGGCCAAATCAAC




ACCAAG





TEMRA_
0.34
CACAGACTAATGATA


nm58

ATCTTTGGGAAATTT




GGGTCTACCATAAAT




ACTCG





TEMRA_
0.51
AGGTTAAAACCAAG


nm59

GGCTCAGACTACAGG




TGTGTGTAGCATGTG




TACACG





TEMRA_
0.41
TTCACTGCAGATGAA


nm60

ATGGGCTTCTCATGC




TACCTCAGTTACCAG




AATCG





TEMRA_
0.26
CGCATACTTTCAGGG


nm61

AGAGGCACTATTCTT




GGCTTTAAGTTCATG




AGTAA





TEMRA_
0.40
CGACAATTTCAATCC


nm62

AGAGTGTTAAGTGCT




GTTACAGAGGAGCTG




GGGAG





TEMRA_
0.45
CGTAGTCTGACACAG


nm63

GAGTCCACTTAGCCA




TTGATCTGTGTGGCT




CAATT





TEMRA_
0.21
GACTGAAACTTGCAC


nm64

CAGTTCTGAATGCCT




CTAACCTTGGTTGTA




TAACG





TEMRA_
0.40
CGAGGCTGAATGAA


nm65

ATCCAATTGGAACTC




ACTTGAACACTGTTT




TGATGT





TEMRA_
0.40
GTGTCCCAGGAAAG


nm66

GCCCACTAGTGGGTC




CCGGTGTGGGACCCA




CCCCCG





TEMRA_
0.37
ACAGTGAGCTATGCC


nm67

CTGAATGACAGACAC




CATATTCACAGGCAA




AATCG
















TABLE 4D





Follicular helper T cells-marker
























Baso-
Eosino-






phil
phil


Marker-
Target-


Granu-
Granu-


ID
ID
SYMBOL
Accession
locytes
locytes





TFH_
cg130
PRKCZ
NM_00
0.91
0.90


nm1
77150

2744







TFH_
cg112
PRKCZ
NM_00
0.86
0.82


nm2
27141

2744







TFH_
cg270
MKL2
NM_01
0.85
0.87


nm3
64482

4048







TFH_
cg213
GIMAP8
NM_17
0.92
0.91


nm4
77860

5571







TFH_
cg157
LIF
NM_00
0.88
0.89


nm5
22603

2309







TFH_
cg001
NFATC1
NM_00
0.90
0.91


nm6
51768

6162







TFH_
cg152
NFATC1
NM_00
0.94
0.95


nm7
60951

6162







TFH_
cg164
C2orf48
NM_18
0.97
0.96


nm8
21411

2626







TFH_
cg263
ATXN1
NM_00
0.97
0.95


nm9
93261

0332







TFH_
cg108
DNAJC5
NM_02
0.97
0.98


nm10
42070

5219







TFH_
cg092
MAF
NM_17
0.92
0.91


nm11
32021

5571







TFH_
cg131
SPATS2L
NM_01
0.96
0.97


nm12
44059

5535







TFH_
cg261
TMCC1
NM_00
0.90
0.90


nm13
75815

1017395







TFH_
cg071
SERINC5
NM_17
0.91
0.78


nm14
72701

8276







TFH_
cg219
CD28
NM_00
0.88
0.86


nm15
11000

6139







TFH_
cg152
LPP
NM_00
0.92
0.92


nm16
13399

5578







TFH_
cg035
ABTB1
NM_17
0.95
0.94


nm17
96635

2028







TFH_
cg104
ZHX1
NM_00
0.91
0.91


nm18
51262

7222







TFH_
cg013


0.90
0.89


nm19
49034









TFH_
cg158
PTPN2
NM_08
0.85
0.86


nm20
73449

0423







THH_
cg161


0.85
0.89


nm21
52136









TFH_
cg209
LIPC
NM_00
0.90
0.92


nm22
68717

0236







TFH_
cg250
CXCR5
NM_00
0.90
0.92


nm23
87423

1716







TFH_
cg080
CTSB
NM_14
0.88
0.92


nm24
12294

7780







TFH_
cg174
NUB1
NM_01
0.92
0.91


nm25
10313

6118







TFH_
cg043
SLC25A12
NM_00
0.89
0.91


nm26
37734

3705







TFH_
cg150 
HIPK2
NM_02
0.97
0.97


nm27
39797

2740







TFH_
cg275


0.96
0.95


nm28
86885









TFH_
cg207 
RNF216
NM_20
0.91
0.86


nm29
02205

7111







TFH_
cg068
FAM6A
NM_02
0.87
0.88


nm30
46719

1238







TFH_
cg238
CLEC7A
NM_02
0.87
0.88


nm31
92568

2570







TFH_
cg240


0.90
0.90


nm32
33742









TFH_
cg032
ST7
NM_01
0.82
0.88


nm33
80299

8412







TFH_
cg163
IL6ST
NM_17
0.89
0.86


nm34
75820

5767







TFH_
cg113
ZNF589
NM_01
0.88
0.90


nm35
07417

6089







TFH_
cg137
DLEU1

0.90
0.92


nm36
74342









TFH_
cg216
ANKFY1
NM_01
0.91
0.91


nm37
53149

6376







TFH_
cg146
SMURF2
NM_02
0.87
0.89


nm38
24950

2739







TFH_
cg131
FAM65B

0.67
0.78


nm39
42152









TFH_
cg158
ATXN7L1
NM_02
0.78
0.80


nm40
73112

0725







TFH_
cg233
PCBP3

0.84
0.80


nm41
42358









TFH_
cg225


0.91
0.90


nm42
35163









TFH_
cg136
PRRC2B
NM_01
0.92
0.92


nm43
37151

3318







TFH_
cg264
ARHGAP35
NM_00
0.90
0.88


nm44
46535

4491







TFH_
cg063
SOD2
NM_00
0.47
0.63


nm45
46099

0636







TFH_
cg130
SETD3
NM_03
0.93
0.92


nm46
49261

2233







TFH_
cg060
ARID1B
NM_01
0.85
0.88


nm47
19273

7519







TFH_
cg007
PVT1
NR_00
0.80
0.78


nm48
80520

3367







TFH_
cg071


0.95
0.96


nm49
67688









TFH_
cg271
IL17A
NM_00
0.69
0.89


nm50
668844

2190







TFH_
cg188
CNIH
NM_01
0.91
0.92


nm51
834724

4184







TFH_
cg118


0.85
0.90


nm52
87733









TFH_ 
cg020


0.96
0.96


nm53
03272









TFH_
cg202
PHACTR2
NR_02
0.90
0.92


nm54
98778

7113







TFH_
cg190
ITPKB
NM_00
0.74
0.67


mn55
30737

2221







TFH_
cg193
HDAC4
NM_00
0.98
0.97


nm56
24997

6037








Non-





Neutro-
Clas-
clas-





phil
sical
sical
NK



Marker-
Granu-
Mono-
Mono-
clas-
NK


ID
locytes
cytes
cytes
sical
bright





TFH_
0.91
0.89
0.89
0.88
0.87


nm1










TFH_
0.83
0.86
0.85
0.87
0.88


nm2










TFH_
0.89
0.89
0.88
0.84
0.68


nm3










TFH_
0.91
0.92
0.91
0.92
0.89


nm4










TFH_
0.90
0.89
0.90
0.80
0.80


nm5










TFH_
0.91
0.93
0.87
0.91
0.82


nm6










TFH_
0.95
0.95
0.95
0.92
0.88


nm7










TFH_
0.97
0.96
0.97
0.96
0.95


nm8










TFH_
0.96
0.97
0.97
0.96
0.94


nm9










TFH_
0.97
0.97
0.97
0.95
0.90


nm10










TFH_
0.91
0.93
0.92
0.91
0.90


nm11










TFH_
0.98
0.98
0.98
0.97
0.95


nm12










TFH_
0.92
0.90
0.88
0.88
0.81


nm13










TFH_
0.84
0.84
0.87
0.90
0.92


nm14










TFH_
0.89
0.91
0.89
0.89
0.88


nm15










TFH_
0.91
0.90
0.87
0.89
0.76


nm16










TFH_
0.95
0.95
0.95
0.94
0.93


nm17










TFH_
0.92
0.90
0.91
0.91
0.91


nm18










TFH_
0.88
0.88
0.86
0.87
0.87


nm19










TFH_
0.87
0.88
0.85
0.86
0.76


nm20










THH_
0.90
0.88
0.89
0.88
0.88


nm21










TFH_
0.92
0.94
0.92 
0.91
0.87


nm22










TFH_
0.92
0.91
0.90
0.86
0.81


nm23










TFH_
0.92
0.86
0.76
0.91
0.89


nm24










TFH_
0.92
0.91
0.89
0.92
0.89


nm25










TFH_
0.87
0.88
0.88
0.86
0.78


nm26










TFH_
0.98
0.97
0.98
0.25
0.62


nm27










TFH_
0.96
0.96
0.95
0.94
0.92


nm28










TFH_
0.91
0.89
0.87
0.91
0.90


nm29










TFH_
0.90
0.89
0.87
0.87
0.76


nm30










TFH_
0.88
0.81
0.82
0.86
0.79


nm31










TFH_
0.90
0.90
0.90
0.90
0.91


nm32










TFH_
0.89
0.84
0.86
0.87
0.78


nm33










TFH_
0.88
0.89
0.87
0.88
0.77


nm34










TFH_
0.90
0.87
0.87
0.89
0.87


nm35










TFH_
0.90
0.88
0.91
0.89
0.82


nm36










TFH_
0.91
0.91
0.92
0.88
0.76


nm37










TFH_
0.90
0.90
0.89
0.87
0.82


nm38










TFH_
0.86
0.87
0.85
0.85
0.82


nm39










TFH_
0.84
0.87
0.85
0.86
0.86


nm40










TFH_
0.76
0.84
0.83
0.86
0.85


nm41










TFH_
0.90
0.91
0.90
0.89
0.85


nm42










TFH_
0.93
0.91
0.91
0.90
0.87


nm43










TFH_
0.90
0.92
0.93
0.91
0.87


nm44










TFH_
0.79
0.84
0.77
0.78
0.78


nm45










TFH_
0.93
0.93
0.92
0.90
0.89


nm46










TFH_
0.91
0.88
0.88
0.84
0.82


nm47










TFH_
0.80
0.81
0.85
0.82
0.80


nm48










TFH_
0.95
0.96
0.94
0.95
0.95


nm49










TFH_
0.92
0.92
0.89
0.87
0.80


nm50










TFH_
0.91
0.92
0.91
0.89
0.87


nm51










TFH_
0.90
0.92
0.89
0.88
0.83


nm52










TFH_ 
0.96
0.97
0.96
0.96
0.94


nm53










TFH_
0.94
0.92
0.89
0.86
0.79


nm54










TFH_
0.83
0.81
0.84
0.79
0.82


mn55










TFH_
0.98
0.98
0.97
0.79
0.94


nm56








CD4 +




Marker-
B-

Th
CD4 +
CD4 +


ID
Cells
MDSC
naive
act.
Th1





TFH_
0.86
0.85
0.92
0.33
0.63


nm1










TFH_
0.83
0.81
0.89
0.28
0.60


nm2










TFH_
0.80
0.77
0.89
0.17
0.66


nm3










TFH_
0.92
0.90
0.79
0.38
0.73


nm4










TFH_
0.88
0.84
0.89
0.24
0.35


nm5










TFH_
0.81
0.88
0.92
0.37
0.71


nm6










TFH_
0.82
0.92
0.90
0.14
0.29


nm7










TFH_
0.96
0.93
0.97
0.44
0.68


nm8










TFH_
0.97
0.96
0.96
0.33
0.87


nm9










TFH_
0.50
0.94
0.97
0.29
0.87


nm10










TFH_
0.91
0.90
0.91
0.25
0.56


nm11










TFH_
0.90
0.96 
0.97
0.42
0.88


nm12










TFH_
0.78
0.88
0.87
0.25
0.54


nm13










TFH_
0.88
0.84
0.93
0.25
0.63


nm14










TFH_
0.91
0.87
0.85
0.15
0.38


nm15










TFH_
0.90
0.84
0.91
0.36
0.88


nm16










TFH_
0.92
0.91
0.54
0.29
0.62


nm17










TFH_
0.87
0.89
0.90
0.22
0.49


nm18










TFH_
0.93
0.88
0.91
0.36
0.73


nm19










TFH_
0.57
0.85
0.82
0.18
0.56


nm20










THH_
0.86
0.87
0.83
0.20
0.40


nm21










TFH_
0.72
0.89
0.85
0.36
0.63


nm22










TFH_
0.08
0.85
0.83
0.19
0.59


nm23










TFH_
0.89
0.80
0.81
0.23
0.46


nm24










TFH_
0.81
0.89
0.92
0.31
0.66


nm25










TFH_
0.86
0.86
0.84
0.28
0.74


nm26










TFH_
0.98
0.91
0.10
0.21
0.52


nm27










TFH_
0.94
0.89
0.95
0.32
0.81


nm28










TFH_
0.79
0.89
0.89
0.29
0.80


nm29










TFH_
0.75
0.83
0.87
0.24
0.58


nm30










TFH_
0.67
0.81
0.86
0.17
0.38


nm31










TFH_
0.92
0.89
0.91
0.41
0.72


nm32










TFH_
0.84
0.85
0.86
0.33
0.62


nm33










TFH_
0.88
0.80
0.18
0.25
0.69


nm34










TFH_
0.86
0.85
0.36
0.24
0.57


nm35










TFH_
0.81
0.88
0.89
0.21
0.45


nm36










TFH_
0.90
0.86
0.85
0.38
0.70


nm37










TFH_
0.87
0.85
0.90
0.31
0.61


nm38










TFH_
0.83
0.81
0.69
0.19
0.42


nm39










TFH_
0.50
0.81
0.67
0.19
0.48


nm40










TFH_
0.87
0.83
0.78
0.34
0.71


nm41










TFH_
0.91
0.89
0.73
0.31
0.65


nm42










TFH_
0.92
0.88
0.83
0.35
0.76


nm43










TFH_
0.90
0.89
0.92
0.38
0.65


nm44










TFH_
0.85
0.77
0.86
0.24
0.45


nm45










TFH_
0.90
0.87
0.76
0.23
0.48


nm46










TFH_
0.62
0.87
0.90
0.32
0.54


nm47










TFH_
0.65
0.77
0.87
0.20
0.42


nm48










TFH_
0.94
0.93
0.96
0.31
0.53


nm49










TFH_
0.70
0.86
0.88
0.24
0.72


nm50










TFH_
0.93
0.89
0.76
0.41
0.76


nm51










TFH_
0.89
0.83
0.58
0.23
0.40


nm52










TFH_ 
0.89
0.92
0.96
0.35
0.58


nm53










TFH_
0.73
0.89
0.92
0.39
0.79


nm54










TFH_
0.82
0.80
0.41
0.28
0.68


mn55










TFH_
0.98
0.93
0.73
0.41
#DIV/0!


nm56







CD4 +
CD4 +






Th
Th
CD4 +



Marker-
CD4 +
Central
Effect.
NK
CD4 +


ID
Th2
Mem.
Mem.
T cells
TFH





TFH_
0.51
0.55
0.54
0.78
0.23


nm1










TFH_
0.42
0.58
0.57
0.78
0.18


nm2










TFH_
0.59
0.62
0.63
0.56
0.08


nm3










TFH_
0.51
0.72
0.71
0.83
0.28


nm4










TFH_
0.42
0.47
0.44 
0.58
0.13


nm5










TFH_
0.65
0.80
0.74
0.74
0.23


nm6










TFH_
0.26
0.38
0.29
0.55
0.10


nm7










TFH_
0.59
0.69
0.69
0.80
0.32


nm8










TFH_
0.79
0.87
0.85
0.87
0.16


nm9










TFH_
0.80
0.86
0.87
0.89
0.16


nm10










TFH_
0.62
0.53
0.47
0.65
0.10


nm11










TFH_
0.80
0.91
0.85
0.88
0.24


nm12










TFH_
0.49
0.60
0.56
0.75
0.12


nm13










TFH_
0.45
0.57
0.62
0.75
0.12


nm14










TFH_
0.32
0.41
0.25
0.62
0.09


nm15










TFH_
0.77
0.85
0.86
0.67
0.15


nm16










TFH_
0.58
0.57
0.58
0.72
0.15


nm17










TFH_
0.37
0.55
0.45
0.65
0.12


nm18










TFH_
0.74
0.76
0.70
0.78
0.16


nm19










TFH_
0.54
0.52
0.52
0.73
0.11


nm20










THH_
0.50
0.45
0.42
0.60
0.10


nm21










TFH_
0.54
0.64
0.62
0.76
0.16


nm22










TFH_
0.52
0.58
0.58
0.68
0.10


nm23










TFH_
0.49
0.50
0.45
0.68
0.15


nm24










TFH_
0.65
0.66
0.65
0.77
0.19


nm25










TFH_
0.62
0.65
0.61
0.63
0.15


nm26










TFH_
0.58
0.44
0.45
0.51
0.09


nm27










TFH_
0.55
0.72
0.69
0.71
0.20


nm28










TFH_
0.58
0.70
0.78
0.86
0.21


nm29










TFH_
0.44
0.59
0.59
0.63
0.12


nm30










TFH_
0.35
0.43
0.29
0.63
0.11


nm31










TFH_
0.67
0.74
0.77
0.84
0.22


nm32










TFH_
0.52
0.60
0.61
0.66
0.16


nm33










TFH_
0.47
0.56
0.66
0.65
0.14


nm34










TFH_
0.41
0.43
0.54
0.64
0.16


nm35










TFH_
0.35
0.40
0.39
0.55
0.13


nm36










TFH_
0.70
0.70
0.70
0.60
0.19


nm37










TFH_
0.44
0.60
0.52
0.77
0.18


nm38










TFH_
0.31
0.40
0.33
0.67
0.13


nm39










TFH_
0.35
0.39
0.41
0.54
0.12


nm40










TFH_
0.60
0.70
0.72
0.74
0.19


nm41










TFH_
0.60
0.68
0.53
0.68
0.23


nm42










TFH_
0.65
0.69
0.73
0.71
0.25


nm43










TFH_
0.74
0.69
0.63
0.72
0.25


nm44










TFH_
0.45
0.48
0.44
0.64
0.12


nm45










TFH_
0.41
0.47
0.42
0.65
0.18


nm46










TFH_
0.46
0.60
0.60
0.66
0.18


nm47










TFH_
0.27
0.44
0.37
0.61
0.11


nm48










TFH_
0.47
0.57
0.50
0.69
0.26


nm49










TFH_
0.61
0.62
0.60
0.63
0.19


nm50










TFH_
0.47
0.64
0.71
0.83
0.26


nm51










TFH_
0.39
0.40
0.44
0.66
0.17


nm52










TFH_ 
0.50
0.55
0.57
0.66
0.27


nm53










TFH_
0.62
0.79
0.71
0.68
0.23


nm54










TFH_
0.48
0.52
0.59
0.63
0.16


mn55










TFH_
#DIV/0!
0.70
0.68
0.72
0.29


nm56






CD8 +


CD8 +
CD8 +



Cytoto-


Th
Th


Marker-
toxic
CD8 +
CD8 +
Central 
Effect.


ID
T-Cells
naive
act.
Mem.
Mem.





TFH_
0.86
0.86
0.68
0.77
0.82


nm1










TFH_
0.81
0.85
0.67
0.73
0.74


nm2










TFH_
0.88
0.82
0.70
0.66
0.76


nm3










TFH_
0.88
0.88
0.81
0.90
0.88


nm4










TFH_
0.78
0.89
0.64
0.71
0.62


nm5










TFH_
0.92
0.85
0.86
0.86
0.90


nm6










TFH_
0.87
0.91
0.63 
0.66
0.73


nm7










TFH_
0.97
0.95
0.87
0.93
0.95


nm8










TFH_
0.96
0.94
0.93
0.93
0.94


nm9










TFH_
0.97
0.95
0.85
0.90
0.93


nm10










TFH_
0.90
0.91
0.85
0.88
0.62


nm11










TFH_
0.98
0.96
0.94
0.95
0.97


nm12










TFH_
0.84
0.84
0.78
0.72
0.81


nm13










TFH_
0.88
0.90
0.79
0.82
0.87


nm14










TFH_
0.82
0.87
0.61
0.77 
0.60 


nm15










TFH_
0.93
0.90
0.90
0.74
0.84


nm16










TFH_
0.61
0.50
0.77
0.84
0.84


nm17










TFH_
0.82
0.90
0.68
0.77
0.77


nm18










TFH_
0.88
0.91
0.82
0.84
0.82


nm19










TFH_
0.89
0.86
0.71
0.78
0.76


nm20










THH_
0.83
0.85
0.70
0.80
0.68


nm21










TFH_
0.86
0.89
0.73
0.83
0.80


nm22










TFH_
0.84
0.82
0.54
0.81
0.77


nm23










TFH_
0.90
0.89
0.85
0.91
0.88


nm24










TFH_
0.89
0.89
0.84
0.89
0.87


nm25










TFH_
0.87
0.84
0.84
0.79
0.77


nm26










TFH_
0.60
0.60
0.87
0.87
0.83


nm27










TFH_
0.91
0.93
0.74
0.81
0.80


nm28










TFH_
0.90
0.88
0.85
0.90
0.89


nm29










TFH_
0.80
0.84
0.69
0.59
0.77


nm30










TFH_
0.85
0.87
0.79
0.80
0.69


nm31










TFH_
0.90
0.89
0.79
0.87
0.90


nm32










TFH_
0.85
0.80
0.82
0.69
0.77


nm33










TFH_
0.72
0.59
0.81
0.76
0.84


nm34










TFH_
0.73
0.69
0.77
0.82
0.83


nm35










TFH_
0.81
0.89
0.61
0.69
0.66


nm36










TFH_
0.86
0.85
0.78
0.72
0.77


nm37










TFH_
0.85
0.86
0.76
0.77
0.78


nm38










TFH_
0.84
0.81
0.65
0.81
0.76


nm39










TFH_
0.79
0.87
0.73
0.79
0.69


nm40










TFH_
0.83
0.83
0.78
0.77
0.80


nm41










TFH_
0.85
0.82
0.84
0.84
0.83


nm42










TFH_
0.90
0.86
0.83
0.85
0.86


nm43










TFH_
0.89
0.86
0.81
0.82
0.80


nm44










TFH_
0.80
0.84
0.77
0.80
0.74


nm45










TFH_
0.78
0.89
0.61
0.66
0.62


nm46










TFH_
0.81
0.83
0.74
0.71
0.77


nm47










TFH_
0.73
0.83
0.56
0.67
0.69


nm48










TFH_
0.88
0.95
0.71
0.80
0.83


nm49










TFH_
0.84
0.87
0.76
0.81
0.62


nm50










TFH_
0.85
0.85
0.85
0.89
0.87


nm51










TFH_
0.76
0.88
0.58
0.69
0.66


nm52










TFH_ 
0.90
0.96
0.65
0.62
0.80


nm53










TFH_
0.86
0.91
0.67
0.74
0.74


nm54










TFH_
0.69
0.60
0.69
0.63
0.82


mn55










TFH_
0.91
0.84
0.87
0.81
0.85


nm56
















CD8 +




Marker-

NK
NK
Discovery 


ID
TEMRA
T cells
T-cells
Fragment





TFH_
0.86
0.87
0.86
CGTGCTGTGCCC


nm1



TCGATGCTCCAG






CACCTATGGCCC






TGCTGACCCTGG






AG





TFH_
0.72
0.75
0.67
CGAGGCACGGCC


nm2



ACTTCTCCAAAG






GGCCAAGCTTCC






CTCGTCAGGCCGG






CT





TFH_
0.81
0.78
0.82
AGAGAGCTGACA


nm3



AGGGCATGCACG






ATTAATTGCACA






CTCGCACACCCA






CG





TFH_
0.92
0.91
0.93
CGTAAAGTCTGC


nm4



TCCAAAGATGGC






CTCCAGTTTCGC






CACAGCTGTTTT






GT





TFH_
0.73
0.65
0.60
CGGGACCAGAA


nm5



GATCCTCAACCC






CAGTGCCCTCAG






CCTCCACAGCAA






GCT





TFH_
0.88
0.90
0.90
CGGCTCTTCAGG


nm6



TACAGAGATCTG






AACTTGGAAAGA






CCTGCCTTTCTA






AA





TFH_
0.93
0.81
0.85
CGGCTCGCTCAG


nm7



CCATCAGGTGCC






CCACGACACACA






GGTGGTTTGGGG






GT





TFH_
0.95
0.94
0.97
CGCCCGTCGTTC


nm8



ATGTCGATTCTC






TCAGTCAATCAA






AACGCTGCCACA






GC





TFH_
0.96
0.96
0.96
ATGCAGCGATGT


nm9



GGCCGGGAGITA






GCATGAAGCGTG






GTTATTCTATCA






CG





TFH_
0.96
0.94
0.97
CGCTGTCCGCCC


nm10



TTCGCCACCCAC






CGCGCCTGCTGC






TCAGGAATGTTC






CA





TFH_
0.91
0.79
0.73
TGTTTCTCTTTAC


nm11



CGTTCAATGCAT






ATGTGCGCAAGC






CACCTCTGATGC






G





TFH_
0.98
0.96
0.97
GGCAGAGTCATC


nm12



TGCGTGGCGCAC






ACTGTTGTATAT






GCTGCACGTACA






CG





TFH_
0.84
0.87
0.84
GCTTTCTCATTTT


nm13



TCCGTTCCTCCA






CCCACTGGCTGG






TTATGGGGGTTC






G





TFH_
0.88
0.77
0.88
CGTACTTGCAAA


nm14



GTAATACAGAAA






CGTGACTTTCGG






CAGCTACCCAAG






AT





TFH_
0.87
0.79
0.78
CGGTTAATTATG


nm15



GAAAAACAGCTT






GTTAAGCAAATG






CTAATGTAAGAA






GA





TFH_
0.87
0.80
0.94
GTTTTAATAAAG


nm16



CACTATCAAAAA






GACGGCACAGA






GTTTCGGTTGCC






ACG





TFH_
0.87
0.88
0.87
AGAGGAATCGTG


nm17



GTGCTTTGCAAA






TGTGTATCAAGG






CCTTTGAATGCA






CG





TFH_
0.69
0.72
0.75
AAGAAATCCACT


nm18



AATGAGTGTTCA






CTAGCACAGGCA






CATTTATGTTTTC






G





TFH_
0.84
0.84
0.81
ACTGCACATATC


nm19



TTTTTGAAAGAC






AGCTTTTTAAGG






TATGACTCACTA






CG





TFH_
0.84
0.86
0.81
CGCCAAGTATTC


nm20



AGCATCTCTTTG






GAATTCATTTGT






CAGCCTCTCTGG






TT





THH_
0.80
0.69
0.68
CGTCAAGCTGGC


nm21



AGAATTTTAGAG






GCATCTCATTTA






AATTAGATCTGG






CC





TFH_
0.89
0.90
0.89
CGGGTGACTCAT


nm22



AGAGAGTGATTA






GAAGTAAAAAG






GTTCTGGAAATT






CCC





TFH_
0.83
0.85
0.81
TGATGAGTTGTG


nm23



AGGCAGGTCGCG






GCCCTACTGCCT






CAGGAGACGATG






CG





TFH_
0.89
0.90
0.88
CGCCTAACCAGT


nm24



TGGAAACAGGGC






TGTCCTGAGCCA






ACACCCAGGAGA






GC





TFH_
0.87
0.89 
0.84
CGGTAGAGTCTA


nm25



ATTTGCAAGATG






TAAATGCAGAAA






ATAGACATTTCA






GC





TFH_
0.82
0.81
0.81
CGACGGACACTA


nm26



AAACTGGGTCAG






AAAACTTGGGTT






CTAAACTCCTGT






GC





TFH_
0.96
0.87
0.85
CGGTACCATGAT


nm27



ACGTGCCGCAGA






ATGTTCCTGCTG






CGACCGTAAAGA






AC





TFH_
0.84
0.77
0.83
CGCCCGCGCCTT


nm28



TCCCAGGCTCAA






GGCCTCCCTGCC






CACCAGGCAGGT






GG





TFH_
0.90
0.89
0.90
CACTAGTAACTC


nm29



TCCGGTGTCTAG






AGTTAGTACTGA






TGGACTCCCTGC






CG





TFH_
0.69
0.82
0.76
CGCTGAGATTGT


nm30



TTGAGTTGTTTTT






CTTAATTAGTAT






TTCATAGCTAAG






T





TFH_
0.83
0.81
0.80
CGGTTAAATTAA


nm31



TTAATGTCAGAC






TTAGTTGTGAGA






GTAATGAAGGCA






GC





TFH_
0.89
0.88
0.90
CGCTGGGAGAAC


nm32



TTGAGCGGGGAG






CCCAGCACCACA






CACCCACTTGCC






TC





TFH_
0.85
0.81
0.83
CTGCTCTAGGAA


nm33



TATATTTACATA






CATGTATTTCTC






CTATTTCTTCATC






G





TFH_
0.84
0.86
0.90
CGGGGAATCCCT


nm34



CCCTGCCACTGT






AGAGGATTTATG






GGTTGCCCTTAA






GT





TFH_
0.89
0.86
0.87
GAGTGTATCCTC


nm35



TGATGTACACTA






AGAGCGGACTTG






AGGCTAAAGTTT






CG





TFH_
0.60
0.62
0.63
TGGGAGACTTGT


nm36



AATTGTGTACCT






GTTTGCATTGTTT






AGCCTATGCATC






G





TFH_
0.84
0.80
0.79
CGGTGCTTGAGG


nm37



AAGATGCATCTG






CTCTTGACACTG






ACATACTCGAAG






GA





TFH_
0.76
0.73
0.76
CGGCATCCGAAT


nm38



ATTCTAGCCCTG






GCAGACCTCTTA






GCTGCTTTGTTG






AT





TFH_
0.74
0.74
0.79
TCCCAATCAGTG


nm39



AGACCTCAAATA






ATGAACTTGGCT






CTCATTTATACA






CG





TFH_
0.73
0.71
0.65
ATTCAAAGACGC


nm40



TTGCTCTGAAAG






CCCGAAATTCAG






TCTTTCTGAAGA






CG





TFH_
0.83
0.81
0.80
TACCAGAGTGCC


nm41



TGTGCTGTTGTA






TCCTGACACACC






AGGTACTGCATA






CG





TFH_
0.90
0.86
0.81
CGCACAAAAATG


nm42



TAGAAAGAATAT






TGGAGACGGAA






AATTGTGAATGT






ACC





TFH_
0.89
0.87
0.90
GGAAATCGAATC


nm43



GTGGATTCACCA






GGCCGGTGCTGG






CACACTCACCCT






CG





TFH_
0.84
0.85
0.85
GTTGTCAGAATT


nm44



TCCTTCCCTTTAA






AGGCTGAATAGG






CCAGGCGTGATC






G





TFH_
0.76
0.71
0.69
CCACTACAAAAA


nm45



CAGTCATAAAGA






GCTTAACATACT






CAGCATAACGAT






CG





TFH_
0.62
0.62
0.62
CGATGGGTAGGT


nm46



GGAATAACAGCC






CCCTCCCAAAGC






TTAGCAACAACA






GC





TFH_
0.78
0.78
0.79
AGAATGGAAAAT


nm47



GTAAATTAAGCC






TTTGTTTTCCATC






ATCATTCTCATC






GC





TFH_
0.67
0.73
0.76 
CGCCACCTCCAT


nm48



GCTGTGTTTCTG






TGGCTGGAGCTT






TTCTGCACTGGA






AA





TFH_
0.56
0.88
0.79
TGCCTGAGGCCG


nm49



CCCGCTGTTCAG






CGGAAGAGCCA






ACATCTGTGCTA






TCG





TFH_
0.78
0.66
0.63
CGGTCCAGAAAT


nm50



ACTATCTGGTCC






AAATCAGCAAGA






GCATCGCACGTT






AG





TFH_
0.89
0.89
0.89 
AATTACCCTCAT


nm51



GATGAACATTTC






CCTACTCTGAGT






AAAGATGCTATC






CG





TFH_
0.76
0.80
0.75
TAAATAAAGATC


nm52



ATCTGGTCCAAG






GATGGCAAATAT






GTGGCACAAGTA






CG





TFH_ 
0.86
0.84
0.89
AAGGCGCAGCCA


nm53



AGGACTATTACA






CCTCTGGCTGCT






CGGACGCATCTT






CG





TFH_
0.90
0.76
0.78
CGGGTGGCTGAA


nm54



TGGAAAAACAA






ATGGGGCTTCAC






CTGTGACTCAGA






CCA





TFH_
0.85
0.79
0.86
CGGCTCAGGAGA


mn55



CTGAAACATCCA






AAGCCTGAATTG






GTCCTTATATCA






TG





TFH_
0.97
0.89
0.92
CGCCCCGCACGT


nm56



ACTGTGTGCCTC






GTTCTTTATCTGT






GTTCGTTTATTC






A
















TABLE 4E





positive T cell Marker
























Baso-
Eosino-






phil
phil


Marker-
Target-


Granu-
Granu-


ID
ID
SYMBOL
Accession
locytes
locytes





nCD4_
cg24885
CA6
NM_0012
0.91
0.93


nm1
723

15







nCD4_
cg26280


0.92
0.92


nm2
976









nCD4_
cg00912


0.89
0.90


nm3
164









nCD4_
cg04116
MAN1C1
NM_0203
0.89
0.87


nm4
354

79







nCD4_
cg13484


0.92
0.92


nm5
324









nCD4_
cg10555
MAN1C1
NM_0203
0.88
0.90


nm6
744

79







nCD4_
cg08639
STIM2
NM_0011
0.91
0.92


nm7
389

69117







nCD_
cg25737


0.04
0.03


meth1
313









nCD_
cg13921
ARHGEF2
NM_0047
0.21
0.25


meth1
921

23







nCD_
cg03290
DUSP5
NM_0044
0.10
0.15


meth1
131

19







nCD_
cg04742
ITGAX
NM_0008
0.00
0.01


meth1
550

87







nCD_
cg21268
GGA1
NM_0010
0.03
0.03


meth1
578

01560







CD4mem_
cg11106
RAP1GDS1
NM_0011
0.80
0.92


nm1
864

00427







CD4mem_
cg08877
GPR63
NM_0011
0.85
0.85


nm2
853

43957







CD4mem_
cg14108
SDCCAG3
NM_0010
0.95
0.95


nm3
380

39708







CD4mem_
cg10328
SS18L1
NM_1989
0.92
0.92


nm4
548

35







CD4mem_
cg03188
TALDO1
NM_0067
0.82
0.71


nm5
793

55







CD4mem_
cg09187


0.91
0.91


nm6
865









CD4mem_
cg04936
FAM38A
NM_0011
0.78
0.82


nm7
610

42864







CD4mem_
cg21685
PON2
NM_0003
0.84
0.86


nm8
655

05







CD4mem_
cg2l132
ALLC
NM_0184
0.96
0.96


nm9
587

36







CD4mem_
cg04026
HLA-
NM_0021
0.78
0.76


nm10
937
DRB1
24







CD4mem_
cg18591


0.91
0.91


nm11
489









CD4mem_
cg26296
FARS2
NM_0065
0.75
0.82


nm12
371

67







CD4mem_
cg26899
HCFC1
NM_0053
0.89
0.89


nm13
005

34







CD4mem_
cg08299


0.93
0.94


nm14
859









CD4mem_
cg05450
NUBP1
NM_0024
0.73
0.70


nm15
979

84







CD4mem_
cg15700
HLA-
NR_00129
0.79
0.88


nm16
429
DRB6
8







CD4mem_
cg25232
OSBPL5
NM_0011
0.79
0.74


nm17
888

44063







CD4mem_
cg05606


0.86
0.89


nm18
115









CD4mem_
cg15654
HLA-
NR_00129
0.87
0.86


nm19
485
DRB6
8







CD4mem_
cg20601
ERICH1
NM_2073
0.88
0.88


nm20
736

32







CD4mem_
cg01419
PLAT
NM_0009
0.87
0.91


nm2l
713

30







CD4mem_
cg13213
KIAA12
NM_0207
0.95
0.95


nm22
216
10
21







CD4mem_
cg23812
FLG2
NM_0010
0.92
0.91


nm23
489

14342







CD4mem_
cg08916
GNRHR
NM_0004
0.91
0.88


nm24
385

06







CD4mem_
cg13011
PAGE2M
NM_0010
0.87
0.89


nm25
976

15038







CD4mem_
cg09354


0.94
0.95


nm26
553









CD4mem_
cg00944
TRRAP
NM_0034
0.86
0.83


nm27
599

96







CD4mem_
cg07904


0.96
0.98


nm28
290









CD4mem_
cg22626
SMYD3
NM_0011
0.91
0.91


nm29
897

67740







CD4mem_
cg18887
SMURF1
NM_0204
0.89
0.89


nm30
230

29







CD4mem_
cg16490


0.79
0.63


nm31
805









CD4mem_
cg18203


0.71
0.73


nm32
203









CD4mem_
cg22951
AHRR
NM_0207
0.82
0.83


nm33
524

31







CD4mem_
cg07712
TBCD
NM_0059
0.90
0.90


nm34
165
93








CD4mem_
cg01201


0.82
0.82


nm35
914









CD4mem_
cg07951


0.82
0.85


nm36
602









CD4mem_
cg21498


0.86
0.89


nm37
326









CD4mem_
cg11791
RANBP3L
NM_1450
0.82
0.70


nm38
078

00







CD4mem_
cg15613
MCC
NM_0023
0.76
0.80


nm39
905

87







CD4mem_
cg09307


0.87
0.86


nm40
431









CD4mem_
cg21911
CD28
NM_0061
0.88
0.86


nm41
000

39







CD4mem_
cg20770
ILA-
NM_0021
0.87
0.87


nm42
572
DQB1
23







CD4mem_
cg22787


0.62
0.65


nm43
186






Neutro-

Non-





phil
Classical
classical
CD4 +



Marker-
Granu-
Mono-
Mono-
Th
CD4 +


ID
locytes
cytes
cytes
naive
Th1





nCD4_
0.90
0.92
0.91
0.18
0.85


nm1










nCD4_
0.94
0.93
0.92
0.21
0.87


nm2










nCD4_
0.90
0.89
0.91
0.19
0.81


nm3










nCD4_
0.88
0.88
0.88
0.16
0.74


nm4










nCD4_
0.87
0.91
0.92
0.22
0.88


nm5










nCD4_
0.93
0.91
0.92
0.20
0.81


nm6










nCD4_
0.92
0.93
0.92
0.19
0.69


nm7










nCD_
0.03
0.03
0.03
0.61
0.14


meth1










nCD_
0.05
0.03
0.05
0.69
0.16


meth1










nCD_
0.08
0.02
0.03
0.63
0.07


meth1










nCD_
0.01
0.01
0.01
0.69
0.14


meth1










nCD_
0.04
0.03
0.02
0.74
0.24


meth1










CD4mem_
0.88
0.89
0.89
0.92
0.90


nm1










CD4mem_
0.89
0.88
0.90
0.93
0.87


nm2










CD4mem_
0.94
0.96
0.96
0.92
0.11


nm3










CD4mem_
0.91
0.93
0.92
0.94
0.90


nm4










CD4mem_
0.84
0.87
0.86
0.73
0.91


nm5










CD4mem_
0.82
0.80
0.80
0.87
0.93


nm6










CD4mem_
0.83
0.84
0.86
0.88
0.85


nm7










CD4mem_
0.87
0.85
0.85
0.83
0.75


nm8










CD4mem_
0.97
0.97
0.96
0.97
0.97


nm9










CD4mem_
0.74
0.76
0.72
0.88
0.75


nm10










CD4mem_
0.91
0.90
0.89
0.69
0.18


nm11










CD4mem_
0.76
0.80
0.75
0.79
0.55


nm12










CD4mem_
0.91
0.90
0.93
0.73
0.56


nm13










CD4mem_
0.93
0.94
0.93
0.93
0.94


nm14










CD4mem_
0.78
0.77
0.68
0.83
0.82


nm15










CD4mem_
0.89
0.88
0.85
0.74
0.76


nm16










CD4mem_
0.90
0.92
0.92
0.97
0.94


nm17










CD4mem_
0.91
0.92
0.92
0.90
0.88


nm18










CD4mem_
0.89
0.90
0.90
0.89
0.87


nm19










CD4mem_
0.88
0.90
0.87
0.87
0.83


nm20










CD4mem_
0.91
0.90
0.89
0.81
0.14


nm2l










CD4mem_
0.97
0.97
0.96
0.96
0.96


nm22










CD4mem_
0.92
0.90
0.91
0.92
0.91


nm23










CD4mem_
0.90
0.89
0.87
0.92
0.53


nm24










CD4mem_
0.87
0.89
0.88
0.83
0.37


nm25










CD4mem_
0.93
0.94
0.92
0.91
0.90


nm26










CD4mem_
0.88
0.87
0.82
0.72
0.15


nm27










CD4mem_
0.97
0.97
0.97
0.97
0.97


nm28










CD4mem_
0.91
0.90
0.91
0.88
0.89


nm29










CD4mem_
0.89
0.89
0.87
0.71
0.24


nm30










CD4mem_
0.71
0.73
0.71
0.73
0.70


nm31










CD4mem_
0.74
0.70
0.71
0.76
0.52


nm32










CD4mem_
0.84
0.84
0.84
0.83
0.74


nm33










CD4mem_
0.91
0.91
0.91
0.91
0.91


nm34










CD4mem_
0.83
0.82
0.82
0.87
0.46


nm35










CD4mem_
0.82
0.84
0.83
0.88
0.78


nm36










CD4mem_
0.87
0.89
0.83
0.88
0.14


nm37










CD4mem_
0.74
0.75
0.76
0.61
0.66


nm38










CD4mem_
0.81
0.82
0.82
0.84
0.44


nm39










CD4mem_
0.86
0.86
0.87
0.81
0.19


nm40










CD4mem_
0.89
0.91
0.89
0.85
0.38


nm41










CD4mem_
0.88
0.87
0.86
0.88
0.83


nm42










CD4mem_
0.84
0.80
0.81
0.84
0.85


nm43







CD4 +
CD4 +
CD8 +





Th
Th
Cyto-



Marker-
CD4 +
Central
Efftect.
toxic
NK


ID
Th2
Mem.
Mem.
T-Cells
T-Cells





nCD4_
0.89
0.82
0.90
0.54
0.92


nm1










nCD4_
0.83
0.77
0.88
0.68
0.92


nm2










nCD4_
0.72
0.75
0.87
0.52
0.91


nm3










nCD4_
0.57
0.59
0.75
0.57
0.89


nm4










nCD4_
0.78
0.66
0.74
0.66
0.92


nm5










nCD4_
0.68
0.65
0.81
0.54
0.93


nm6










nCD4_
0.62
0.59
0.69
0.55
0.87


nm7










nCD_
0.14
0.24
0.15
0.35
0.07


meth1










nCD_
0.35
0.34
0.29
0.43
0.05


meth1










nCD_
0.19
0.25
0.16
0.42
0.05


meth1










nCD_
0.16
0.27
0.17
0.11
0.01


meth1










nCD_
0.23
0.32
0.25
0.17
0.04


meth1










CD4mem_
0.91
0.47
0.02
0.89
0.85


nm1










CD4mem_
0.87
0.44
0.03
0.91
0.83


nm2










CD4mem_
0.08
0.26
0.13
0.67
0.59


nm3










CD4mem_
0.90
0.48
0.11
0.93
0.93


nm4










CD4mem_
0.91
0.46
0.03
0.91
0.88


nm5










CD4mem_
0.92
0.50
0.12
0.94
0.90


nm6










CD4mem_
0.85
0.44
0.06
0.86
0.80


nm7










CD4mem_
0.73
0.46
0.04
0.86
0.87


nm8










CD4mem_
0.98
0.55
0.31
0.97
0.98


nm9










CD4mem_
0.75
0.46
0.06
0.84
0.76


nm10










CD4mem_
0.09
0.27
0.15
0.70
0.57


nm11










CD4mem_
0.53
0.45
0.04
0.70
0.72


nm12










CD4mem_
0.57
0.20
0.17
0.76
0.71


nm13










CD4mem_
0.94
0.59
0.14
0.93
0.93


nm14










CD4mem_
0.81
0.48
0.03
0.82
0.69


nm15










CD4mem_
0.80
0.39
0.13
0.72
0.72


nm16










CD4mem_
0.94
0.52
0.19
0.95
0.86


nm17










CD4mem_
0.85
0.49
0.16
0.86
0.80


nm18










CD4mem_
0.88
0.44
0.18
0.87
0.90


nm19










CD4mem_
0.82
0.43
0.17
0.87
0.83


nm20










CD4mem_
0.16
0.22
0.19
0.72
0.68


nm2l










CD4mem_
0.96
0.59
0.26
0.96
0.95


nm22










CD4mem_
0.91
0.51
0.19
0.92
0.90


mn23










CD4mem_
0.51
0.18
0.27
0.88
0.83


nm24










CD4mem_
0.30
0.25
0.19
0.77
0.69


nm25










CD4mem_
0.93
0.61
0.20
0.93
0.70


nm26










CD4mem_
0.20
0.24
0.16
0.81
0.66


nm27










CD4mem_
0.96
0.20
0.46
0.95
0.93


nm28










CD4mem_
0.87
0.54
0.23
0.90
0.89


nm29










CD4mem_
0.15
0.26
0.21
0.71
0.68


nm30










CD4mem_
0.69
0.28
0.05
0.86
0.83


nm31










CD4mem_
0.56
0.21
0.04
0.77
0.67


nm32










CD4mem_
0.75
0.43
0.16
0.80
0.71


nm33










CD4mem_
0.91
0.22
0.44
0.91
0.90


nm34










CD4mem_
0.87
0.42
0.16
0.84
0.82


nm35










CD4mem_
0.79
0.20
0.17
0.80
0.70


nm36










CD4mem_
0.18
0.35
0.24
0.74
0.59


nm37










CD4mem_
0.60
0.07
0.09
0.65
0.71


nm38










CD4mem_
0.44
0.10
0.33
0.74
0.61


nm39










CD4mem_
0.24
0.33
0.26
0.66
0.53


nm40










CD4mem_
0.32
0.41
0.25
0.82
0.78


nm41










CD4mem_
0.83
0.27
0.42
0.83
0.79


nm42










CD4mem_
0.83
0.27
0.25
0.80
0.82


nm43











Marker-



ID
Discovery Fragment





nCD4_
CGGATAGATTAGTTC


nm1
TGGAATAATGCCTGA



GACACAGCACCCAG



AACCTC





nCD4_
TGTTGTGGGAAGCTT


nm2
TCCCGTGCGCTGTAG



GATGTTTAGCAGCAC



CCTCG





nCD4_
GTACTCTTACACTCA


nm3
CGGGGGTGCCGGGC



CCCTGGAACCTGCAA



CTCACG





nCD4_
CGGAATTTTTTAGTG


nm4
CAAAATATTTACTAG



TGTGAGGCAGAACAT



TATTA





nCD4_
CGAGTCTATGTAATT


nm5
AAGAGACTGAGAAT



TACACTAGGGACCTC



CTATAG





nCD4_
GTAGCTAAGTAAGG


nm6
GGCATTCATTTCTCC



CTTTCTTGTTAAGGA



ACTACG





nCD4_
CATACTTCAAACATA


nm7
ACGTGTCTTAAAACA



ACTTTTGATCTCTGT



CACCG





nCD_
CGCCCCCGCGGGGCC


meth1
CAGCCAGATGTCAGC



TGCAGTTATTAGCCT



GGGCG





nCD_
CGTGTCTTGATTCCA


meth1
CCTTTAGAGGCTGCC



CAGGGTTTCACACCC



GACCC





nCD_
CGAGCCTGTGGCTTT


meth1
CAAGCTGTGGACATC



TGGCCTAGCTAGATT



TCTAC





nCD_
CGCAACTGATCCGAG


meth1
GACAGGCTCGGCCTC



CCACACGCCCCCACC



CCCCA





nCD_
GTCTCCTTCATTCATT


meth1
GGCCTCTGCTGGGGC



CTCCTATGGGTGTCT



TACG





CD4mem_
CCATACCACTTGTGC


nm1
ATGCATGTGATGTTC



TAATACCAATTGAAG



AACCG





CD4mem_
GGCAGTGTTGACTGC


nm2
GTTCCATACCGGGAC



ATCCAACACAACATT



TGTCG





CD4mem_
CGGATGCCCTCGTGG


nm3
GCCAGCTATCCCCAG



GCACAGCGAGACAG



CGACGT





CD4mem_
CCACCGTGCCCAGCT


nm4
CTTTTCTTTCTCTAAG



AATCCTCTGGCATTC



TGCG





CD4mem_
CTCACTCCCATGCTG


nm5
TTACAGGTCACCTCT



TGCAGGGGCATATTT



GATCG





CD4mem_
AAATATTACCTATTA


nm6
GATTGGTAACAATGA



AAAAGACTTGGCAG



CCGCCG





CD4mem_
CGCCAACAGAGGAT


nm7
GGCCAGCCCCACCCC



AGAGGACAGCGCAC



CCACGGC





CD4mem_
CGTTATCAGTAGTTC


nm8
TAAACAGCCATAGTA



GTCACAGTGCCAGAA



GTGAG





CD4mem_
GCCGGGCGAGCTGA


nm9
GATCAGACAACAGG



CGCTGGACGCATCCT



AACTACG





CD4mem_
GGAAGTCAGAAAGC


nm10
TGCTCACTCCATTCC



ACTGTGAGAGGGCTT



GTCACG





CD4mem_
TGTGAGTTAGTTCTA


nm11
CAGCACAATGCTTGG



CTGCTGTTTCAGCAA



TTGCG





CD4mem_
CGACTTCCCAGCCAA


nm12
GGGAAACTGTCACCG



AGGGTGGGACTAAA



TCTGAC





CD4mem_
CGCGCGCCTATTGAT


nm13
TTGTTTCTGAGGAGA



GTACACCGTTCACTA



TTGTA





CD4mem_
TCTGCGTATTCCTTTC


nm14
TGTTCTTTAAAAATG



TTAAACCATGGGGTG



CTCG





CD4mem_
CGCCCCACACTGGGG


nm15
TCACCCACCTATGAG



CGGATCCAGGGGCA



CTCTGC





CD4mem_
TTCCTCAGCTCCTGT


nm16
TCTTGGCCTGAAACC



CCACAGCCTTGATGG



CAGCG





CD4mem_
CGTACAGAGCCTTAA


nm17
ACCACATCGTGGCGG



TGCCGTCTGAGCTGT



AGCGG





CD4mem_
CTTTTCCTTGCTAAA


nm18
TCAATTCCCTAAGAC



ATCAGGACTGTGAGA



CATCG





CD4mem_
CTCATATAACCCCAA


nm19
GAGGTAAATTAGTAT



AATTTAACCTACATT



ATACG





CD4mem_
CAGAAACCTCACACT


nm20
CAATTAGCGAGACTG



CAAACACTCTGTATT



AACCG





CD4mem_
CGCCTCCCACCCCTG


nm2l
GCAGGCTGCCATCTT



TGCCAAGCACAGGA



GGTCGC





CD4mem_
ATCATTGTTCTCTCC


nm22
GTGCAGCTAGGTATG



CCGCAAGGTCTCGGG



TTCCG





CD4mem_
CATTTTCCCAAGGGT


nm23
CCAGGCCCTAAACAT



GCCAGACTACCAGTG



GATCG





CD4mem_
CGCATTTGAGGAGCT


nm24
CTAAGTTGTTGAATC



TAAGTTGTTGGATGA



GTCAA





CD4mem_
CGTTGTCAGGAGCGC


nm25
TGGTGGTTTAGGTTC



TCCACAGACGCAGG



AAAACA





CD4mem_
CGCCAACACAGACG


nm26
AACCCCAACACGTGG



CAAACCCCAACACA



GGCGAAC





CD4mem_
TCCTCAACATGGTAT


nm27
GGGGTTCGCTATCAC



CAGCGTGAAGATGG



AAAACG





CD4mem_
CGATGACTAATTTGG


nm28
TTAGCGGCAACAACA



GGCTTCTTGCGGCGA



GGCCT





CD4mem_
CGGCGTGTGTCTTTG


nm29
TTGAATGCCTTATTG



AGGTCACACACTCTA



TGCTT





CD4mem_
CGGCCATCCTGCTTT


nm30
AGGGATGAATTGAA



ACTGGAAAGAGAGT



AGTACCA





CD4mem_
TGAGAAGGGGCACC


nm31
CAATGTGCTTCCTCT



TGGGGTGCAGCGGTG



TGGCCG





CD4mem_
CGCACACACATACTT


nm32
GCATGTGGATGCAAA



CACAATTGGTGCATG



GGTTT





CD4mcm_
CGCATCTGAGCGTAG


nm33
ACACACAGATCTGAG



CTTGGATGGTGGTCA



CTGCG





CD4mem_
CAGAAGGTCACACA


nm34
GACGGTTGCGCTGCT



CTCTCACCACTGCAA



GCTCCG





CD4mem_
CGCCTAGGCTCAAGC


nm35
AATCTGGCTCTGGAT



GTCTTTAACTTGTGA



TTGAA





CD4mem_
CGCCTCTCAAGAGCA


nm36
CGATGTAAGGGCTCC



AAGATGAGTTTGGGC



TTCCC





CD4mem_
CGGTTAAACATTGGT


nm37
ATAGAAACCAGATCT



ACTTTTAATTGAAAT



CAGAC





CD4mem_
CGGAAAAGGAGCTT


nm38
GTCTTGAGAAACAAC



AAAGAATTGAGCTAT



AGTTTC





CD4mem_
TGCAGTTAGGACTCC


nm39
ATAGCAGGCCTGCAG



TGGCCCTGGTGATAA



CCTCG





CD4mem_
AGGAAGCCTTTAAAG


nm40
GACTGGACCCGGAA



AGCACCTACTAAAGT



GTATCG





CD4mem_
CGGTTAATTATGGAA


nm41
AAACAGCTTGTTAAG



CAAATGCTAATGTAA



GAAGA





CD4mem_
CGGTGACAGATTTCT


nm42
ATCCAGGCCAGATCA



AAGTCCGGTGGTTTC



GGAAT





CD4mem_
CGGTACCTCTACTGC


nm43
TGAGTCCAAAGTCAC



CGCGGCATACCCAGC



TCGGC
















TABLE 4F





Monocytes-Marker
























Baso-
Eosin-






phil
phil


Marker-
Target-


Granu-
Granu-


ID
ID
SYMBOL
Accession
locytes
locytes





MOC_
cg2324
PARK2
NM_0045
0.96
0.96


nm21
4761

62







MOC_
cg1343
MTMR11
NM_1818
0.84
0.84


nm22
0807

73







MOC_
cg0592
TCF7L2
NM_0011
0.79
0.82


nm23
3857

46284







MOC_
cg0104
LDLRAD4
NM_1814
0.76
0.85


nm24
1239
(C18orf1)
82







MOC_
cg2145
ERICH1
NM_2073
0.90
0.92


nm25
9713

32







MOC_
cg1265
EHD4
NM_1392
0.96
0.82


nm26
5112

65







MOC_
cg1048
CENPA
NM_0018
0.91
0.86


nm27
0329

09







MOC_
cg1442
MYOF
NM_1333
0.94
0.92


nm28
8166

37







MOC_
cg2589
PPM1F
NM_0146
0.89
0.85


nm29
8577

34







MOC_
cg1663
FAR1
NM_0322
0.91
0.92


nm30
6767

28







MOC_
cg0224
SCN1A
NM_0141
0.89
0.90


nm31
4028

39







MOC_
cg0721
TRRAP
NM_0034
0.90
0.91


nm32
3487

96







MOC_
cg0396
MGRN1
NM_0152
0.98
0.97


nm33
3853

46







MOC_
cg2205
RBM47
NM_0190
0.90
0.89


nm34
6336

27







MOC_
cg1806
KIAA0146
NM_0010
0.92
0.91


nm35
6690

80394







MOC_
cg0010
KAZN
NM_2016
0.90
0.89


nm36
1629
(KIAA1-26
28







MOC_
cg2091
RIN2

0.97
0.97


nm37
8393









MOC_
cg1073 
ERCC1

0.86
0.81


nm38
2094









ncMOC_
cg0414
ANKRD11
NM_0132
0.88
0.88


nm1
3805

75







ncMOC_
cg0700
ERICH1
NM_2073
0.95
0.94


nm3
4744

32







ncMOC_
cg0736
SECTM1
NM_0030
0.89
0.89


nm6
9606

04







ncMOC_
cg0202
DUSP1
NM_0044
0.93
0.94


nm8
9908

17







ncMOC_
cg1690


0.91
0.86


nm9
8740









ncMOC_
cg0896


0.96
0.94


nm10
9823









nmMOC_
cg1468


0.91
0.90


nm11
4854









ncMOC_
cg2453


0.98
0.97


nm12
4048









ncMOC_
cg1968
CYB561
NM_0010
0.90
0.76


nm13
3800

17917







ncMOC_
cg0837
KCNQ1
NM_0002
0.88
0.79


nm15
6310

18







ncMOC_
cg0745


0.91
0.91


nm19
7429









ncMOC_
cg1049
FANCA
NM_0001
0.86
0.89


nm20
2417
35








ncMOC_
cg0174
FAM26F
NM_0010
0.91
0.92


nm21
2428

10919







ncMOC_
cg1958
PRKACA
NM_2075
0.91
0.93


nm22
6199

18







ncMOC_
cg1014


0.93
0.95


nm24
3416









ncMOC_
cg0326
TSPAN16
NM_0124
0.87
0.77


nm25
3792

66







ncMOC_
cg0977


0.86
0.83


nm26
9405









ncMOC_
cg1628


0.90
0.85


nm27
8101









ncMOC_
cg2038
NAAA
NM_0010
0.80
0.81


nm28
0448

42402







ncMOC_
cg0539
ELF5
NM_0014
0.87
0.88


nm29
0144

22







ncMOC_
cg1318
GPR152
NM_2069
0.88
0.88


nm30
7188

97







ncMOC_
cg0432
TCF7L2
NM_0011
0.93
0.90


nm31
2596

46284







ncMOC_
cg0774
UHRF1BP1L
NM_0010
0.87
0.88


nm32
4832

06947







ncMOC_
cg1331
DDAH2
NM_0139
0.87
0.80


nm33
8914

74







ncMOC_
cg1443
SMG6
NM_0175
0.87
0.83


nm34
9774

75







ncMOC_
cg1589


0.80
0.72


nm35
6579









ncMOC_
cg0973
LOC285740
NR_0271
0.88
0.75


nm36
6194

13







ncMOC_
cg1889
RGS12
NM_1982
0.89
0.88


nm37
8336

29







ncMOC_
cg0926
TMEM181
NM_0208
0.94
0.95


nm38
2230

23







ncMOC_
cg1079


0.97
0.95


nm39
4991









ncMOC_
cg0266
WIPI2
NM_0160
0.85
0.84


nm40
7577

03







ncMOC_
cg0607
BCL6
NM_0017
0.88
0.69


nm42
0445

06







ncMOC_
cg2414
RASA3
NM_0073
0.86
0.85


nm44
3729

68







ncMOC_
cg1112
WDR46
NM_0054
0.79
0.60


nm46
9609

52







ncMOC_
cg0231
LOC33879
NR_0028
0.80
0.57


nm48
7313
9
09







ncMOC_
cg0469
SNRPC
NR_0294
0.89
0.40


nm50
0793

72






Neutro-

Non-





phil
Classical
lassical




Marker-
Granu-
Mono-
Mono-
NK



ID
locytes
cytes
cytes
classical
B-Cells





MOC_
0.97
0.03
0.06
0.97
0.98


nm21










MOC_
0.86
0.03
0.07
0.89
0.82


nm22










MOC_
0.81
0.02
0.08
0.92
0.92


nm23










MOC_
0.77
0.03
0.08
0.93
0.83


nm24










MOC_
0.94
0.08
0.14
0.91
0.93


nm25










MOC_
0.68
0.01
0.04
0.97
0.88


nm26










MOC_
0.84
0.07
0.09
0.94
0.91


nm27










MOC_
0.85
0.11
0.11
0.95
0.95


nm28










MOC_
0.73
0.06
0.07
0.84
0.91


nm29










MOC_
0.91
0.10
0.15
0.92
0.88


nm30










MOC_
0.86
0.13
0.12
0.88
0.91


nm31










MOC_
0.91
0.10
0.13
0.90
0.60


nm32










MOC_
0.97
0.26
0.27
0.97
0.98


nm33










MOC_
0.87
0.18
0.16
0.85
0.75


nm34










MOC_
0.91
0.06
0.10
0.91
0.91


nm35










MOC_
0.84
0.11
0.14
0.88
0.75


nm36










MOC_
0.90
0.21
0.12
0.98
0.98


nm37










MOC_
0.76
0.13
0.09
0.87
0.71


nm38










ncMOC_
0.89
0.82
0.32
0.91
0.88


nm1










ncMOC_
0.93
0.93
0.39
0.96
0.95


nm3










ncMOC_
0.93
0.91
0.48
0.95
0.95


nm6










ncMOC_
0.94
0.92
0.23
0.93
0.93


nm8










ncMOC_
0.90
0.85
0.18
0.93
0.92


nm9










ncMOC_
0.94
0.96
0.30
0.95
0.97


nm10










nmMOC_
0.91
0.91
0.26
0.88
0.88


nm11










ncMOC_
0.96
0.82
0.18
0.98
0.97


nm12










ncMOC_
0.85
0.87
0.24
0.93
0.92


nm13










ncMOC_
0.91
0.81
0.19
0.98
0.94


nm15










ncMOC_
0.92
0.87
0.29
0.92
0.92


nm19










ncMOC_
0.90
0.83
0.25
0.88
0.90


nm20










ncMOC_
0.92
0.91
0.36
0.92
0.93


nm21










ncMOC_
0.97
0.96
0.45
0.98
0.98


nm22










ncMOC_
0.94
0.95
0.46
0.95
0.93


nm24










ncMOC_
0.79
0.85
0.37
0.86
0.85


nm25










ncMOC_
0.81
0.73
0.25
0.85
0.91


nm26










ncMOC_
0.85
0.74
0.26
0.88
0.86


nm27










ncMOC_
0.77
0.83
0.35
0.83
0.83


nm28










ncMOC_
0.88
0.87
0.42
0.88
0.85


nm29










ncMOC_
0.88
0.88
0.44
0.95
0.92


nm30










ncMOC_
0.90
0.92
0.49
0.92
0.91


nm31










ncMOC_
0.89
0.89
0.48
0.86
0.89


nm32










ncMOC_
0.84
0.80
0.39
0.89
0.90


nm33










ncMOC_
0.86
0.87
0.46
0.81
0.89


nm34










ncMOC_
0.75
0.76
0.36
0.76
0.81


nm35










ncMOC_
0.85
0.87
0.49
0.91
0.90


nm36










ncMOC_
0.89
0.85
0.46
0.88
0.88


nm37










ncMOC_
0.96
0.95
0.57
0.95
0.89


nm38










ncMOC_
0.97
0.84
0.46
0.96
0.95


nm39










ncMOC_
0.88
0.85
0.28
0.58
0.66


nm40










ncMOC_
0.69
0.70
0.18
0.86
0.89


nm42










ncMOC_
0.84
0.67
0.25
0.86
0.63


nm44










ncMOC_
0.52
0.58
0.13
0.67
0.82


nm46










ncMOC_
0.77
0.61
0.21
0.89
0.86


nm48










ncMOC_
0.77
0.75
0.11
0.85
0.87


nm50









CD4 +
CD4 +



CD4 +


Th
Th


Marker-
Th
CD4 +
CD4 +
Central
Effect.


ID
naive
Th1
Th2
Mem.
Mem.





MOC_
0.98
0.98
0.99
0.99
0.98


nm21










MOC_
0.86
0.87
0.90
0.89
0.89


nm22










MOC_
0.80
0.83
0.84
0.80
0.84


nm23










MOC_
0.75
0.94
0.95
0.89
0.95


nm24










MOC_
0.92
0.84
0.90
0.89
0.91


nm25










MOC_
0.95
0.90
0.80
0.87
0.80


nm26










MOC_
0.93
0.93
0.94
0.93
0.93


nm27










MOC_
0.95
0.93
0.95
0.95
0.95


nm28










MOC_
0.89
0.88
0.88
0.87
0.88


nm29










MOC_
0.90
0.92
0.92
0.92
0.92


nm30










MOC_
0.91
0.89
0.88
0.89
0.90


nm31










MOC_
0.92
0.90
0.89
0.90
0.90


nm32










MOC_
0.98
0.99
0.98
0.98
0.98


nm33










MOC_
0.88
0.81
0.83
0.84
0.83


nm34










MOC_
0.93
0.91
0.92
0.94
0.91


nm35










MOC_
0.92
0.83
0.86
0.85
0.85


nm36










MOC_
0.98
0.98
0.98
0.98
0.98


nm37










MOC_
0.87
0.88
0.88
0.89
0.90


nm38










ncMOC_
0.90
0.88
0.88
0.89
0.88


nm1










ncMOC_
0.94
0.96
0.96
0.95
0.97


nm3










ncMOC_
0.89
0.88
0.89
0.90
0.90


nm6










ncMOC_
0.93
0.92
0.91
0.89
0.89


nm8










ncMOC_
0.91
0.88
0.90
0.90
0.90


nm9










ncMOC_
0.96
0.96
0.95
0.97
0.96


nm10










nmMOC_
0.91
0.84
0.84
0.86
0.85


nm11










ncMOC_
0.98
0.97
0.97
0.97
0.98


nm12










ncMOC_
0.86
0.91
0.92
0.94
0.93


nm13










ncMOC_
0.84
0.98
0.97
0.98
0.98


nm15










ncMOC_
0.92
0.92
0.91
0.91
0.90


nm19










ncMOC_
0.89
0.75
0.73
0.78
0.77


nm20










ncMOC_
0.92
0.92
0.91
0.93
0.93


nm21










ncMOC_
0.91
0.97
0.95
0.97
0.98


nm22










ncMOC_
0.93
0.91
0.92
0.92
0.92


nm24










ncMOC_
0.88
0.82
0.84
0.86
0.86


nm25










ncMOC_
0.89
0.89
0.91
0.93
0.91


nm26










ncMOC_
0.89
0.89
0.89
0.89
0.90


nm27










ncMOC_
0.84
0.80
0.81
0.82
0.83


nm28










ncMOC_
0.87
0.75
0.81
0.81
0.81


nm29










ncMOC_
0.85
0.85
0.86
0.89
0.87


nm30










ncMOC_
0.92
0.91
0.92
0.93
0.93


nm31










ncMOC_
0.87
0.87
0.87
0.86
0.89


nm32










ncMOC_
0.86
0.86
0.86
0.86
0.87


nm33










ncMOC_
0.87
0.87
0.89
0.87
0.87


nm34










ncMOC_
0.80
0.79
0.80
0.78
0.81


nm35










ncMOC_
0.90
0.90
0.89
0.89
0.91


nm36










ncMOC_
0.88
0.81
0.84
0.84
0.83


nm37










ncMOC_
0.93
0.95
0.95
0.96
0.96


nm38










ncMOC_
0.97
0.97
0.97
0.97
0.96


nm39










ncMOC_
0.89
0.84
0.84
0.82
0.84


nm40










ncMOC_
0.86
0.86
0.83
0.86
0.87


nm42










ncMOC_
0.85
0.83
0.84
0.85
0.84


nm44










ncMOC_
0.80
0.78
0.77
0.79
0.77


nm46










ncMOC_
0.78
0.87
0.86
0.87
0.86


nm48










ncMOC_
0.90
0.91
0.93
0.93
0.92


nm50














CD8 +





Cyto-




Marker-
toxic
NK



ID
T-Cells
T-Cells
Discovery Fragment





MOC_
0.97
0.98
TGGGATGGAACGGCTGC


nm21


GACAGATCTCCATTAAA





GCCAGCGCGTCGTTCG





MOC_
0.90
0.86
TTCTTGGACCCCTCTTCT


nm22


TTGTCCCTTCTTCCTCTT





TATCACCCAGAGCG





MOC_
0.90
0.90
CGGCCATCAACCAGATC


nm23


CTTGGGCGGAGGGTAGG





TGACCTCCCTTCTCAGG





MOC_
0.75
0.89
CGCCGCTCATGGGCCTG


nm24


GTGTGCATGCAGCTGCG





CAGAGGGCCTCTGCCT





MOC_
0.92
0.89
TTGTGAGGACTGATGGTG


nm25


TGGACACCAGCGAGGAA





GACCCGACACTGGCCG





MOC_
0.97
0.96
AGAGAAACTCCACGCCC


nm26


ACTAACAGTCATTCTCTA





TTTCGTTTGCATGCG





MOC_
0.93
0.92
CGATCTTAAGAGAAAGG


nm27


GCAGGAGTGTTTCCTTG





ACCCCACATTCTCACT





MOC_
0.96
0.95
CGCCCCCGGGGTAGCGG


nm28


CTCTCGTTCTGATAGACT





TCATCAGTGAACTCC





MOC_
0.92
0.89
CGCTGATCCAGTCACCG


nm29


GGGAGGGGCTGACTGGC





AGCCACACAGAGGTTT





MOC_
0.90
0.90
CGGTTCCCAATTTGAAG


nm30


AGTGGAGACAGAAGTCA





AGAAAATAAGCTTTTC





MOC_
0.91
0.88
CGGCTCAGCCTTATTGTC


nm31


TTGCTTAATGTCTGGGTC





TCAGTTTTAGAGAC





MOC_
0.92
0.92
TGTGAAGCAGCTAGAGG


nm32


CGCGCTGGAAACCTGAT





ATGCTGCTGCCTCG





MOC_
0.97
0.98
TGGCCACGGGTCATTCG


nm33


TGGTTCCCCTGGAGCCTT





GCGGTGTATAGAGCG





MOC_
0.87
0.82
CGTGAACTTCCTAGAGG


nm34


CCAAAGTAAAAATAAAA





ACAGGGTCGCTAACAT





MOC_
0.92
0.91
CGGAAGGTGAGTGGGCA


nm35


ATGAAATGTCCAATTTT





AAAAGAAATTCCACGT





MOC_
0.86
0.69
CGCAAGAATGCACTTAG


nm36


TTAATCCAACAAGTATTT





ATTCAGTGCCTGAGT





MOC_
0.98
0.98
TTTCAACAACACCACTG


nm37


AAAGAATGTAAACGGAG





CTGGTCGCGTTGGTCG





MOC_
0.90
0.87
GAGGAAGTCCTTTCTGG


nm38


AGTCTGACCCTCAGTCT





GCCTGCTTCAAATGCG





ncMOC_
0.89
0.87
CGAAATCAGCGGAGGCC


nm1


CCTGCTGAGTGAGTGGA





CACACCCAGGCGCACG





ncMOC_
0.96
0.95
AACATGAGCAGCATGGA


nm3


CAACGCGGTACAACGGG





GCGAGAGCGCCAACCG





ncMOC_
0.93
0.88
CGCAGGCTTGGAGCCAT


nm6


GCCAGTGACACGCCTAG





GAAAGTTCACGCACCG





ncMOC_
0.94
0.88
CCCACTATATATTGGTCC


nm8


CGAATGTGCTGAGTTCA





GCAAATGTCTTGACG





ncMOC_
0.91
0.89
CGGAAGAACACTTGTAT


nm9


ATGCTGACATCAGCAAG





CAAAATGCATACAGTT





ncMOC_
0.96
0.95
GGCTTCCGGTGACCAGG


nm10


ATAGGAAGTGTTGCAGG





CCCTGCCCCGAGGGCG





nmMOC_
0.89
0.84
CGCCGAGCTCAGCAGAA


nm11


ACCCGCCCAGAAGGTCA





AGGACCAGCAAAAGGG





ncMOC_
0.98
0.98
GAGGCCTGGCACGGCGG


nm12


CACCGGAAGCGGGTACT





GGTGCCCTAAGGAGCG





ncMOC_
0.94
0.91
TGCGGGCCTCTCCTGCCC


nm13


TTTGTACTCCACGAGGT





GTGAGGAAGTTGCCG





ncMOC_
0.98
0.97
CGCGCTCACAGCCTCCG


nm15


TTCCCAGACACGCCCGG





GCCTGAGCCCCCAGGC





ncMOC_
0.93
0.90
CGGTCATAGTCCTCTGG


nm19


AGTPGACATCAGTGGGA





CCTCGGTGAAACTGCA





ncMOC_
0.87
0.86
CGCTGTCCGGAACTGGG


nm20


GTGCTCCACCCACACTG





TCTGGAACTGGCACAG





ncMOC_
0.92
0.94
CGCCCATCATAGAAGTA


nm21


CCAGAACTTGAGCTGGA





CTTTGCTGATTTAGCT





ncMOC_
0.97
0.97
CGCGGTTGCGCTAAGGG


nm22


GAGAGCTGCCTTGATAA





GACCTCTTGGGCACCC





ncMOC_
0.91
0.85
TGGGGAAGTCGCTGCTG


nm24


AGAACTCCGATGCCAAG





CGCTGACCCAGCCTCG





ncMOC_
0.87
0.76
TGAATGGATCCAGAGGC


nm25


TCTGTGATGCAGAAATC





TAGCTACAAGCCACCG





ncMOC_
0.91
0.86
CGTAATGATCTTGAGGA


nm26


AGAAAGAAAATGCAAA





GGGAAGTATGAAATAGC





ncMOC_
0.90
0.89
CGGTCTAATTAAAATAG


nm27


GGAACAAGAACCAAAA





AATCCCCTAGTTCCAGG





ncMOC_
0.84
0.79
CGGTGGAGTTCGGAGCA


nm28


ATTTTTTGCAGGCAGGA





AGTGGATCTTACAAAG





ncMOC_
0.83
0.72
CGGGCCAAATCATCACT


nm29


GGGCAGAACTAGGCCAT





AGGGTGCAAAATATAG





ncMOC_
0.87
0.73
CGCCCCATAGGAAGTAG


nm30


TAGAAGCGGCAGGCAGC





TGTCCCCACTCGGCCAG





ncMOC_
0.91
0.87
GGCCATAGTCACACCAA


nm31


CAGTCAAACAGGAATCG





TCCCAGAGTGATGTCG





ncMOC_
0.87
0.80
CGGCCTCCTTAGAATGTT


nm32


TTAAGAATCGGCCATTA





ACTCCTGTGCTTGCT





ncMOC_
0.91
0.85
CTCAGCTGTGGGGGCGT


nm33


GTGCTGAGCACCAAGCA





GAGGGAGCTGAGCCCG





ncMOC_
0.89
0.85
GCCAAATGACTGTGTTG


nm34


GCCTATGGGTGACCTGG





CCCCTGGCTAGAATCG





ncMOC_
0.82
0.73
CTGGATGGCAGACAGTG


nm35


CGTGCAAGCATCACAGC





CCACTGGAAGAGGCCG





ncMOC_
0.90
0.86
TTCTTCAAAACCCTAGTC


nm36


AGATATTGTTACTTCACT





GAAAACTCTCACCG





ncMOC_
0.83
0.76
TGGCTGATGTCTGCTGA


nm37


ACACCCGATCATTCACT





CAACAGACAGCTCTCG





ncMOC_
0.96
0.95
AGGTCAGCAGACGGTCA


nm38


CCGGGGAAAGCATCCAG





GCATCTTGTCGCCTCG





ncMOC_
0.98
0.97
CGAGGAGTTGCACTCTA


nm39


GCTGCCGTGCCAGCAGT





CTCGTCTGCTGTGACG





ncMOC_
0.74
0.78
CGGACTGACTGAACTTG


nm40


ACCTGTGACCTCTGACC





CGGGGAGCAGAGAACA





ncMOC_
0.89
0.88
CGTGCTGTAGAACATGC


nm42


AAGACAGCACCCTGATG





TGGGTGAATCTCATTT





ncMOC_
0.81
0.83
GGTCGTGACCCTGCCTC


nm44


CACCCTGTGTAAAGTCA





CAGCTGCAGGATCTCG





ncMOC_
0.83
0.77
CTGACAAGGGCAGAGGC


nm46


ACAAGCAGGAGGGTGCA





GCCTGTGGAAGGCCCG





ncMOC_
0.83
0.87
GGGGATGCCGGCGACTC


nm48


AGTAGTAAGGCAAGTCC





TGCCACCTCCTGGCCG





ncMOC_
0.91
0.91
CGGGGCACAGTTAACTT


nm50


ACCCCTTAGGACCAGGA





AGTAATCTTTGTGGTA
















TABLE 4G





Granolucytes and Subtypes Marker
























Baso-
Eosino-






phil
phil


Marker-
Target-


Granu-
Granu-


ID
ID
SYMBOL
Accession
locytes
locytes





GRC_
cg1501
TIMP2
NM_003255
0.22
0.09


nm38
0903









GRC_
cg1101
DCP1A
NM_018403
0.06
0.09


nm39
4468









GRC_
cg0746


0.09
0.07


nm40
8327









GRC_
cg2128
PCMTD1
NM_052937
0.18
0.08


nm41
5555









GRC_
cg0811
PXT1
NM_152990
0.06
0.01


nm42
0693









GRC_
cg1359


0.11
0.06


nm43
5556









GRC_
cg0342
LOC339524
NR_026986
0.01
0.07


nm44
3077









GRC_
cg0012
UNKL
NM_023076
0.14
0.13


nm45
1045









GRC_
cg0730
PVT1
NR_003367
0.05
0.05


nm46
5933









GRC_
cg2366


0.09
0.08


nm47
1721









GRC_
cg0616


0.10
0.11


nm48
8950









GRC_
cg0843
SLC23A2
NM_005116
0.02
0.11


nm49
5683









GRC_
cg0033
PDE4D
NM_001165899
0.12
0.05


nm50
5124









GRC_
cg0652
NUDT3
NM_006703
0.31
0.06


nm51
6020









GRC_
cg0382
MTIF2
NM_002453
0.08
0.27


nm52
0688









GRC_
cg1503
GTPDP1
NM_004286
0.14
0.11


nm53
4267









GRC_
cg0140
ANAPC10
NM_014885
0.37
0.06


nm54
0750









GRC_
cg2441
RRM2
NM_001034
0.16
0.09


nm55
9094









GRC_
cg1131
HNRNPUL1
NM_007040
0.31
0.11


nm56
3468









GRC_
cg0070
NCK2
NM_003581
0.67
0.07


nm57
5730









GRC_
cg1560
TTN
NM_133378
0.43
0.09


nm58
9237









GRC_
cg1951
UBE2H
NM_003344
0.65
0.08


nm59
3582









GRC_
cg1068
ZNF148
NM_021964
0.05
0.12


nm60
7936









GRC_
cg1816
REC8
NM_
0.06
0.10


nm61
8663

001048205







GRC_
cg2681
MAP7
NM_003980
0.13
0.12


nm62
4100









GRC_
cg1069
NCAPD2
NM_014865
0.08
0.16


nm63
2528









GRC_
cg0512
GLB1
NM_
0.12
0.17


nm64
0113

001135602







GRC_
cg0179
VPS53
NM_018289
0.31
0.12


nm65
9818









GRC_
cg0272
GRK4
NM_
0.55
0.06


nm66
2672

001004057







GRC_
cg0699
TRPS1
NM_014112
0.03
0.11


nm67
767









GRC_
cg0557
CHD7
NM_017780
0.38
0.09


nm68
639









GRC_
cg1856
COL18A1
NM_130444
0.62
0.11


nm69
618









GRC_
cg0568


0.07
0.08


nm70
528









GRC_
cg1195
RNF103
NM_005667
0.27
0.14


nm71
8668









GRC_
cg1454
RCOR1
NM_015156
0.63
0.11


nm72
3285









GRC_
cg2083
VKORC1L1
NM_173517
0.06
0.18


nm73
212









GRC_
cg2564
VKORC1L1
NM_173517
0.07
0.18


nm74
3253









GRC_
cg1928


0.10
0.17


nm75
2952









GRC_
cg2455


0.06
0.16


nm76
9796









GRC_
cg0886
PBX1
NM_002585
0.05
0.06


nm77
4944









GRC_
cg1341
ZNF609
NM_015042
0.17
0.20


nm78
6889









GRC_
cg2176
C6orf70
NM_018341
0.44
0.13


nm79
2728









GRC_
cg1159


0.16
0.05


nm80
6902









GRC_
cg1123
CDK5RAP1
NM_016082
0.60
0.04


nm81
1701









GRC_
cg2664
PILRB
NM_175047
0.65
0.15


nm82
7135









GRC_
cg0726
AMPD3
NM_
0.57
0.08


nm83
8332

001025389







GRC_
cg1993
MATN2
NM_030583
0.76
0.10


nm84
5471









GRC_
cg0850


0.09
0.11


nm85
5883









bGRC_
cg0232
HDC
NM_002112
0.06
0.84


nm1
9886









bGRC_
cg2667
MCC
NM_002387
0.02
0.90


nm2
6468









bGRC_
cg0178
ERI3
NM_024066
0.03
0.75


nm3
2059









bGRC_
cg1264
TTLL8
NM_
0.03
0.87


nm4
6067

001080447







bGRC_
cg0501
ZFPM1
NM_153813
0.04
0.88


nm5
2676









bGRC_
cg1730
TFB1M;
NM_016020
0.05
0.87


nm6
6637
CLDN20








bGRC_
cg2219
MS4A2
NM_
0.05
0.81


nm7
7708

001142303







bGRC_
cg0352
DENND3
NM_014957
0.09
0.81


nm8
0003









bGRC_
cg1664
DLC1
NM_182643
0.06
0.59


nm9
3422









bGRC_
cg1828
MAS1L
NM_052967
0.08
0.82


nm10
1744









bGRC_
cg0786
MAD1L1
NM_003550
0.16
0.92


nm11
2744









bGRC_
cg0355
PFKFB3
NM_
0.08
0.81


nm12
5710

001145443







bGRC_
cg2405


0.05
0.69


nm13
7792









bGRC_
cg2661


0.05
0.84


nm14
3070









bGRC_
cg2413
TBCD
NM_005993
0.04
0.88


nm15
0568









bGRC_
cg04491
PFKFB4
NM_004567
0.06
0.80


nm16
8104









bGRC_
cg1203
DPYSL2
NM_001386
0.07
0.84


nm17
7509









bGRC_
cg1129


0.08
0.92


nm18
4011









bGRC_
cg0275
FBXL14
NM_152441
0.04
0.71


nm19
2529









bGRC_
cg0242
SFSWAP
NM_004592;
0.05
0.75


nm20
6739

NM_001261411







bGRC_
cg1208
ADK
NM_001123
0.09
0.89


nm21
7639









bGRC_
cg1031
NFAT5
NM_138714
0.04
0.60


nm22
9857









bGRC_
cg2171


0.06
0.78


nm23
5896









bGRC_
cg1420
MEGF9
NM_
0.08
0.82


nm24
0678

001080497







bGRC_
cg2096
SIK2
NM_015191
0.04
0.80


nm25
4248









bGRC_
cg0338


0.07
0.85


nm26
0342









bGRC_
cg0781
WDFY2
NM_052950
0.05
0.64


nm27
8422









bGRC_
cg2363


0.07
0.84


nm28
9055









bGRC_
cg0008


0.11
0.88


nm29
6283









bGRC_
cg1201
TES
NM_015641
0.06
0.84


nm30
8521









bGRC_
cg1248
C1orf198
NM_
0.12
0.88


nm31
6498

001136494







bGRC_
cg1969
SDPR
NM_004657
0.07
0.88


nm32
9264









bGRC_
cg0586
MAP2K4
NM_003010
0.08
0.75


nm33
5769









bGRC_
cg1180
TANCI
NM_033394
0.08
0.76


nm34
9342









bGRC_
cg0280
ANXA13
NM_
0.05
0.80


nm35
0334

001003954







bGRC_
cg0915
ZNF366
NM_152625
0.09
0.90


nm36
1061









bGRC_
cg1463
SHB
NM_003028
0.05
0.78


nm37
3252









bGRC_
cg0947
ABCC1
NM_019862
0.07
0.73


nm38
3249









bGRC_
cg1997
LPP
NM_005578
0.07
0.63


nm39
5917









bGRC_
cg0238
LIN7A; 
NM_004664
0.08
0.63


nm40
7491
MIR617








bGRC_
cg2414
TECR
NM_138501
0.08
0.66


nm41
3196









bGRC_
cg2260


0.07
0.88


nm42
9618









bGRC_
cg2479


0.09
0.85


nm43
1846









bGRC_
cg1033


0.06
0.65


nm44
0847









bGRC_
cg0498
ROR1
NM_005012
0.13
0.90


nm45
8216









bGRC_
cg2600


0.06
0.78


nm46
9797









bGRC_
cg2473


0.08
0.82


nm47
6010









bGRC_
cg0465
ARID5B
NM_032199
0.09
0.70


nm48
7468









bGRC_
cg0402
RGL1
NM_015149
0.10
0.69


nm49
3434









bGRC_
cg1519
CPB2
NM_016413
0.09
0.82


nm50
2986









eGRC_
cg1509
RPS6KA2
NM_
0.97
0.16


nm2
0899

001006932







eGRC_
cg2076
TIMP2
NM_003255
0.74
0.13


nm3
1853









eGRC_
cg1190
ANXA11
NM_145868
0.92
0.13


nm4
0509









eGRC_
cg0326
ATL2
NM_022374
0.52
0.14


nm5
9757









eGRC_
cg0941
C10orf18
NM_017782
0.82
0.13


nm6
1597









eGRC_
cg1387
BBX
NM_020235
0.81
0.22


nm7
2812









eGRC_
cg2123


0.80
0.17


nm8
7481









eGRC_
cg2306
FARSA
NM_004461
0.85
0.18


nm9
0513









eGRC_
cg0874
CALU
NM_001219
0.81
0.15


nm10
2095









eGRC_
cg2201
C6orf89
NM_152734
0.88
0.16


nm11
1526









eGRC_
cg2452
PPP1R1B
NM_181505
0.85
0.16


nm12
0381









eGRC_
cg10451


0.54
0.21


nm13
4864









eGRC_
cg1038
HEXA
NM_000520
0.62
0.14


nm14
7956









eGRC_
cg1889
ETSI
NM_
0.86
0.16


nm15
8103

001143820







eGRC_
cg0000


0.78
0.19


nm16
6459









eGRC_
cg2024
MEF2A
NM_
0.68
0.18


nm17
0243

001130927







eGRC_
cg2399
IGF1R
NM_000875
0.86
0.17


nm18
0557









eGRC_
cg1978
C12orf43
NM_022895
0.79
0.18


nm19
8934









eGRC_
cg1166
HEXA
NM_000520
0.87
0.19


nm20
8148









eGRC_
cg1638
IL1RL1
NM_016232
0.56
0.18


nm21
6158









eGRC_
cg2623
TMEM220
NM_
0.69
0.18


nm22
4644

001004313







eGRC_
cg2538


0.71
0.18


nm23
1747









eGRC_
ecg2222
PCYT1A
NM_005017
0.57
0.16


nm24
1575









eGRC_
cg1131
MARCH3
NM_178450
0.60
0.21


nm25
0939









eGRC_
cg0959


0.82
0.20


nm26
6645









eGRC_
cg0039
LOC100
NM_
0.70
0.17


nm27
1067
271715
001145451







eGRC_
cg0183
C7orf36
NM_020192
0.74
0.15


nm28
5368









eGRC_
cg1679


0.74
0.16


nm29
7699









eGRC_
cg1395
USP20
NM_
0.61
0.20


nm30
3978

001110303







eGRC_
cg1757
OSTal-
NM_152672
0.98
0.11


nm31
2056
pha








eGRC_
cg0483


0.98
0.15


nm32
6151









eGRC_
cg0280
PCYT1A
NM_005017
0.97
0.21


nm33
3925









eGRC_
cg0042
RREB1
NM_
0.87
0.12


nm34
1164

001003700







eGRC_
cg0369
DKFZp7
NM_138368
0.89
0.17


nm35
5871
61E198








eGRC_
cg2692
EIF4EBP1
NM_004095
0.77
0.10


nm36
1611









eGRC_
cg1517
TMED3
NM_007364
0.82
0.21


nm37
1342









eGRC_
cg0573
HTT
NM_002111
0.89
0.22


nm38
6642









eGRC_
cg2303


0.86
0.14


nm39
9807









eGRC_
cg0412


0.41
0.12


nm40
8967









eGRC_
cg1118
MAN2A2
NM_006122
0.98
0.27


nm41
3227









eGRC_
cg2303
DCAF5
NM_003861
0.89
0.16


nm42
7469









eGRC_
cg2557
CHD7
NM_017780
0.85
0.20


nm43
8728









eGRC_
cg1291
MAT2B
NM_182796
0.73
0.21


nm44
0830









eGRC_
cg0807
PRKCH
NM_006255
0.74
0.20


nm45
7807









eGRC_
cg1420
TMEM156
NM_024943
0.75
0.21


nm46
9186









eGRC_
cg0507
APLP2
NR_024516
0.58
0.23


nm47
8091









eGRC_
cg1976
STX3
NM_004177
0.87
0.24


nm48
4973









eGRC_
cg2520
TSNAX-
NR_028394
0.89
0.25


nm49
3627
DISC1








eGRC_
cg2210
DMXL1
NM_005509
0.89
0.26


nm50
6847









eGRC_
cg1796


0.90
0.28


nm51
0717









nGRC_
cg0314
NADSYN1
NM_018161
0.98
0.88


nm1
6219









nGRC_
cg1378
ENO1
NM_001428
0.95
0.78


nm3
5123









nGRC_
cg2381
MCF2L2
NM_015078
0.95
0.69


nm4
9411









GRC_18
cg2560
HIPK3
NM_001048200
0.91
0.77


nm
0606









nGRC_
cg2507
MARCH8
NM_001002265
0.90
0.56


nm7
4794









nGRC_
cg1361
FAM125B
NM_033446
0.88
0.76


nm8
8969









nGRC_
cg2605


0.93
0.68


nm9
6277









nGRC_
cg1115
RPTOR
NM_001163034
0.97
0.85


nm10
3071









nGRC_
cg0149
RPTOR
NM_001163034
0.86
0.76


nm11
8832









nGRC_
cg2109
VPS53
NM_018289
0.91
0.87


nm12
0866









nGRC_
cg0597
CHST15
NM_015892
0.93
0.66


nm13
1678









nGRC_
cg0969
MED21
NM_004264
0.87
0.75


nm15
4051









nGRC_
cg2413
CPM
NM_001874
0.96
0.91


nm16
1359









nGRC_
cg1398
ITGAE
NM_002208
0.97
0.75


nm17
4928









nGRC_
cg1346
ANKFY1
NM_016376
0.90
0.72


nm20
8144









nGRC_
cg0169
ARG1
NM_000045
0.91
0.74


nm22
9630









nGRC_
cg1093
PCYOX1
NM_016297
0.90
0.85


nm24
4870









nGRC_
cg2639
KLF11
NM_003597
0.83
0.75


nm25
6370









nGRC_
cg2569
SH3PXD2B
NM_
0.90
0.75


nm26
3317

001017995







nGRC_
cg1203


0.95
0.77


nm28
1275









nGRC_
cg2312
DIP2C
NM_014974
0.85
0.51


nm29
8584









nGRC_
cg0227


0.87
0.74


nm30
9108









nGRC_
cg2575


0.92
0.76


nm31
7820









nGRC_
cg0646
CAST
NM_001750
0.76
0.59


nm32
5076









nGRC_
cg2751
CSGAL
NR_024040
0.87
0.67


nm33
0066
NACT1








nGRC_
cg0678
CSGAL
NR_024040
0.83
0.79


nm34
4232
NACT1








nGRC_
cg0104
INPP5A
NM_005539
0.85
0.51


nm35
0749









nGRC_
cg0710
FOXN3
NM_005197
0.88
0.72


nm36
2397









nGRC_
cg1363


0.82
0.67


nm37
3625









nGRC_
cg2333


0.87
0.83


nm38
8668









nGRC_
cg2240
RGL1
NM_015149
0.87
0.78


nm39
0420









nGRC_
cg2473


0.86
0.54


nm40
7761









nGRC_
cg2391


0.87
0.81


nm41
1433









nGRC_
cg0901


0.87
0.79


nm42
0699









nGRC_
cg0663
MLLT1
NM_005934
0.92
0.79


nm43
3438









nGRC_
cg1600
DCAF4L1
NM_
0.94
0.73


nm44
0989

001029955







nGRC_
cg0361
HDLBP
NM_203346
0.84
0.57


nm45
0527









nGRC_
cg1741
C12orf71
NM_ 
0.89
0.67


nm46
9815

001080406







nGRC_
cg0605
NKTR
NM_005385
0.75
0.71


nm47
9360









nGRC_
cg0705
PEX5
NM_ 
0.86
0.73


nm48
2231

001131023







nGRC_
cg0236
NQO2
NM_000904
0.96
0.79


nm49
8812









nGRC_
cg0541


0.88
0.66


nm50
8105






Neutro-







phil

Non-




Marker-
Granu-
Classical
Classical
NK



ID
locytes
Monocytes
Monocytes
classical
B-Cells





GRC_
0.10
0.85
0.87
0.89
0.87


nm38










GRC_
0.09
0.93
0.91
0.91
0.91


nm39










GRC_
0.12
0.76
0.82
0.87
0.87


nm40










GRC_
0.05
0.78
0.80
0.78
0.87


nm41










GRC_
0.20
0.72
0.77
0.88
0.87


nm42










GRC_
0.04
0.68
0.77
0.87
0.91


nm43










GRC_
0.15
0.67
0.74
0.90
0.91


nm44










GRC_
0.11
0.67
0.74
0.81
0.85


nm45










GRC_
0.04
0.56
0.63
0.77
0.74


nm46










GRC_
0.06
0.53
0.65
0.90
0.89


nm47










GRC_
0.12
0.61
0.64
0.83
0.87


nm48










GRC_
0.49
0.95
0.94
0.95
0.96


nm49










GRC_
0.05
0.76
0.84
0.34
0.91


nm50










GRC_
0.05
0.80
0.83
0.90
0.90


nm51










GRC_
0.16
0.80
0.82
0.90
0.89


nm52










GRC_
0.33
0.84
0.84
0.85
0.87


nm53










GRC_
0.03
0.78
0.81
0.87
0.86


nm54










GRC_
0.25
0.79
0.80
0.87
0.87


nm55










GRC_
0.06
0.74
0.84
0.89
0.87


nm56










GRC_
0.04
0.87
0.89
0.89
0.89


nm57










GRC_
0.16
0.79
0.87
0.95
0.66


nm58










GRC_
0.13
0.90
0.89
0.81
0.94


nm59










GRC_
0.58
0.84
0.86
0.90
0.92


nm60










GRC_
0.26
0.73
0.74
0.71
0.84


nm61










GRC_
0.28
0.73
0.82
0.92
0.92


nm62










GRC_
0.61
0.86
0.89
0.87
0.90


nm63










GRC_
0.45
0.81
0.83
0.89
0.89


nm64










GRC_
0.42
0.86
0.85
0.89
0.90


nm65










GRC_
0.25
0.82
0.90
0.93
0.95


nm66










GRC_
0.21
0.64
0.73
0.43
0.76


nm67










GRC_
0.17
0.78
0.78
0.86
0.52


nm68










GRC_
0.21
0.88
0.85
0.90
0.97


nm69










GRC_
0.16
0.63
0.71
0.77
0.77


nm70










GRC_
0.65
0.89
0.91
0.81
0.92


nm71










GRC_
0.10
0.82
0.83
0.86
0.87


nm72










GRC_
0.64
0.82
0.86
0.89
0.90


nm73










GRC_
0.65
0.82
0.82
0.86
0.86


nm74










GRC_
0.54
0.82
0.80
0.88
0.69


nm75










GRC_
0.55
0.76
0.81
0.87
0.86


nm76










GRC_
0.05
0.63
0.51
0.14
0.76


nm77










GRC_
0.67
0.86
0.88
0.84
0.90


nm78










GRC_
0.14
0.73
0.80
0.93
0.92


nm79










GRC_
0.05
0.59
0.61
0.88
0.91


nm80










GRC_
0.09
0.74
0.78
0.78
0.78


nm81










GRC_
0.18
0.84
0.85
0.88
0.88


nm82










GRC_
0.14
0.74
0.78
0.86
0.50


nm83










GRC_
0.10
0.85
0.79
0.84
0.80


nm84










GRC_
0.39
0.67
0.74
0.87
0.90


nm85










bGRC_
0.90
0.91
0.89
0.90
0.91


nm1










bGRC_
0.96
0.96
0.95
0.95
0.96


nm2










bGRC_
0.97
0.96
0.96
0.97
0.96


nm3










bGRC_
0.96
0.95
0.95
0.95
0.96


nm4










bGRC_
0.96
0.96
0.95
0.95
0.96


nm5










bGRC_
0.89
0.88
0.90
0.90
0.92


nm6










bGRC_
0.91
0.90
0.89
0.88
0.89


nm7










bGRC_
0.90
0.92
0.91
0.90
0.91


nm8










bGRC_
0.86
0.86
0.86
0.87
0.85


nm9










bGRC_
0.89
0.90
0.90
0.57
0.86


nm10










bGRC_
0.93
0.91
0.92
0.93
0.93


nm11










bGRC_
0.96
0.97
0.97
0.97
0.98


nm12










bGRC_
0.93
0.94
0.91
0.93
0.93


nm13










bGRC_
0.92
0.92
0.92
0.92
0.91


nm14










bGRC_
0.92
0.85
0.78
0.94
0.76


nm15










bGRC_
0.91
0.90
0.91
0.84
0.93


nm16










bGRC_
0.92
0.93
0.91
0.93
0.92


nm17










bGRC_
0.94
0.93
0.93
0.91
0.93


nm18










bGRC_
0.89
0.90
0.90
0.89
0.89


nm19










bGRC_
0.91
0.92
0.91
0.61
0.84


nm20










bGRC_
0.95
0.92
0.92
0.91
0.93


nm21










bGRC_
0.91
0.91
0.88
0.90
0.89


nm22










bGRC_
0.88
0.90
0.87
0.90
0.91


nm23










bGRC_
0.91
0.89
0.89
0.90
0.90


nm24










bGRC_
0.90
0.85
0.85
0.89
0.88


nm25










bGRC_
0.91
0.91
0.90
0.90
0.89


nm26










bGRC_
0.92
0.92
0.91
0.90
0.91


nm27










bGRC_
0.90
0.90
0.90
0.89
0.88


nm28










bGRC_
0.94
0.95
0.94
0.94
0.93


nm29










bGRC_
0.90
0.90
0.88
0.65
0.90


nm30










bGRC_
0.94
0.93
0.93
0.95
0.95


nm31










bGRC_
0.92
0.90
0.91
0.92
0.90


nm32










bGRC_
0.91
0.92
0.89
0.90
0.90


nm33










bGRC_
0.91
0.92
0.91
0.89
0.91


nm34










bGRC_
0.88
0.88
0.86
0.87
0.88


nm35










bGRC_
0.92
0.92
0.91
0.90
0.89


nm36










bGRC_
0.89
0.81
0.80
0.90
0.90


nm37










bGRC_
0.88
0.90
0.89
0.90
0.90


nm38










bGRC_
0.90
0.91
0.90
0.89
0.91


nm39










bGRC_
0.92
0.91
0.91
0.90
0.92


nm40










bGRC_
0.91
0.93
0.93
0.78
0.92


nm41










bGRC_
0.87
0.91
0.88
0.88
0.79


nm42










bGRC_
0.91
0.89
0.89
0.92
0.90


nm43










bGRC_
0.90
0.91
0.89
0.73
0.89


nm44










bGRC_
0.91
0.94
0.94
0.92
0.92


nm45










bGRC_
0.86
0.89
0.87
0.87
0.88


nm46










bGRC_
0.91
0.91
0.91
0.89
0.90


nm47










bGRC_
0.88
0.91
0.87
0.89
0.89


nm48










bGRC_
0.92
0.90
0.93
0.90
0.89


nm49










bGRC_
0.88
0.89
0.87
0.90
0.87


nm50










eGRC_
0.83
0.95
0.96
0.78
0.97


nm2










eGRC_
0.61
0.93
0.94
0.91
0.93


nm3










eGRC_
0.62
0.98
0.98
0.97
0.84


nm4










eGRC_
0.78
0.88
0.87
0.93
0.92


nm5










eGRC_
0.61
0.87
0.86
0.88
0.74


nm6










eGRC_
0.95
0.95
0.95
0.96
0.96


nm7










eGRC_
0.76
0.87
0.87
0.93
0.92


nm8










eGRC_
0.54
0.83
0.89
0.93
0.97


nm9










eGRC_
0.57
0.89
0.92
0.88
0.91


nm10










eGRC_
0.59
0.85
0.86
0.90
0.89


nm11










eGRC_
0.73
0.86
0.89
0.90
0.87


nm12










eGRC_
0.93
0.94
0.93
0.92
0.94


nm13










eGRC_
0.81
0.84
0.84
0.85
0.89


nm14










eGRC_
0.53
0.87
0.84
0.89
0.88


nm15










eGRC_
0.87
0.90
0.89
0.89
0.90


nm16










eGRC_
0.91
0.87
0.85
0.87
0.85


nm17










eGRC_
0.59
0.86
0.90
0.88
0.89


nm18










eGRC_
0.70
0.86
0.84
0.86
0.86


nm19










eGRC_
0.87
0.89
0.86
0.87
0.89


nm20










eGRC_
0.83
0.91
0.92
0.74
0.89


nm21










eGRC_
0.70
0.75
0.73
0.91
0.85


nm22










eGRC_
0.85
0.86
0.83
0.86
0.87


nm23










eGRC_
0.82
0.82
0.81
0.85
0.79


nm24










eGRC_
0.89
0.91
0.88
0.89
0.90


nm25










eGRC_
0.85
0.83
0.84
0.86
0.84


nm26










eGRC_
0.72
0.76
0.77
0.88
0.83


nm27










eGRC_
0.58
0.71
0.73
0.80
0.86


nm28










eGRC_
0.66
0.74
0.76
0.74
0.75


nm29










eGRC_
0.83
0.86
0.85
0.83
0.87


nm30










eGRC_
0.27
0.95
0.98
0.98
0.98


nm31










eGRC_
0.49
0.84
0.86
0.98
0.98


nm32










eGRC_
0.95
0.99
0.99
0.98
0.98


nm33










eGRC_
0.39
0.86
0.87
0.91
0.90


nm34










eGRC_
0.51
0.84
0.91
0.93
0.94


nm35










eGRC_
0.47
0.71
0.79
0.88
0.91


nm36










eGRC_
0.77
0.93
0.92
0.92
0.93


nm37










eGRC_
0.82
0.92
0.92
0.92
0.92


nm38










eGRC_
0.45
0.73
0.79
0.90
0.90


nm39










eGRC_
0.83
0.79
0.82
0.90
0.83


nm40










eGRC_
0.75
0.98
0.98
0.98
0.98


nm41










eGRC_
0.44
0.86
0.87
0.89
0.90


nm42










eGRC_
0.78
0.91
0.89
0.92
0.88


nm43










eGRC_
0.87
0.91
0.90
0.91
0.92


nm44










eGRC_
0.92
0.92
0.93
0.82
0.93


nm45










eGRC_
0.76
0.88
0.87
0.92
0.92


nm46










eGRC_
0.92
0.93
0.93
0.92
0.93


nm47










eGRC_
0.87
0.91
0.90
0.91
0.90


nm48










eGRC_
0.80
0.89
0.91
0.92
0.88


nm49










eGRC_
0.82
0.90
0.91
0.90
0.91


nm50










eGRC_
0.87
0.92
0.89
0.93
0.91


nm51










nGRC_
0.07
0.97
0.98
0.97
0.97


nm1










nGRC_
0.04
0.88
0.92
0.96
0.97


nm3










nGRC_
0.03
0.78
0.86
0.96
0.94


nm4










GRC_18
0.04
0.87
0.87
0.92
0.92


nm










nGRC_
0.04
0.83
0.90
0.95
0.95


nm7










nGRC_
0.03
0.89
0.91
0.90
0.89


nm8










nGRC_
0.05
0.80
0.84
0.96
0.95


nm9










nGRC_
0.06
0.60
0.77
0.97
0.97


nm10










nGRC_
0.12
0.61
0.70
0.86
0.89


nm11










nGRC_
0.07
0.92
0.93
0.88
0.91


nm12










nGRC_
0.04
0.61
0.73
0.97
0.96


nm13










nGRC_
0.01
0.80
0.84
0.88
0.83


nm15










nGRC_
0.13
0.94
0.98
0.96
0.96


nm16










nGRC_
0.04
0.58
0.61
0.85
0.97


nm17










nGRC_
0.04
0.90
0.91
0.91
0.92


nm20










nGRC_
0.05
0.90
0.88
0.87
0.88


nm22










nGRC_
0.05
0.85
0.90
0.89
0.87


nm24










nGRC_
0.05
0.81
0.83
0.91
0.86


nm25










nGRC_
0.08
0.84
0.89
0.91
0.92


nm26










nGRC_
0.11
0.76
0.81
0.95
0.96


nm28










nGRC_
0.05
0.66
0.81
0.91
0.94


nm29










nGRC_
0.06
0.89
0.90
0.88
0.92


nm30










nGRC_
0.08
0.74
0.76
0.90
0.92


nm31










nGRC_
0.07
0.76
0.83
0.91
0.92


nm32










nGRC_
0.06
0.79
0.83
0.89
0.87


nm33










nGRC_
0.24
0.83
0.86
0.84
0.85


nm34










nGRC_
0.08
0.82
0.86
0.91
0.90


nm35










nGRC_
0.10
0.86
0.86
0.92
0.84


nm36










nGRC_
0.05
0.64
0.67
0.92
0.87


nm37










nGRC_
0.07
0.87
0.86
0.88
0.88


nm38










nGRC_
0.07
0.84
0.88
0.84
0.87


nm39










nGRC_
0.06
0.81
0.83
0.85
0.89


nm40










nGRC_
0.05
0.78
0.87
0.85
0.87


nm41










nGRC_
0.07
0.67
0.69
0.89
0.89


nm42










nGRC_
0.09
0.73
0.80
0.90
0.94


nm43










nGRC_
0.11
0.67
0.76
0.94
0.94


nm44










nGRC_
0.10
0.70
0.72
0.93
0.95


nm45










nGRC_
0.07
0.61
0.65
0.91
0.90


nm46










nGRC_
0.09
0.74
0.78
0.87
0.85


nm47










nGRC_
0.09
0.70
0.81
0.87
0.88


nm48










nGRC_
0.19
0.80
0.83
0.97
0.98


nm49










nGRC_
0.08
0.58
0.62
0.91
0.84


nm50









CD4 +
CD4 +



CD4 +


Th
Th


Marker-
Th
CD4 +
CD4 +
Central
Effect.


ID
naive
Th1
Th2
Mem.
Mem.





GRC_
0.90
0.86
0.87
0.88
0.87


nm38










GRC_
0.90
0.91
0.92
0.92
0.91


nm39










GRC_
0.92
0.87
0.89
0.88
0.87


nm40










GRC_
0.89
0.86
0.87
0.88
0.87


nm41










GRC_
0.89
0.86
0.87
0.89
0.89


nm42










GRC_
0.91
0.86
0.89
0.89
0.88


nm43










GRC_
0.92
0.90
0.91
0.91
0.90


nm44










GRC_
0.93
0.75
0.83
0.87
0.84


nm45










GRC_
0.86
0.67
0.68
0.76
0.73


nm46










GRC_
0.87
0.89
0.89
0.90
0.89


nm47










GRC_
0.90
0.85
0.85
0.85
0.84


nm48










GRC_
0.94
0.96
0.96
0.96
0.97


nm49










GRC_
0.67
0.69
0.66
0.70
0.71


nm50










GRC_
0.89
0.91
0.89
0.90
0.89


nm51










GRC_
0.88
0.87
0.84
0.86
0.87


nm52










GRC_
0.87
0.84
0.84
0.84
0.87


nm53










GRC_
0.55
0.83
0.85
0.79
0.87


nm54










GRC_
0.84
0.84
0.81
0.88
0.79


nm55










GRC_
0.89
0.85
0.85
0.86
0.86


nm56










GRC_
0.91
0.90
0.85
0.90
0.89


nm57










GRC_
0.97
0.96
0.96
0.97
0.94


nm58










GRC_
0.87
0.85
0.82
0.87
0.87


nm59










GRC_
0.92
0.88
0.85
0.90
0.89


nm60










GRC_
0.77
0.56
0.60
0.66
0.63


nm61










GRC_
0.90
0.91
0.92
0.92
0.92


nm62










GRC_
0.92
0.86
0.81
0.85
0.87


nm63










GRC_
0.93
0.86
0.79
0.87
0.81


nm64










GRC_
0.90
0.87
0.86
0.89
0.89


nm65










GRC_
0.95
0.95
0.95
0.95
0.95


nm66










GRC_
0.93
0.56
0.88
0.75
0.66


nm67










GRC_
0.73
0.90
0.88
0.85
0.88


nm68










GRC_
0.97
0.97
0.96
0.98
0.97


nm69










GRC_
0.86
0.55
0.61
0.70
0.60


nm70










GRC_
0.89
0.88
0.86
0.88
0.86


nm71










GRC_
0.86
0.86
0.84
0.86
0.87


nm72










GRC_
0.91
0.90
0.89
0.90
0.90


nm73










GRC_
0.87
0.85
0.85
0.87
0.86


nm74










GRC_
0.88
0.90
0.91
0.92
0.92


nm75










GRC_
0.89
0.84
0.85
0.86
0.86


nm76










GRC_
0.85
0.75
0.76
0.74
0.74


nm77










GRC_
0.89
0.90
0.89
0.88
0.87


nm78










GRC_
0.90
0.92
0.93
0.91
0.94


nm79










GRC_
0.90
0.51
0.59
0.62
0.56


nm80










GRC_
0.80
0.71
0.76
0.75
0.77


nm81










GRC_
0.89
0.89
0.89
0.90
0.90


nm82










GRC_
0.81
0.82
0.80
0.82
0.82


nm83










GRC_
0.84
0.86
0.85
0.83
0.87


nm84










GRC_
0.90
0.85
0.87
0.88
0.85


nm85










bGRC_
0.91
0.91
0.91
0.90
0.91


nm1










bGRC_
0.95
0.97
0.96
0.96
0.96


nm2










bGRC_
0.96
0.96
0.97
0.97
0.97


nm3










bGRC_
0.95
0.96
0.95
0.96
0.94


nm4










bGRC_
0.96
0.96
0.96
0.95
0.96


nm5










bGRC_
0.89
0.89
0.89
0.89
0.91


nm6










bGRC_
0.90
0.86
0.87
0.88
0.87


nm7










bGRC_
0.91
0.91
0.92
0.90
0.91


nm8










bGRC_
0.89
0.76
0.78
0.81
0.80


nm9










bGRC_
0.91
0.85
0.85
0.87
0.86


nm10










bGRC_
0.92
0.92
0.93
0.92
0.93


nm11










bGRC_
0.97
0.96
0.96
0.96
0.96


nm12










bGRC_
0.93
0.94
0.93
0.93
0.91


nm13










bGRC_
0.92
0.92
0.91
0.91
0.91


nm14










bGRC_
0.92
0.93
0.95
0.95
0.94


nm15










bGRC_
0.94
0.94
0.92
0.93
0.93


nm16










bGRC_
0.92
0.92
0.93
0.92
0.93


nm17










bGRC_
0.93
0.94
0.93
0.94
0.93


nm18










bGRC_
0.91
0.89
0.88
0.91
0.87


nm19










bGRC_
0.95
0.96
0.95
0.97
0.95


nm20










bGRC_
0.92
0.92
0.92
0.93
0.93


nm21










bGRC_
0.90
0.90
0.89
0.90
0.90


nm22










bGRC_
0.91
0.89
0.88
0.90
0.91


nm23










bGRC_
0.90
0.91
0.91
0.94
0.91


nm24










bGRC_
0.89
0.87
0.89
0.89
0.87


nm25










bGRC_
0.90
0.91
0.89
0.91
0.90


nm26










bGRC_
0.91
0.86
0.87
0.88
0.89


nm27










bGRC_
0.89
0.91
0.89
0.90
0.89


nm28










bGRC_
0.94
0.94
0.94
0.94
0.94


nm29










bGRC_
0.92
0.91
0.91
0.92
0.91


nm30










bGRC_
0.95
0.94
0.93
0.94
0.96


nm31










bGRC_
0.91
0.86
0.88
0.90
0.86


nm32










bGRC_
0.90
0.89
0.90
0.92
0.93


nm33










bGRC_
0.92
0.88
0.88
0.90
0.90


nm34










bGRC_
0.90
0.85
0.84
0.88
0.85


nm35










bGRC_
0.93
0.90
0.91
0.90
0.91


nm36










bGRC_
0.92
0.88
0.88
0.90
0.88


nm37










bGRC_
0.90
0.89
0.90
0.88
0.91


nm38










bGRC_
0.91
0.90
0.86
0.90
0.90


nm39










bGRC_
0.91
0.89
0.91
0.90
0.91


nm40










bGRC_
0.92
0.89
0.87
0.91
0.91


nm41










bGRC_
0.89
0.86
0.85
0.87
0.87


nm42










bGRC_
0.90
0.88
0.91
0.91
0.90


nm43










bGRC_
0.89
0.90
0.89
0.89
0.89


nm44










bGRC_
0.93
0.91
0.93
0.93
0.94


nm45










bGRC_
0.88
0.85
0.74
0.85
0.84


nm46










bGRC_
0.91
0.82
0.83
0.86
0.85


nm47










bGRC_
0.91
0.89
0.92
0.91
0.91


nm48










bGRC_
0.91
0.91
0.91
0.91
0.92


nm49










bGRC_
0.87
0.87
0.88
0.88
0.88


nm50










eGRC_
0.97
0.97
0.96
0.97
0.97


nm2










eGRC_
0.92
0.91
0.90
0.92
0.90


nm3










eGRC_
0.61
0.94
0.92
0.88
0.96


nm4










eGRC_
0.92
0.92
0.92
0.91
0.92


nm5










eGRC_
0.91
0.90
0.88
0.89
0.90


nm6










eGRC_
0.97
0.95
0.94
0.95
0.94


nm7










eGRC_
0.93
0.92
0.91
0.93
0.93


nm8










eGRC_
0.94
0.95
0.94
0.95
0.94


nm9










eGRC_
0.91
0.87
0.85
0.87
0.87


nm10










eGRC_
0.91
0.89
0.90
0.91
0.89


nm11










eGRC_
0.89
0.84
0.88
0.89
0.87


nm12










eGRC_
0.94
0.94
0.93
0.92
0.93


nm13










eGRC_
0.89
0.85
0.86
0.87
0.86


nm14










eGRC_
0.89
0.87
0.89
0.88
0.89


nm15










eGRC_
0.93
0.87
0.86
0.89
0.89


nm16










eGRC_
0.90
0.90
0.88
0.88
0.88


nm17










eGRC_
0.89
0.85
0.86
0.87
0.87


nm18










eGRC_
0.89
0.86
0.86
0.87
0.87


nm19










eGRC_
0.87
0.85
0.83
0.87
0.85


nm20










eGRC_
0.91
0.87
0.85
0.89
0.88


nm21










eGRC_
0.91
0.91
0.92
0.92
0.93


nm22










eGRC_
0.87
0.85
0.85
0.86
0.86


nm23










eGRC_
0.84
0.82
0.81
0.81
0.81


nm24










eGRC_
0.90
0.80
0.79
0.88
0.85


nm25










eGRC_
0.86
0.78
0.81
0.82
0.78


nm26










eGRC_
0.91
0.74
0.79
0.82
0.81


nm27










eGRC_
0.88
0.78
0.75
0.77
0.77


nm28










eGRC_
0.82
0.68
0.71
0.80
0.78


nm29










eGRC_
0.64
0.72
0.70
0.73
0.78


nm30










eGRC_
0.96
0.98
0.98
0.98
0.98


nm31










eGRC_
0.98
0.99
0.99
0.99
0.99


nm32










eGRC_
0.99
0.96
0.99
0.98
0.98


nm33










eGRC_
0.91
0.92
0.92
0.91
0.91


nm34










eGRC_
0.92
0.93
0.93
0.92
0.94


nm35










eGRC_
0.90
0.87
0.85
0.87
0.86


nm36










eGRC_
0.93
0.92
0.93
0.93
0.93


nm37










eGRC_
0.92
0.93
0.93
0.93
0.93


nm38










eGRC_
0.91
0.89
0.91
0.90
0.91


nm39










eGRC_
0.90
0.84
0.89
0.84
0.86


nm40










eGRC_
0.98
0.98
0.98
0.98
0.98


nm41










eGRC_
0.90
0.87
0.88
0.90
0.89


nm42










eGRC_
0.91
0.91
0.89
0.90
0.91


nm43










eGRC_
0.91
0.91
0.92
0.92
0.89


nm44










eGRC_
0.92
0.89
0.87
0.92
0.90


nm45










eGRC_
0.93
0.90
0.92
0.92
0.91


nm46










eGRC_
0.91
0.93
0.91
0.93
0.94


nm47










eGRC_
0.90
0.89
0.90
0.89
0.90


nm48










eGRC_
0.91
0.91
0.90
0.91
0.92


nm49










eGRC_
0.91
0.90
0.90
0.91
0.91


nm50










eGRC_
0.92
0.91
0.93
0.92
0.92


nm51










nGRC_
0.96
0.98
0.98
0.97
0.97


nm1










nGRC_
0.95
0.97
0.96
0.96
0.95


nm3










nGRC_
0.96
0.92
0.96
0.96
0.92


nm4










GRC_18
0.91
0.91
0.93
0.94
0.92


nm










nGRC_
0.94
0.93
0.93
0.96
0.94


nm7










nGRC_
0.91
0.89
0.90
0.90
0.89


nm8










nGRC_
0.95
0.93
0.94
0.95
0.93


nm9










nGRC_
0.96
0.98
0.97
0.97
0.97


nm10










nGRC_
0.89
0.63
0.83
0.73
0.70


nm11










nGRC_
0.93
0.95
0.93
0.91
0.89


nm12










nGRC_
0.96
0.97
0.97
0.97
0.97


nm13










nGRC_
0.89
0.85
0.86
0.85
0.86


nm15










nGRC_
0.97
0.97
0.97
0.97
0.97


nm16










nGRC_
0.96
0.95
0.96
0.96
0.95


nm17










nGRC_
0.88
0.75
0.79
0.84
0.87


nm20










nGRC_
0.90
0.85
0.88
0.89
0.84


nm22










nGRC_
0.85
0.83
0.82
0.85
0.87


nm24










nGRC_
0.87
0.89
0.89
0.88
0.92


nm25










nGRC_
0.92
0.91
0.90
0.90
0.91


nm26










nGRC_
0.93
0.96
0.95
0.96
0.95


nm28










nGRC_
0.91
0.91
0.91
0.89
0.92


nm29










nGRC_
0.92
0.81
0.83
0.86
0.86


nm30










nGRC_
0.92
0.91
0.91
0.92
0.91


nm31










nGRC_
0.92
0.92
0.90
0.92
0.93


nm32










nGRC_
0.91
0.83
0.88
0.86
0.87


nm33










nGRC_
0.86
0.84
0.85
0.86
0.84


nm34










nGRC_
0.89
0.89
0.90
0.91
0.92


nm35










nGRC_
0.90
0.91
0.91
0.92
0.91


nm36










nGRC_
0.90
0.91
0.91
0.91
0.92


nm37










nGRC_
0.89
0.83
0.81
0.86
0.84


nm38










nGRC_
0.88
0.87
0.87
0.88
0.87


nm39










nGRC_
0.90
0.88
0.89
0.89
0.88


nm40










nGRC_
0.85
0.80
0.82
0.84
0.83


nm41










nGRC_
0.90
0.90
0.89
0.90
0.88


nm42










nGRC_
0.69
0.92
0.92
0.87
0.91


nm43










nGRC_
0.95
0.90
0.92
0.92
0.94


nm44










nGRC_
0.94
0.93
0.92
0.94
0.93


nm45










nGRC_
0.90
0.88
0.88
0.88
0.87


nm46










nGRC_
0.90
0.90
0.89
0.87
0.89


nm47










nGRC_
0.88
0.87
0.89
0.87
0.88


nm48










nGRC_
0.98
0.97
0.97
0.98
0.97


nm49










nGRC_
0.89
0.90
0.92
0.90
0.89


nm50














CD8 +





Cyto-




Marker-
toxic
NK



ID
T-Cells
T-Cells
Discovery Fragment





GRC_
0.89
0.86
CGGCCTGGGCGTGGTC


nm38


TTGCAAAATGCTTCCA





AAGCCACCTTAGCCTG





TT





GRC_
0.92
0.92
CCACAGACCCTTTCTC


nm39


CTTCACTGATTACAGA





ATCATACCAAGCACA





GCG





GRC_
0.89
0.85
TGGGCCTGGTGCTTGG


nm40


GTTTGCTAACTTCTGG





TTCTTCATGTGTATCA





CG





GRC_
0.89
0.84
CGACATGGGCAATGT


nm41


GGGGAAAGAGACCAT





TGTGTAAATGATCTAC





AATG





GRC_
0.91
0.85
CGAAGGCCAGAGCCT


nm42


GTTTGTAAACCATTAA





CAGGAATAACAAGAG





ATAA





GRC_
0.91
0.84
GACCGAGGCCGACAA


nm43


TTCAGTCGCCACACAA





GAGGTCAGAAATATA





CTCG





GRC_
0.89
0.88
TGGGGATAAACGGTG


nm44


TAACACTGGGGCAGG





TCAGTTTCCTTGTTGG





TACG





GRC_
0.85
0.73
TTTGAGGAAAATACCT


nm45


TGAAACCGTCGGTAG





GACTAGATAGGTGAC





AACG





GRC_
0.78
0.70
CGTCTTGGTGATAACA


nm46


GGCACTTGAGAAATA





AGTTTTTAAAGAGTTG





ATT





GRC_
0.88
0.90
AACACAGTGTGGGCT


nm47


GATGCAATCAGTGTTT





GCTGCCCTTGGGCGCT





TCG





GRC_
0.87
0.82
CGGGCAGATTTTTTCA


nm48


GAGCAATTGAATGTAT





TCAAAGATGTCTTAAT





TA





GRC_
0.96
0.95
GAAGCTGGGGCAGGT


nm49


AACACGCAGAGCCGC





CACGTGGAACGGTCT





GTCCG





GRC_
0.65
0.61
GGAGGCACTTGTAGCT


nm50


GAGTGAGGGCATTTCC





TTTGTGCAGTGGTATG





CG





GRC_
0.90
0.88
TTCTTGTTATCTCATTT


nm51


AGGACTCATAACTCA





GTTGTGTAAGCTTTAT





CG





GRC_
0.88
0.87
ACTATCACTAGACATA


nm52


TCCTCTCTTTAGAGAA





ATCACACAAAATTCTA





CG





GRC_
0.89
0.81
AAGGATTTGCTCTCCA


nm53


GATGCAGCTGTGCCTT





CCTTTGAAATATCTTT





CG





GRC_
0.74
0.87
TCTTGAGAAATGTACT


nm54


TTAGACTAGCTTGAGT





TGACACATTACAAAGT





CG





GRC_
0.83
0.85
CGGTATCAGCAATTGA


nm55


AGCATTACAGTAAAA





GACCTCCGATTACCAA





CTG





GRC_
0.88
0.79
CGGCCCCTTCTGACCC


nm56


CATAGCTGGCACGGG





CTCCTGACCACAGGTA





TGC





GRC_
0.89
0.90
TGCCCCGGTGGTGCAG


nm57


TCAGTGGAAGCAGCT





GTAATCTATGGGGTCA





TCG





GRC_
0.98
0.96
CGGTGTCACAAGAAA


nm58


ACCTTGCAGACTCGCC





CTCGTAGACGGTCATG





GAC





GRC_
0.79
0.77
CGTGGTACATGAGAA


nm59


CCTTACTATAAAGTGG





CTCTTTAGGACCGTTC





TGA





GRC_
0.92
0.91
CATGAACTCTCTGCGT


nm60


TCCAAACTATAGATTG





TGATTAATTATTTTGT





CG





GRC_
0.73
0.38
GCACCCCAGTTATCTA


nm61


GCCCTCATCAATTTGT





GCAAGAAGGCCGGGC





TCG





GRC_
0.92
0.92
CGCAAGTGATTTATAG


nm62


GCATTGTCTTTGCAGC





CACTCTATGAGGCAG





ACA





GRC_
0.89
0.88
CCACTCTGACCTTAGA


nm63


CAAGTTACTTAATTGT





CTCAGTGCCTTGGTTT





CG





GRC_
0.90
0.87
ATTTCATCAACTGTCC


nm64


CACTAACATCCTGTAT





ATACCAAGCTTCTTAT





CG





GRC_
0.91
0.87
CGCTTTGGAAGAAGG


nm65


ATTAGGTAATTGTAGT





ACAATCTTCCACCCAG





TTC





GRC_
0.96
0.93
CGGACCTCAAGTCCCT


nm66


GTGCTAGCCACGGTA





GTTCTTCACACCCCGT





CAC





GRC_
0.82
0.61
ATGGCGGATATGTATG


nm67


CAACGCGTGTGGCCTC





TACCAGAAGCTTCACT





CG





GRC_
0.89
0.91
AGGTAGCCATGCTGCT


nm68


AAGGTCACAGTCACT





AAGATATTTTTTGTCA





TCG





GRC_
0.97
0.97
GGTTACGGGGCAGTG


nm69


GCCATGAGCCTCTGTC





GGACTGACGCAAGGA





GCCG





GRC_
0.70
0.34
AAAAAATAGACAACC


nm70


TCCCAGTTGCCACAGA





CATGTACTGTAAGCAG





ACG





GRC_
0.91
0.87
CGGGAAATACACATT


nm71


ATGCTAATGTTGATGA





CAGAATTTATTTGGTT





GCC





GRC_
0.88
0.80
CGGTGCCATCTTGTGA


nm72


AAAGGGCTCTGCAGC





TTTTAATGTGTACAGT





TTC





GRC_
0.91
0.88
GGCCTACATTCTGTAC


nm73


TTTGTGCTGAAGGAGT





TCTGCATCATCTGCAT





CG





GRC_
0.88
0.86
CGTGACGATGCAGAT


nm74


GATGCAGAACTCCTTC





AGCACAAAGTACAGA





ATGT





GRC_
0.92
0.89
CGCCAGCCTGCATTTT


nm75


AGATGGACCATAACT





CAAGATAGGCGTTGA





AGCA





GRC_
0.86
0.79
CGAGGGCACTGGACA


nm76


TGCTGGATTTGGGGAG





ACTGTTATGCGATCTC





AAA





GRC_
0.77
0.58
CAGAGGAAGCCACAT


nm77


AACCTCAAAAGGTCA





AGACACCTAGACATG





GTCCG





GRC_
0.89
0.86
CAACCTGTCCACTCGG


nm78


TTTTCTGTTTCTTTGAG





ATTATTTTCTACTAAC





G





GRC_
0.93
0.93
CGGTGTGATGTGATGA


nm79


AATCAGGATTTTGTGT





AAGCTAGCTCTCAAG





AAA





GRC_
0.80
0.47
ATCCTGCTTCCATGGA


nm80


GTAAAATTCCAGACTG





GGACAAGCGTTCTTTC





CG





GRC_
0.82
0.68
CGTGTCTCTTTAAAGC


nm81


TGCTATGTGAACAGCT





TTTACAGTCATTAAAT





TT





GRC_
0.90
0.87
TGTATGTCCAGCTGGA


nm82


CTTGGCAGAAGTACA





CAGACTGGTCCTCCTT





CCG





GRC_
0.85
0.80
GACACATGATCCTCGG


nm83


GCTGCTGCTGGGCTTT





AGCTACCCAGAGATT





ACG





GRC_
0.87
0.86
ATTTCCTATGGCCAGT


nm84


GTTTACAGAAGTAA





GACTGTGCAAACTTTA





TCG





GRC_
0.90
0.88
GGCTTCTGACTGGAGG


nm85


ACAATGACCCAGCTG





ATCCTTCTGACGTCTT





ACG





bGRC_
0.91
0.89
AAGAAAGAACCCTTT


nm1


AAATAAAGGGCCCAC





ACTGGCTGCCAGGGA





GTGCG





bGRC_
0.94
0.95
CGGGGGGCCACCGAA


nm2


TACTCCCCGAGCGCAT





ACTATTTACAGAAGA





GTCA





bGRC_
0.97
0.97
GACGTGCAGATAACG


nm3


TTGAGCTGCCCTGTCC





CCGAGCCATAAGCAG





ACTCG





bGRC_
0.95
0.96
CGGTCACTTCCAGGTT


nm4


TTGACGATCATGAATA





ACGTTTCTGTCGACAT





CT





bGRC_
0.96
0.96
CGCCTATCGGCCCATC


nm5


TCCCTGCTGTCCATCA





GGCCGGGCCCCCGCCT





CA





bGRC_
0.91
0.90
CGTCCTAGACACCCTG


nm6


GCCTGGAAACTAGGA





CATCTGCCTCGGGCCT





GTT





bGRC_
0.88
0.85
CGCTGCAGCAGATGG


nm7


TCTTGGAAATACAACA





GGCTGCATTCTAACTG





CTG





bGRC_
0.92
0.92
ATAACTTGGAGGCAG


nm8


CGTAGATGGCGCCTG





GTGACTGCAGTGTGCC





CACG





bGRC_
0.84
0.71
CGTCAGGGCTGTGGTG


nm9


ATGAAGTCCAGATGTT





ATAACTTAACAGTGTT





TT





bGRC_
0.88
0.82
GGCCTGCTGTCCCACT


nm10


GCCATGCTCATCTGCA





TATGTATGGTTTCATT





CG





bGRC_
0.93
0.93
CGCTAATGCCAAGAT


nm11


AAGCTAATGCTGTGCT





TCACCTGGACACAGG





GAAA





bGRC_
0.97
0.96
TCACCTGCGGACTGAC


nm12


CCCGTGCTGGGGAGG





TGGTGGCTGGTAGTGA





GACG





bGRC_
0.94
0.94
CGAAGGCTTTGTAATT


nm13


CACAGTGATAAGTGC





AGTTAATATGTTATCT





GAT





bGRC_
0.92
0.93
ACTGCCCATTTTTTAA


nm14


AACTTCAAATCCAAA





AGATGTGATAAATAG





TACG





bGRC_
0.92
0.93
CTCTCGGGAAGACAG


nm15


GGCTGCTGTGTATCCT





GATTGTGGTGGTGGAT





ACG





bGRC_
0.95
0.91
GAGGGGACAGTCCTG


nm16


GGTCCCCGCCAATCCG





GCCCTTGAGGTTGAGC





TCG





bGRC_
0.90
0.93
ATAGGTGAATTCTATA


nm17


GCCAGGTGGCCTCCA





GAAGCTFACGAAATG





ATCG





bGRC_
0.93
0.93
CGCCCTGCGTTGCGTT


nm18


CTCCACACAGCAGCC





ACGGTGACTTTGTTAA





AAT





bGRC_
0.90
0.88
CGGAATATTCAAAAC


nm19


CAGATGGACAGTTAG





GTCGATAGATAAGAC





AGATA





bGRC_
0.94
0.94
AGTGCGCTGCTGCGG


nm20


GAGGAAGCCAGTGTC





TTCCTGGAGACGGCTT





CACG





bGRC_
0.93
0.90
CGCTTTGAGATTGAAG


nm21


AGAACATACACTGGA





CCATATAGGGGTCTTC





TAC





bGRC_
0.91
0.87
CGGCTTCCTTTGATGG


nm22


GAGACAGGAGGAGTA





GAAATAAGCTGAGCT





ACAC





bGRC_
0.90
0.91
ACTGAGCAGCAAGTA


nm23


TTCCTTGTGTACCAGT





CTCTGTTCCAGAAACA





ACG





bGRC_
0.93
0.91
CGGAGAAATGCAAAT


nm24


CTGATAATAAGCACAT





ATATAGATGGCATTTA





AAT





bGRC_
0.86
0.89
GCTTTATCTAACAATT


nm25


TATTTAACAAACAGTT





AACTAGCACTGTGTGC





CG





bGRC_
0.92
0.90
CGGAACCCTGACTTTG


nm26


GAGGCTTCAGACATCC





TGAAATATAATTCAGA





TA





bGRC_
0.91
0.89
CCTGGTCACAACATTC


nm27


AGAGGACACACAGGT





AGGATTAACAGTAAA





ATCG





bGRC_
0.92
0.87
GCCAGGATCACAAAG


nm28


TTTCTGCCTTATCATTT





ATGGTTATTGTTACCT





CG





bGRC_
0.94
0.95
AATAAGAAGAGTCCG


nm29


TACCTCTTTCCCCTCA





CTCTGCACCCAGAATA





CCG





bGRC_
0.91
0.89
TTCAGCAGATGAGATC


nm30


TCAGCAATCCCCACTA





GGCTGGCTTCTAATAA





CG





bGRC_
0.96
0.95
TGGCTTCTGCCAGAGA


nm31


AGCCCCGGACAGCTG





CGAGCGCTGGCTGAG





AACG 





bGRC_
0.90
0.82
GGCAGGTCTTCTGACT


nm32


TGGTCTCATTTTCTGC





ATGGCTTTCTCCCTCT





CG





bGRC_
0.90
0.91
CGTGGCTTTTGATTAT


nm33


CTGCAAAGATTAATG





AGCCCTAATGAACGG





GTCA





bGRC_
0.92
0.90
GTCCCACTGGGGCAC


nm34


ACAGCAGAGCAATGA





AATTCCTGCATATTAA





GACG





bGRC_
0.83
0.84
CGGTAGACTGATGAA


nm35


ATAAGGTTTGGTTCAT





ATCCATAACAGTTGAC





TAC





bGRC_
0.89
0.87
CGGTAGGTGTGCACA


nm36


AGCCAGAGCAGAGTC





CCATTCCTTGCATCCG





CCAC





bGRC_
0.84
0.83
CCTGGCACCTGCTTCA


nm37


CAGCCTTCCCGCTTGC





CTGCTTTGTGGTGAGT





CG





bGRC_
0.91
0.89
CGGTCTGATCTGAACT


nm38


CGGCTTCAGTTGGTCT





GGAATGCACCGGCTG





CAT





bGRC_
0.91
0.91
CGCTGAATCATGGAGT


nm39


TTATCTTAAGGATGGA





TCTGAATGAGATCTGA





TA





bGRC_
0.91
0.87
AAATTCTGAATTTTCG


nm40


CTACACTGTCCACAGT





ACCAAATGGCAATAA





CCG





bGRC_
0.93
0.91
CGGTGGCTGTTTCCAT


nm41


AGTAGCCTCATATCAC





TGCCAAATCTCATCTG





AT





bGRC_
0.86
0.88
CTATCTGTGACAGATA


nm42


ACCTATATCACAGATA





GATCTATCTGTGACCT





CG





bGRC_
0.89
0.88
CGCAATAAGCACAGA


nm43


GCTGGACTTGAACCCA





AGTTTTGCCACACAGG





CCT





bGRC_
0.90
0.90
GGCTCTGTGGGTTTGG


nm44


CTCTTAGAGTCAAGAT





GGTCACCGCCTCCAAG





CG





bGRC_
0.94
0.93
CACTAATTACCACTCA


nm45


GTTCTTGGGCTGTAGC





AAAGATAATTTCAATT





CG





bGRC_
0.89
0.86
CGCAGTTATCTGTGGC


nm46


TGATCATGGCTTGTCA





TACTGCTACTCCTAGA





TG





bGRC_
0.89
0.85
CGCTGGTGTGGGACC


nm47


AGTCTCCTAGACCCAA





GTGCTAGGAGTAGAA





TGCT





bGRC_
0.89
0.86
GCATCCTAACAAATG


nm48


AACAATCTTTAGCTAA





AGACACTGACCAGAT





TACG





bGRC_
0.91
0.89
CGTATGAGGTTATGTA


nm49


GCATGTGAGGATAGG





CATAGCTTTGTTACGT





GTC





bGRC_
0.90
0.91
CGCTGATAAATCTCTT


nm50


GAGTTTTTCAAGAAGG





TGACAGTGTATACCAT





GA





eGRC_
0.97
0.98
CGCGGTGACACCTAC


nm2


AGCCACGCAAGCACC





TGCGTAAACACGTGCT





ACAG





eGRC_
0.92
0.86
CGGCAACCCCAAAGC


nm3


ACCTGTTAAGACTCCT





GACCCCCAAGTGGCA





TGCA





eGRC_
0.72
0.98
CCATGGAGGAGCGTG


nm4


ACGGAGAGATCTGCG





TGTGACGCTGTGTGCT





CTCG





eGRC_
0.92
0.93
CCCTATAATATCTTTA


nm5


CTGTAAGGCAGCTACT





TCTCCCTAAATAATTT





CG





eGRC_
0.88
0.90
TAAAAAATTTCTTGCC


nm6


ACATACGAGTTTAAAC





CAAGATAATCACGGC





ACG





eGRC_
0.96
0.95
CGCTATAGCAGTTTTT


nm7


AAAAGCTTCTTCGATT





GTTGACCGGTCCGTTA





AG





eGRC_
0.93
0.93
CGGAAGCCAAGCTCT


nm8


GTCCCAAGCACTGTGC





TGATGATATCTCATTT





CAT





eGRC_
0.95
0.96
CGCCGCTGCACCTCAT


nm9


CCTCCATGCTGTCCAC





CTGCCAGGATAAGGA





GTG





eGRC_
0.88
0.87
CGTGGAAGAGGGACA


nm10


GAATTTTAGAGAGAG





AAACTCATTTGAGAA





ATGGG





eGRC_
0.91
0.89
CGTCGTTATTCTTAGG


nm11


AGATGCATGTTGAAAT





ATTTAGAAATGATTTT





AT





eGRC_
0.88
0.84
ACAGGGACCTAATTA


nm12


ACTGACAGTTGGTCTG





ATTGCCAAGCTGAGG





GGCG





eGRC_
0.93
0.93
CGAAACACAGTCATTC


nm13


ATGTTGGTAATTGTGA





CAGAGATTATGTGGCC





CA





eGRC_
0.85
0.82
AGATGGATAGTGGCTT


nm14


CCTAATATCCCCTTTT





CATCAGTGTTAAAAAT





CG





eGRC_
0.89
0.88
TGAGGTTAAGAAATTT


nm15


GCTCATGGCCATACAC





GCAGCAAGCAGTTCT





ACG





eGRC_
0.91
0.87
CGGTTGCTTAAGCTGA


nm16


CACTGCAGAGCATTGC





AAGAAGTGTTGATTA





AAA





eGRC_
0.90
0.91
ATTTGTATTTTGACAG


nm17


CCCATGGTAGCATCAG





ATAAATTGCCTTTTAA





CG





eGRC_
0.88
0.85
CGCACAACTGCTCCAT


nm18


CTTTTAAGATATTGGA





AGTGAGAGCACGGGA





GGA





eGRC_
0.88
0.87
CTCCACAATAAGCTAA


nm19


AGCCAACTCCTGCAAC





AGGCTCCTGTGATCAA





CG





eGRC_
0.87
0.81
CGGTGCCTGGGGCTCA


nm20


GGTCTGTTCAAACTCC





TGCTCACAGAAGCCTA





CA





eGRC_
0.88
0.85
CGCAATCCTCAGAAG


nm21


CTGACAGGAGCTTCA





GAGAGGAGAATTACC





TTACC





eGRC_
0.93
0.91
ATTTACACATCCATAG


nm22


GCCTCATTTCTGCTGT





TCTAAAGAGTCTTTAT





CG





eGRC_
0.86
0.84
AACTCCTAAGGCCAA


nm23


AGGAATGTGGTATGCT





CACTGACTTGGCTTGG





ACG





eGRC_
0.83
0.79
GGGGTAAATGGATGC


nm24


AGAGCAGGCTTCTAA





GGTGCAGTCCCCCTCC





TTCG





eGRC_
0.84
0.77
CCAGGTGCAACATAT


nm25


GCATGCCAGTTGGTGC





ATGCAGCTTGTGAGGT





CCG





eGRC_
0.83
0.78
CGGGCAGTCTGTGGTT


nm26


CCTGACCAGACTGCTG





GGGGTCAAATCTCTTT





CA





eGRC_
0.82
0.75
GAATTTCCTAATATAT


nm27


TTCTAACAGATAATGG





TCACCACCACTACCCT





CG





eGRC_
0.81
0.67
CGATTGTTAGGAAACC


nm28


AAATGTTCTGAACATT





ATTTTCATTAGAAAAG





GG





eGRC_
0.81
0.66
AGCGGGAGGCTGGTG


nm29


GCGTGCATCAGGCCAT





GGGGGTGGGGCTTGG





ACCG





eGRC_
0.68
0.77
CGACTGCTCAAACTGG


nm30


GTTTGGAGAACAACC





CAGTATGGCTTTTACA





GAG





eGRC_
0.98.
0.98
CGGGATAAAGCACAG


nm31


CTCCTCCGCCAGCCCG





GCGCGCAGCGGGCCT





CACC





eGRC_
0.99
0.98
CGCACTCCGGTGACTC


nm32


AGAATTGTCGCCGCTC





CGTGCAAGTAAGTGTT





TG





eGRC_
0.99
0.96
GGTGATGAACGAGAA


nm33


TGAGCGCTATGACGC





AGTCCAGCACTGCCGC





TACG





eGRC_
0.91
0.93
AGTATCTAGAAAAAC


nm3434


CCAGAGAATGATATTC





CACAAAACGGTAAGC





ATCG





eGRC_
0.95
0.92
CGCGGGAGCTGCGGG


nm35


CTGCGGTGATCCAGCT





TCTGGACACCTCCTAT





CTG





eGRC_
0.89
0.84
CGCCCTAGGGCCAAG


nm36


AGTTGGGCCCCGTCTG





AGCTTTTTTCAACTCT





GTT





eGRC_
0.93
0.92
CCCAATAGAGGCTGTC


nm37


TCAACAGTGGCCAAC





AGAACTCTCATGAGTA





TCG





eGRC_
0.94
0.95
GTAGACCTTGCTAATA


nm38


ACTTGCCTATAAGTTC





CACAATACTCCCACTA





CG





eGRC_
0.91
0.89
CGCAGAGTCTTGACCA


nm39


CAAGGAAAATCTTGTT





TTTGAGCAATAACCCT





TC





eGRC_
0.85
0.80
CGTCAAGCTTTGTTGA


nm40


GTCAGACAGTGTCTGT





CCAAACTACTCAAGTC





AG





eGRC_
0.98
0.98
GGGCGAAGTCGCTGG


nm41


TGCCAGAGTCAATGA





CACGGAGAGGAAACG





CTTCG





eGRC_
0.90
0.89
TTTACTGATTTAGGAT


nm42


GTCGACCATCTAGTCT





GCCAGAGCTGCAATA





ACG





eGRC_
0.89
0.91
CGGCAAGTCCTATTGA


nm43


GATTATAACAATGAC





ACTGATAAAAAAGAA





GATG





eGRC_
0.92
0.93
AGCACGTTCATGACCC


nm44


TTGAAAGTCTTCGAAA





ACAGATTACTGGGCTT





CG





eGRC_
0.89
0.87
CGTGCACTCTGAACAA


nm45


GCATTCATTTGGCTGC





ACAGGGCCAGATCAA





GGT





eGRC_
0.91
0.88
ACTAGCTTTGCGAAAG


nm46


CCACAGGGAAGTGAT





CTTGGTTGTGCAGGTG





TCG





eGRC_
0.93
0.94
AAATGAATGTAGATA


nm47


CCATCTTAGCCAGGTG





ATGAAACAAACTGGT





ATCG





eGRC_
0.90
0.88
CGGAAATCAGAGGGA


nm48


GAAGACGCATATCTTG





TTTCAGTGAGGGTGAT





CCC





eGRC_
0.91
0.91
CGGTCAGAGGGGACC


nm49


ATCTGTTTATCTTACA





GGCTTAATATGATCAC





AGG





eGRC_
0.88
0.88
TACCAGCCCTTCATTT


nm50


CTTTGCTTTGACTCTTT





AATTTCCAAGATAATC





G





eGRC_
0.93
0.92
CGGAAGGCTGGGGAA


nm51


ACAGGCTCTGCCCTAT





ATCTGAGGGAAGTGT





GCAT





nGRC_
0.97
0.96
CGCCAGGTTTCGAGAT


nm1


GAAATCTCCGCCCTGT





AGCTCCGGACGTCCTC





CA





nGRC_
0.97
0.97
CGGCTAAGTCCCCACG


nm3


TACGCCATTAAACAAC





GGTCAAATGGTAACA





TGT





nGRC_
0.96
0.95
CTGCCCTTGGTCAGCA


nm4


CCGTGTAGGGCATGTG





CTCACCCGCTGGAGAT





CG





GRC_18
0.93
0.94
CGAAACAGATTGCATT


nm


TCCTAGAAGGCCCCCA





GCGATGTGGATTGAA





GCG





nGRC_
0.94
0.93
CGGCTTGAGCGCCAG


nm7


CAGCCTGCACAGGTTC





CATGAGCTGGAGAGC





TGCG





nGRC_
0.92
0.91
CGGACTACGAGTACC


nm8


AGCACTCCAATTTGTA





TGCCATATCAGGTATG





TGG





nGRC_
0.95
0.88
AATACCTGGCACGCC


nm9


AGGGTGATGCAACTG





GGAGCTTCTGCACGTT





CGCG





nGRC_
0.98
0.98
CAGCGCCCGTGTGATG


nm10


ATGATGCTCACGCTCC





GGTGTGACACAGACG





GCG





nGRC_
0.75
0.48
CGGGAGGAGCTGGGT


nm11


GGATACCTTTCTAACT





TCCGAGGCTGGCTACT





CCT





nGRC_
0.93
0.94
CCCTCTGCCCAGCGCG


nm12


TCTGGGACGTGTGCCC





AAGAGCTTATTGAGA





ACG





nGRC_
0.96
0.95
TCAGGAAATTGCGAA


nm13


GAAATTCTGCGGCGG





GTGCAGGATGCCCAC





CCTCG





nGRC_
0.92
0.86
CGTGGAGATGAACTA


nm15


GAACAGGTATGAGGT





TCTAGCAGAAGAAAC





ATTTG





nGRC_
0.97
0.97
CGATATTAGAAAGGA


nm16


GCTCAAGGTAGTACA





CTTCACGTGCCCCGGT





AACG





nGRC_
0.88
0.92
CGGCACTTTCAACCAA


nm17


ACAGAGACACTCCGG





CTCGTACACAACCAGC





CGT





nGRC_
0.91
0.90
CGCAATCCAGTCACAC


nm20


TTGTGAAAATGCTGAA





GACGGTGGTTACGGA





AGC





nGRC_
0.89
0.88
CGCTGAGCCAGAACA


nm22


ATAGGACTTCTTCTGT





AGTTGTGAAACTTGTC





AGT





nGRC_
0.86
0.83
GTACCAACTGAATTCA


nm24


ATTTAAAAACAAAGA





TGTCAGACATGCATCT





TCG





nGRC_
0.90
0.89
GTGTATGGATTCGGCA


nm25


TGGAGCCCTCAGCTGG





CGGCTCTGGGTGCTGA





CG





nGRC_
0.92
0.86
CGCACTTCTGTGCGCT


nm26


CACTATGAGAAGCTGT





GTTTACTCGCTCCGTG





CT





nGRC_
0.96
0.94
TCCCAGTCATTCTCGG


nm28


GGTAAGTTCCGAAGTT





GGAGGTGTCGCCTTCG





CG





nGRC_
0.95
0.91
CGTCCTCCGTCTGCCG


nm29


CCCACTAATCGTTCCC





CATACAGACTTCCTGG





CG





nGRC_
0.90
0.77
AGGTCACAGATGCAG


nm30


ACGTTTGCTCGAAGTG





GCTGCCGAGCTCAGA





CCCG





nGRC_
0.90
0.92
GTGGAGGATCCAATTC


nm31


TAAGACAGCTCATTCA





TTCACATGGCTGTTAG





CG





nGRC_
0.92
0.91
TTCTCAACACCAGTTT


nm32


TCTGAGCAGGGTGAA





TAACTCTGCTCATACC





TCG





nGRC_
0.87
0.78
TCCTATTACTCCAGAC


nm33


GAATCTGTTTCATGTG





CTGAAGCTCTCCCCTT





CG





nGRC_
0.84
0.84
AAAACCAAGTCTAGG


nm34


ATTTTTCCATGGATGG





TTTCTCAGCCGCTCTC





ACG





nGRC_
0.92
0.90
GGCTGTGGTTCTCTGC


nm35


TTGTGCCCACTTTGTG





TTTGTAAATAGCGAGT





CG





nGRC_
0.91
0.91
CGGGGGCTAGAGTTC


nm36


ATAATTTCTGGTAATC





GCTCAACCCTGTGATT





ACG





nGRC_
0.92
0.91
CGCTTTGCTTAGAGAT


nm37


CAACAGAGTGACATC





CTAGGGTCTGAGCCTC





AAC





nGRC_
0.83
0.83
CAAAAGCCTGTGAGG


nm38


AGCTCCTGGAAGACA





TTAAGTTCTCTACAGC





AACG





nGRC_
0.87
0.78
CGCAGGAGTAAAATT


nm39


GGGTAAAACAAGCAC





ATGGGAACTGAGGCA





ATCTC





nGRC_
0.87
0.83
CGGGTGCAACTGGCA


nm40


CCAAGAACAACACCC





ATGCCCAGGTGACAA





CTGCG





nGRC_
0.82
0.69
CGTGTTCATAAATGAG


nm41


TGCAGTGATATCAATT





TAAGAACATCCATCAT





GT





nGRC_
0.88
0.88
ATGTTTGTACACAGCT


nm42


GCCTCCTTGACTGTAG





TTGATTGGCCTCTGTG





CG





nGRC_
0.88
0.95
GAGACGAGCGTCTCA


nm43


GACTTGAGGAAATAC





ACGCGTGGAAGACGT





GCGCG





nGRC_
0.94
0.92
GTTCTTCTCCGTGACA


nm44


GGATGTTCTTTTCCGT





GACAGGAAGTTCCGT





CCG





nGRC_
0.94
0.91
AAGTGGGATCCGCAA


nm45


GATGATGGATGAGTTT





GAGGTAGACCCCTTTC





CCG





nGRC_
0.91
0.84
TGACGCTGTATTTCCT


nm46


GAAACTGCTCAGCAA





GATTTCCAGCTATCCA





GCG





nGRC_
0.87
0.90
CGGTCAGTTCCTGTGA


nm47


GGAGGAAACAATGAT





ACTGCATTATAGACAT





CGT





nGRC_
0.86
0.86
CGGGGAGGGACTAGA


nm48


TCAGAAGAGATCAAG





GGCTCTATTCAGGAAC





GTTG





nGRC_
0.98
0.97
CGTGGGCATCACGTA


nm49


AGCAGCACACTAGGA





GGCCCAGGCGCAGGC





AAAGA





nGRC_
0.89
0.90
CAAATCACTGTAGTTC


nm50


AGACAAAACCTTCAT





ACCATMATTATTTA





ACG
















TABLE 4H





T-Cell Marker























Basophil


Marker-
Target-


Granu-


ID
ID
SYMBOL
Accession
locytes





OTL_
cg0338
CCDC57
NM_
0.95


nm18
8043

198082






OTL_
cg1916
HDAC5
NM_
0.97


nm19
3395

001015053






OTL_
cg2461
CD3E
NM_
0.92


nm5
2198

000733






OTL_
cg0754
CD3G
NM_
0.90


nm4
5925

000073






OTL_
cg2444
TMEM177
NM_
0.86


nm22
1810

001105198






OTL_
cg1731


0.93


nm23
1865








OTL_
cg1761
HLA-E
NM_
0.90


nm24
5629

005516






OTL_
cg0865
1L32
NM_
0.89


nm25
9421

001012632






OTL_
cg0793


0.89


nm26
0673








OTL_
cg1011
CDR2
NM_
0.82


nm27
1816

001802






OTL_
cg2564
CD3D
NM_
0.88


nm28
3644

000732






OTL_
cg0763
MPI
NM_
0.87


nm29
0255

002435






OTL_
cg1822


0.92


nm30
2759








OTL_
cg0277
TRIM15
NM_
0.89


nm31
2121

033229






OTL_
cg0327


0.87


nm32
4669








OTL_
cg2527
TNRC6B
NM_
0.76


nm33
6892

001024843






OTL_
cg0923


0.88


nm34
2358








OTL_
cg2421
TNIP3
NM_
0.82


nm35
5459

001128843






OTL_
cg2613


0.88


nm36
7915








OTL_
cg0440
ATP1A1
NM_
0.86


nm37
3423

001160233






OTL_
cg2056


0.81


nm38
7280








OTL_
cg2711
UBASH3A
NM_
0.65


nm39
1890

001001895






OTL_
cg1050
CCDC57
NM_
0.82


nm40
5658

198082






OTL_
cg2496 
PLCG1
NM_
0.86


nm41
1795

002660






OTL_
cg0002
CD2
NM_
0.79


nm42
7570

001767






OTL_
cg2331


0.81


nm43
8020








OTL_
cg1484
ACSL6
NM_
0.80


nm44
1483

001009185






OTL_
cg0300
HACE1
NM_
0.85


nm45
2526

020771






OTL_
cg1792
SEPT9
NM_
0.84


nm46
2695

001113492






OTL_
cg0304


0.63


nm47
0292








OTL_
cg1175
BCL11B
NM_
0.71


nm48
3157

022898






OTL_
cg0720


0.81


nm49
3767








OTL_
cg1522
CHD3
NM_
0.70


nm50
7911

001005271






OTL_
cg0183


0.77


nm51
0053








OTL_
cg2627


0.79


nm52
1776








OTL_
cg1623
HMHA1
NM_
0.84


nm53
9536

012292






OTL_
cg0844
FAM71B
NM_
0.79


nm54
5740

130899






OTL_
cg2766
SECTM1
NM_
0.70


nm55
6046

003004






OTL_
cg2605


0.81


nm56
3876








OTL_
cg0611
RPS3A
NM_
0.79


nm57
0802

001006






OTL_
cg0755
OR5AU1
NM_
0.72


nm58
5731

001004731






OTL_
cg1382
SET
NM_
0.62


nm59
7677

003011






OTL_
cg2403
CACNA1C
NM_
0.66


nm60
3471

001129844






Eosino-
Neutro-

Non-



phil
phil
Classical
classical


Marker-
Granu-
Granu-
Mono-
Mono-


ID
locytes
locytes
cytes
cytes





OTL_
0.96
0.97
0.96
0.96


nm18









OTL_
0.95
0.97
0.92
0.91


nm19









OTL_
0.95
0.93
0.94
0.93


nm5









OTL_
0.89
0.90
0.92
0.89


nm4









OTL_
0.89
0.92
0.91
0.92


nm22









OTL_
0.93
0.91
0.91
0.89


nm23









OTL_
0.88
0.93
0.94
0.92


nm24









OTL_
0.90
0.91
0.90
0.90


nm25









OTL_
0.88
0.88
0.89
0.90


nm26









OTL_
0.75
0.84
0.85
0.86


nm27









OTL_
0.89
0.89
0.91
0.88


nm28









OTL_
0.89
0.89
0.89
0.87


nm29









OTL_
0.90
0.92
0.90
0.94


nm30









OTL_
0.85
0.84
0.87
0.85


nm31









OTL_
0.87
0.86
0.85
0.89


nm32









OTL_
0.58
0.87
0.89
0.91


nm33









OTL_
0.89
0.89
0.85
0.86


nm34









OTL_
0.84
0.87
0.88
0.86


nm35









OTL_
0.89
0.89
0.88
0.87


nm36









OTL_
0.89
0.89
0.90
0.89


nm37









OTL_
0.84
0.85
0.83
0.81


nm38









OTL_
0.86
0.89
0.89
0.88


nm39









OTL_
0.73
0.81
0.86
0.82


nm40









OTL_
0.86
0.85
0.84
0.82


nm41









OTL_
0.84
0.86
0.88
0.84


nm42









OTL_
0.85
0.85
0.86
0.85


nm43









OTL_
0.79
0.77
0.82
0.84


nm44









OTL_
0.86
0.89
0.85
0.85


nm45









OTL_
0.71
0.73
0.87
0.68


nm46









OTL_
0.84
0.90
0.89
0.87


nm47









OTL_
0.76
0.80
0.79
0.75


nm48









OTL_
0.84
0.85
0.86
0.83


nm49









OTL_
0.72
0.82
0.77
0.72


nm50









OTL_
0.61
0.71
0.78
0.79


nm51









OTL_
0.83
0.81
0.81
0.77


nm52









OTL_
0.82
0.83
0.82
0.81


nm53









OTL_
0.84
0.85
0.84
0.81


nm54









OTL_
0.73
0.73
0.76
0.72


nm55









OTL_
0.83
0.79
0.77
0.72


nm56









OTL_
0.77
0.85
0.82
0.83


nm57









OTL_
0.69
0.72
0.69
0.69


nm58









OTL_
0.56
0.72
0.80
0.74


nm59









OTL_
0.68
0.71
0.71
0.66


nm60






NK





Marker-
clas-
B-
CD4 +
CD4 +


ID
sical
Cells
Th naive
Th1





OTL_
0.84
0.97
0.07
0.02


nm18









OTL_
0.94
0.86
0.18
0.02


nm19









OTL_
0.89
0.94
0.14
0.04


nm5









OTL_
0.87
0.88
0.08
0.04


nm4









OTL_
0.90
0.82
0.07
0.05


nm22









OTL_
0.89
0.82
0.18
0.00


nm23









OTL_
0.74
0.77
0.08
0.04


nm24









OTL_
0.80
0.83
0.16
0.06


nm25









OTL_
0.79
0.89
0.09
0.09


nm26









OTL_
0.84
0.83
0.08
0.04


nm27









OTL_
0.57
0.90
0.10
0.06


nm28









OTL_
0.77
0.82
0.08
0.07


nm29









OTL_
0.90
0.81
0.19
0.11


nm30









OTL_
0.74
0.83
0.10
0.05


nm31









OTL_
0.61
0.91
0.09
0.05


nm32









OTL_
0.85
0.73
0.03
0.03


nm33









OTL_
0.85
0.89
0.22
0.10


nm34









OTL_
0.55
0.63
0.09
0.04


nm35









OTL_
0.57
0.86
0.12
0.11


nm36









OTL_
0.81
0.64
0.08
0.13


nm37









OTL_
0.76
0.79
0.11
0.06


nm38









OTL_
0.84
0.92
0.14
0.13


nm39









OTL_
0.58
0.83
0.11
0.05


nm40









OTL_
0.83
0.77
0.16
0.09


nm41









OTL_
0.81
0.82
0.17
0.10


nm42









OTL_
0.51
0.83
0.11
0.08


nm43









OTL_
0.78
0.84
0.11
0.07


nm44









OTL_
0.78
0.81
0.18
0.16


nm45









OTL_
0.68
0.68
0.08
0.03


nm46









OTL_
0.59
0.63
0.09
0.07


nm47









OTL_
0.87
0.70
0.08
0.08


nm48









OTL_
0.66
0.84
0.15
0.12


nm49









OTL_
0.78
0.82
0.06
0.05


nm50









OTL_
0.73
0.72
0.04
0.02


nm51









OTL_
0.79
0.71
0.22
0.11


nm52









OTL_
0.58
0.74
0.14
0.09


nm53









OTL_
0.56
0.64
0.11
0.12


nm54









OTL_
0.57
0.60
0.14
0.03


nm55









OTL_
0.68
0.75
0.19
0.08


nm56









OTL_
0.83
0.66
0.18
0.21


nm57









OTL_
0.61
0.55
0.16
0.09


nm58









OTL_
0.61
0.72
0.12
0.16


nm59









OTL_
0.52
0.56
0.15
0.10


nm60







CD4 +
CD4 +
CD8 +




Th
Th
Crypto-


Marker-
CD4 +
Central
Effect.
toxic


ID
Th2
Mem.
Mem.
T-Cells





OTL_
0.02
0.03
0.03
0.03


nm18









OTL_
0.02
0.03
0.02
0.18


nm19









OTL_
0.04
0.05
0.07
0.09


nm5









OTL_
0.04
0.04
0.05
0.04


nm4









OTL_
0.05
0.04
0.04
0.05


nm22









OTL_
0.03
0.05
0.02
0.12


nm23









OTL_
0.05
0.02
0.04
0.03


nm24









OTL_
0.05
0.04
0.06
0.06


nm25









OTL_
0.09
0.08
0.10
0.09


nm26









OTL_
0.05
0.04
0.07
0.05


nm27









OTL_
0.07
0.08
0.09
0.06


nm28









OTL_
0.07
0.06
0.09
0.12


nm29









OTL_
0.10
0.11
0.10
0.16


nm30









OTL_
0.06
0.09
0.06
0.10


nm31









OTL_
0.04
0.05
0.05
0.12


nm32









OTL_
0.03
0.04
0.04
0.10


nm33









OTL_
0.12
0.13
0.13
0.11


nm34









OTL_
0.05
0.05
0.06
0.04


nm35









OTL_
0.10
0.10
0.13
0.10


nm36









OTL_
0.09
0.08
0.15
0.11


nm37









OTL_
0.08
0.07
0.08
0.08


nm38









OTL_
0.13
0.12
0.14
0.12


nm39









OTL_
0.05
0.04
0.06
0.08


nm40









OTL_
0.08
0.10
0.11
0.11


nm41









OTL_
0.11
0.10
0.14
0.14


nm42









OTL_
0.04
0.07
0.09
0.09


nm43









OTL_
0.08
0.07
0.11
0.13


nm44









OTL_
0.12
0.13
0.10
0.16


nm45









OTL_
0.04
0.03
0.06
0.04


nm46









OTL_
0.05
0.05
0.06
0.12


nm47









OTL_
0.05
0.05
0.07
0.09


nm48









OTL_
0.13
0.12
0.15
0.13


nm49









OTL_
0.05
0.05
0.06
0.12


nm50









OTL_
0.02
0.03
0.04
0.10


nm51









OTL_
0.11
0.11
0.11
0.19


nm52









OTL_
0.11
0.12
0.15
0.15


nm53









OTL_
0.13
0.14
0.16
0.15


nm54









OTL_
0.03
0.03
0.04
0.07


nm55









OTL_
0.17
0.11
0.14
0.14


nm56









OTL_
0.20
0.22
0.21
0.15


nm57









OTL_
0.08
0.12
0.12
0.15


nm58









OTL_
0.15
0.13
0.18
0.13


nm59









OTL_
0.13
0.13
0.17
0.12


nm60












Marker-
NK



ID
T-Cells
Discovery Fragment





OTL_
0.07
GGCTTGCGTAGT


nm18

CAAGGCTGCCCG




CGTGCCACGTGT




GGTGGACAGCA




TCG





OTL_
0.05
CGCGCCTAGCTG


nm19

GCACTCCATTCA




TTGCGGACACAG




CCGAGCCCTCCG




GG





OTL_
0.08
AGTCATCTGTTT


nm5

TGCTTTTTTTCC




AGAAGTAGTAA




GTCTGCTGGCCT




CCG





OTL_
0.06
CGGAAAAACAA


nm4

AAGGCATCTGCA




CCTGCAGCCCTG




CTGAGGCCCCTG




CTG





OTL_
0.10
GCATGGGTTCTG


nm22

ATGGGGGCCCTG




CCATAGGCCGCC




TGGTGACCCACG




CG





OTL_
0.25
CGCACATCTCAT


nm23

GAATGCCATGGT




ATTCCTTATTTC




GTGTCAGCCCTT




CC





OTL_
0.08
CGCACCCAGCCG


nm24

CACCTACTCTTT




TGTAAAGCACCT




GTGACAATGAA




GGA





OTL_
0.07
CAAGCCCCAGG


nm25

GCTCCTTGAGGA




AACAACAGGGG




TGCCAGACGTGG




CCCG





OTL_
0.16
CGGGGGAGGCT


nm26

GCTGAGTGGTTT




TGAAATTATACA




GAGCTGGATTTG




AAC





OTL_
0.06
CTTCTGTCGTTT


nm27

CAATTGGCATCT




GGTGAACTATGC




CTAACAGCTTAA




CG





OTL_
0.08
GGAGTTCATTGC


nm28

TGGGTGTGACTG




GAGAGGTCAGG




CAGGAGCTCTCA




TCG





OTL_
0.16
AGATTTTCCCTA


nm29

GCCCTGCAGCTG




CCCTCCATGGAT




GGACTTGTATCT




CG





OTL_
0.17
CTGCTGTTCAGG


nm30

GAAATGGCTTCC




TTTCAGATGTGT




TTCTCATAGTCT




CG





OTL_
0.10
GGCGGGACGCT


nm31

GTTTCGACACTG




CAGGTAGGGTGT




AAGGATTGCTCA




TCG





OTL_
0.23 
TGCCTGAAATGA


nm32

TACAGTAGTGTA




TAAACCAAGTAT




CTCTGCTTGCAT




CG





OTL_
0.10 
CGGTTTGCATCT


nm33

CCAGCCCCCGCG




GCTCACAGGCCG




TGTAACTTCACT




GC





OTL_
0.10 
CGGCCATATTCT


nm34

GGCAGGGTCAG




TGGCTCCAACTA




ACATTTGTTTGG




TAC





OTL_
0.05 
CGAAGAATTGTA


nm35

TTTGCATGTCTG




AAATGAAAGCC




CAGAGAATAGG




GTGG





OTL_
0.17 
TGGAAACCCCTT


nm36

CAGCAGCGTATG




GTGCTGGGGACC




TTCTGGGGAGAT




CG





OTL_
0.22 
AAAGCATGCAG


nm37

CGTGGAGGGCT




GGTCCAGGTCAG




GTGGCATCAAA




GAGCG





OTL_
0.20 
CGGTACCCCAAA


nm38

ATTTGGTGCTTT




GACATGCTGAAC




TAGAGAAGCAG




CCG





OTL_
0.16 
CGCATTCTTGCT


nm39

CCCGAATACTAG




CCAAGTCCCTAC




AGAGGCTGATCC




CG





OTL_
0.11
GCAGCCTCTGGG


nm40

TGGGTGGCGGA




GGCTGAGGCGA




TGCTGTCCACCA




CACG





OTL_
0.15
CGAGTCTGAACC


nm41

ATCTCAACTCAG




AAAACACCAGA




AGAAAAAGTGT




GGAG





OTL_
0.15
CGGTGTTTCTGC


nm42

ACTGTTGATCCT




GCTCTCGTCTCT




GGCTACCCCCAC




TG





OTL_
0.19
CGCTGAAACTTA


nm43

GCAGGCACTCA




GTAAATATTTTG




CTAAGCAGTTAA




AAC





OTL_
0.20
CGCCTGCAGAA


nm44

AGTGATCTTTCC




GAGACAGGACG




ATGTGCTCATCT




CCTT





OTL_
0.19
AGTCAAAGTCA


nm45

AATCATGGGTAG




ATTCCGTCACTA




ACAAAGTGAGC




CACG





OTL_
0.13
CGTCCTGAGTTC


nm46

CCAGACGTCATA




GGTGCTTGCTCA




ACGAGTGTTTGA




AT





OTL_
0.20
CTACCAAAGCAC


nm47

TGGAGCTCATAA




CAAGCTGCCTGT




CCTTGGCCACCT




CG





OTL_
0.23
CCACTGGAGATA


nm48

TACTCTACCCTG




GGGAGTTAAGA




TAATTGTGAGCA




CCG





OTL_
0.14
CGGGCTGGGGA


nm49

GGTGTAAAGAC




AAATCCCGGTGA




CCCTGGCCCTAA




AAAG





OTL_
0.21
CGCGCGTGCTTT


nm50

TGAGAAGGCAT




ATGCTGGGTGTG




TCTGTCTGTGCC




TAT





OTL_
0.24
ACGCTAGTGCAG


nm51

CACTTTTGAAAG




TAAAAAGCACTT




TGCAATAATTAA




CG





OTL_
0.14
CGTCGTCCTGGC


nm52

TAGGATCTAGCA




TCTCAGTGCAAA




ATGGGCTATGTA




AG





OTL_
0.23
AGCCCGGGGTG


nm53

CAGGACTCAGA




CAGAAACCTCA




GGGAGGCGGGG




CTGACG





OTL_
0.15
CGGTGATTCAAG


nm54

ACCTCCAAGAAT




TCCTGTGGTTCC




CAGTAAATCCCC




AC





OTL_
0.11
CGAGGACGCCTT


nm55

AGGGACGTTTTG




GGGCTTAAAGCC




ACTAAAGACGTT




TC





OTL_
0.13
CGCCCACACAGT


nm56

TTGGAGTTAAAC




AGATCTCAACAA




ATGAACACAGTT




AT





OTL_
0.23
CTGGTTCATCTC


nm57

AGGTGTTGTTGC




TTTGTGAACATT




CACTAAGCTCTA




CG





OTL_
0.12
TCTTCTTAGTGA


nm58

GCATGCTCATAG




CTAACCTTCTTT




GAACTTCCTCAA




CG





OTL_
0.21
CTATCGCTTGGG


nm59

GCTGTTGTGAGG




CCTCGGTGAGAT




AACCGTGCCATG




CG





OTL_
0.13
TCTCTCCTTTGC


nm60

TATGGGAGGGCT




TGAATCTGTGGC




AGCCTTCAAAAC




CG
















TABLE 41





MDSC (myleoid-derived suppressor cells) Marker























Basophil


Marker-
Target-


Granu-


ID
ID
SYMBOL
Accession
locytes





MDSC_
cg103
UPP1
NM_
0.97


nm1
117717

001287426






MDSC_
cg093
DAXX
NM_
0.96


nm2
65002

001141969






MDSC_
cg224
M4SF19
NM_
0.94


nm3
96559

001204897






MDSC_
cg249
SRC
NM_
0.79


nm4 
56391

005417






MDSC_
cg227
TYH3
NM_
0.91


nm5
88953

025250






MDSC_
cg064
CLCN7
NM_
0.91


nm6
89615

001114331






MDSC_
cg189


0.93


nm7
95788








MDSC_
cg131
SMURF1
NM_
0.91


nm8
52501

001199847






MDSC_
cg181


0.88


nm9
29996








MDSC_
cg207


0.97


nm10
00740








MDSC_
cg023
ZC3H8
NM_
0.90


nm11
41139

032494






MDSC_
cg199
SYNPO
NM_
0.84


nm12
84911

001109974






MDSC_
cg221
ATP6V1E2
NM_
0.90


nm13
37471

080653






MDSC_
cg088
SNX29
NM_
0.84


nm14
22891

032167






MDSC_
cg004
ATN1
NM_
0.89


nm15
76608

001007026






MDSC_
cg202
CTSZ
NM_
0.89


nm16
78790

001336






MDSC_
cg086


0.91


nm17
97732








MDSC_
cg008
CMIP
NM_
0.87


nm18
64293

030629






MDSC_
cg144
GPNMB
NM_
0.87


nm19
44376

001005340






MDSC_
cg009


0.88


nm20
45409








MDSC_
cg033
PDXK
NM_
0.86


nm21
66992

003681






MDSC_
cg041
DOT1L
NM_
0.72


nm22
43586

032482






MDSC_
cg004


0.85


nm23
26089








MDSC_
cg108
CGF3
NM_
0.34


nm24
64200

006315






MDSC_
cg042


0.85


nm25
52044








MDSC_
cg019


0.84


nm26
05967








MDSC_
cg035


0.90


nm27
00164








MDSC_
cg017
NANOG
NM_
0.90


nm28
34240

024865






MDSC_
cg091
TRIM35
NM_
0.77


nm29
27592

171982






MDSC_
cg090
CCR1
NM_
0.82


nm30
88625

001295






MDSC_
cg176
APBB2
NM_
0.88


nm31
99214

001166050






MDSC_
cg079
MFSD12
NM_
0.71


nm32
37803

001042680






MDSC_
cg272
HS1BP3
NM_
0.81


nm33
82397

022460






MDSC_
cg013
RXRB
NM_
0.84


nm34
59676

001270401






MDSC_
cg054
PHF15
NM_
0.75


nm35
76182

015288






MDSC_
cg148
SORCS2
NM_
0.80


nm36
12474

020777






MDSC_
cg082


0.89


nm37
10681








MDSC_
cg170
ITGAE
NM_
0.96


nm38
74014

002208






MDSC_
cg153
MRAS
NM_
0.84


nm39
20001

001085059






MDSC_
cg193


0.85


nm40
99285








MDSC_
cg211


0.81


nm41
64050








MDSC_
cg212
RGIC1
NM_
0.79


nm42
04530

001031711






MDSC_
cg072
CSF1R
NM_
0.80


nm43
60017

001288705






MDSC_
cg061
AC10480

0.87


nm44
93597
9.3







MDSC_
cg261


0.73


nm45
74398








MDSC_
cg245
SH3RF3
NM_
0.83


nm46
87185

001099289






MDSC_
cg058
MFSD7
NM_
0.89


nm47
27190

032219






MDSC_
cg031


0.80


nm48
76993








MDSC_
cg033
MBNL2
NM_
0.72


nm49
72334

144778






MDSC_
cg218
SPARC
NM_
0.80


nm50
77464

003118






MDSC_
cg098
FKBP2
NM_
0.90


nm51
54726

001135208






MDSC_
cg164
BCAT1
NM_
0.86


nm52
90209

001178091






MDSC_
cg181


0.80


nm53
14313








MDSC_
cg223


0.64


nm54
07974








MDSC_
cg191
AMPD3
NM_
0.63


nm55
32462

000480






MDSC_
cg122
MYO9B
NM_
0.68


nm56
29979

001130065






MDSC_
cg060


0.82


nm57
93152






Eosino-
Neutro-

Non



phil
phil
Classical
classical


Marker-
Granu-
Granu-
Mono-
Mono-


ID
locytes
locytes
cytes
cytes





MDSC_
0.95
0.95
0.95
0.93


nm1









MDSC_
0.96
0.92
0.88
0.90


nm2









MDSC_
0.95
0.95
0.92
0.80


nm3









MDSC_
0.82
0.87
0.77
0.54


nm4 









MDSC_
0.84
0.89
0.83
0.84


nm5









MDSC_
0.88
0.87
0.85
0.77


nm6









MDSC_
0.90
0.92
0.65
0.63


nm7









MDSC_
0.91
0.91
0.81
0.81


nm8









MDSC_
0.89
0.90
0.90
0.90


nm9









MDSC_
0.81
0.02
0.51
0.59


nm10









MDSC_
0.91
0.92
0.87
0.88


nm11









MDSC_
0.90
0.82
0.72
0.76


nm12









MDSC_
0.87
0.90
0.87
0.84


nm13









MDSC_
0.77
0.51
0.72
0.76


nm14









MDSC_
0.85
0.38
0.55
0.56


nm15









MDSC_
0.89
0.90
0.72
0.56


nm16









MDSC_
0.91
0.92
0.79
0.62


nm17









MDSC_
0.82
0.82
0.87
0.87


nm18









MDSC_
0.90
0.91
0.73
0.59


nm19









MDSC_
0.88
0.88
0.88
0.87


nm20









MDSC_
0.81
0.65
0.76
0.75


nm21









MDSC_
0.08
0.21
0.73
0.38


nm22









MDSC_
0.89
0.87
0.87
0.82


nm23









MDSC_
0.47
0.60
0.58
0.65


nm24









MDSC_
0.83
0.82
0.63
0.40


nm25









MDSC_
0.85
0.85
0.83
0.82


nm26









MDSC_
0.89
0.86
0.66
0.71


nm27









MDSC_
0.90
0.88
0.57
0.58


nm28









MDSC_
0.76
0.70
0.81
0.79


nm29









MDSC_
0.87
0.89
0.87
0.83


nm30









MDSC_
0.89
0.86
0.82
0.76


nm31









MDSC_
0.51
0.90
0.90
0.85


nm32









MDSC_
0.85
0.85
0.68
0.46


nm33









MDSC_
0.87
0.86
0.88
0.87


nm34









MDSC_
0.78
0.76
0.66
0.63


nm35









MDSC_
0.83
0.85
0.82
0.74


nm36









MDSC_
0.89
0.91
0.66
0.45


nm37









MDSC_
0.67
0.03
0.42
0.49


nm38









MDSC_
0.85
0.81
0.56
0.48


nm39









MDSC_
0.86
0.86
0.83
0.86


nm40









MDSC_
0.85
0.85
0.77
0.78


nm41









MDSC_
0.84
0.82
0.86
0.88


nm42









MDSC_
0.87
0.86
0.83
0.62


nm43









MDSC_
0.82
0.81
0.87
0.86


nm44









MDSC_
0.67
0.79
0.72
0.51


nm45









MDSC_
0.84
0.85
0.81
0.72


nm46









MDSC_
0.79
0.63
0.60
0.39


nm47









MDSC_
0.79
0.73
0.58
0.42


nm48









MDSC_
0.68
0.69
0.70
0.69


nm49









MDSC_
0.73
0.32
0.48
0.44


nm50









MDSC_
0.72
0.82
0.71
0.36


nm51









MDSC_
0.80
0.73
0.61
0.51


nm52









MDSC_
0.75
0.64
0.52
0.44


nm53









MDSC_
0.43
0.50
0.49
0.41


nm54









MDSC_
0.06
0.07
0.44
0.37


nm55









MDSC_
0.39
0.76
0.63
0.53


nm56









MDSC_
0.53
0.47
0.48
0.33


nm57






NK
NK




Marker
Clas-
bright

NK


ID-
sical
NK B_1
NK B_2
bright





MDSC_
0.95
0.96
0.93
0.94


nm1









MDSC_
0.96
0.96
0.95
0.95


nm2









MDSC_
0.76
0.91
0.86
0.88


nm3









MDSC_
0.93
0.91
0.78
0.85


nm4 









MDSC_
0.95
0.89
0.88
0.89


nm5









MDSC_
0.92
0.91
0.93
0.92


nm6









MDSC_
0.95
0.95
0.97
0.96


nm7









MDSC_
0.91
0.92
0.89
0.91


nm8









MDSC_
0.89
0.89
0.89
0.89


nm9









MDSC_
0.98
0.98
0.95
0.96


nm10









MDSC_
0.90
0.90
0.84
0.87


nm11









MDSC_
0.89
0.92
0.89
0.90


nm12









MDSC_
0.87
0.89
0.89
0.89


nm13









MDSC_
0.90
0.89
0.90
0.90


nm14









MDSC_
0.92
0.90
0.92
0.91


nm15









MDSC_
0.89
0.86
0.83
0.84


nm16









MDSC_
0.88
0.89
0.88
0.89


nm17









MDSC_
0.89
0.90
0.88
0.89


nm18









MDSC_
0.87
0.83
0.81
0.82


nm19









MDSC_
0.87
0.89
0.81
0.85


nm20









MDSC_
0.86
0.83
0.87
0.85


nm21









MDSC_
0.90
0.96
0.95
0.95


nm22









MDSC_
0.85
0.79
0.75
0.77


nm23









MDSC_
0.88
0.88
0.86
0.87


nm24









MDSC_
0.87
0.90
0.89
0.90


nm25









MDSC_
0.87
0.88
0.87
0.87


nm26









MDSC_
0.84
0.74
0.80
0.77


nm27









MDSC_
0.87
0.81
0.74
0.78


nm28









MDSC_
0.83
0.86
0.79
0.82


nm29









MDSC_
0.81
0.64
0.74
0.69


nm30









MDSC_
0.89
0.88
0.87
0.88


nm31









MDSC_
0.90
0.88
0.89
0.88


nm32









MDSC_
0.84
0.81
0.88
0.84


nm33









MDSC_
0.85
0.83
0.84
0.83


nm34









MDSC_
0.84
0.85
0.82
0.84


nm35









MDSC_
0.83
0.75
0.71
0.73


nm36









MDSC_
0.85
0.82
0.82
0.82


nm37









MDSC_
0.84
0.89
0.89
0.89


nm38









MDSC_
0.81
0.81
0.81
0.81


nm39









MDSC_
0.86
0.88
0.85
0.86


nm40









MDSC_
0.83
0.84
0.85
0.85


nm41









MDSC_
0.78
0.85
0.85
0.85


nm42









MDSC_
0.77
0.83
0.84
0.83


nm43









MDSC_
0.84
0.90
0.92
0.91


nm44









MDSC_
0.79
0.83
0.84
0.84


nm45









MDSC_
0.70
0.75
0.73
0.74


nm46









MDSC_
0.88
0.91
0.87
0.89


nm47









MDSC_
0.83
0.84
0.79
0.81


nm48









MDSC_
0.83
0.79
0.80
0.79


nm49









MDSC_
0.83
0.84
0.83
0.83


nm50









MDSC_
0.88
0.88
0.82
0.85


nm51









MDSC_
0.77
0.86
0.80
0.83


nm52









MDSC_
0.83
0.83
0.84
0.84


nm53









MDSC_
0.74
0.69
0.69
0.69


nm54









MDSC_
0.84
0.87
0.81
0.84


nm55









MDSC_
0.63
0.76
0.66
0.71


nm56









MDSC_
0.78
0.85
0.82
0.84


nm57





Marker
B-

CD4 +
CD4 +


ID-
Cells
MDSC
Th naive
act.





MDSC_
0.97
0.15
0.95
0.92


nm1









MDSC_
0.96
0.21
0.96
0.95


nm2









MDSC_
0.82
0.28
0.93
0.91


nm3









MDSC_
0.56
0.10
0.94
0.75


nm4 









MDSC_
0.94
0.29
0.94
0.90


nm5









MDSC_
0.93
0.35
0.93
0.92


nm6









MDSC_
0.98
0.21
0.98
0.87


nm7









MDSC_
0.92
0.36
0.91
0.90


nm8









MDSC_
0.91
0.37
0.92
0.90


nm9









MDSC_
0.98
0.17
0.84
0.97


nm10









MDSC_
0.90
0.28
0.92
0.88


nm11









MDSC_
0.91
0.29
0.92
0.89


nm12









MDSC_
0.87
0.19
0.88
0.89


nm13









MDSC_
0.91
0.27
0.91
0.90


nm14









MDSC_
0.88
0.25
0.91
0.86


nm15









MDSC_
0.47
0.33
0.90
0.86


nm16









MDSC_
0.83
0.23
0.91
0.82


nm17









MDSC_
0.91
0.28
0.92
0.73


nm18









MDSC_
0.84
0.22
0.93
0.81


nm19









MDSC_
0.86
0.18
0.88
0.80


nm20









MDSC_
0.89
0.25
0.88
0.81


nm21









MDSC_
0.78
0.21
0.98
0.92


nm22









MDSC_
0.62
0.33
0.89
0.81


nm23









MDSC_
0.87
0.33
0.92
0.89


nm24









MDSC_
0.88
0.17
0.89
0.80


nm25









MDSC_
0.85
0.33
0.91
0.86


nm26









MDSC_
0.87
0.23
0.91
0.75


nm27









MDSC_
0.87
0.26
0.90
0.79


nm28









MDSC_
0.92
0.28
0.91
0.82


nm29









MDSC_
0.85
0.28
0.88
0.83


nm30









MDSC_
0.90
0.16
0.91
0.70


nm31









MDSC_
0.84
0.21
0.91
0.76


nm32









MDSC_
0.81
0.25
0.85
0.81


nm33









MDSC_
0.82
0.25
0.86
0.70


nm34









MDSC_
0.85
0.26
0.88
0.80


nm35









MDSC_
0.83
0.24
0.87
0.75


nm36









MDSC_
0.83
0.13
0.88
0.73


nm37









MDSC_
0.98
0.19
0.93
0.68


nm38









MDSC_
0.81
0.28
0.87
0.84


nm39









MDSC_
0.83
0.28
0.88
0.66


nm40









MDSC_
0.82
0.25
0.91
0.73


nm41









MDSC_
0.85
0.21
0.85
0.67


nm42









MDSC_
0.82
0.22
0.88
0.63


nm43









MDSC_
0.55
0.16
0.78
0.42


nm44









MDSC_
0.70
0.14
0.84
0.61


nm45









MDSC_
0.83
0.19
0.84
0.57


nm46









MDSC_
0.83
0.25
0.90
0.71


nm47









MDSC_
0.81
0.18
0.88
0.78


nm48









MDSC_
0.76
0.19
0.70
0.88


nm49









MDSC_
0.84
0.20
0.86
0.74


nm50









MDSC_
0.55
0.19
0.91
0.68


nm51









MDSC_
0.87
0.21
0.87
0.74


nm52









MDSC_
0.35
0.21
0.88
0.70


nm53









MDSC_
0.69
0.17
0.81
0.71


nm54









MDSC_
0.51
0.15
0.73
0.82


nm55









MDSC_
0.71
0.15
0.88
0.74


nm56









MDSC_
0.75
0.14
0.90
0.59


nm57








CD4 +
CD4 +





Th
Th


Marker
CD4 +
CD4 +
Central
EFFECT.


ID-
Th1
Th2
Mem.
Mem.





MDSC_
0.93
0.95
0.96
0.95


nm1









MDSC_
0.96
0.97
0.97
0.96


nm2









MDSC_
0.93
0.94
0.93
0.94


nm3









MDSC_
0.82
0.82
0.85
0.84


nm4 









MDSC_
0.92
0.92
0.94
0.95


nm5









MDSC_
0.92
0.92
0.92
0.92


nm6









MDSC_
0.90
0.92
0.95
0.95


nm7









MDSC_
0.91
0.90
0.91
0.91


nm8









MDSC_
0.89
0.89
0.91
0.90


nm9









MDSC_
0.98
0.98
0.97
0.98


nm10









MDSC_
0.86
0.88
0.90
0.88


nm11









MDSC_
0.90
0.89
0.91
0.90


nm12









MDSC_
0.88
0.88
0.88
0.88


nm13









MDSC_
0.86
0.89
0.87
0.88


nm14









MDSC_
0.89
0.89
0.90
0.90


nm15









MDSC_
0.87
0.89
0.89
0.89


nm16









MDSC_
0.85
0.87
0.85
0.87


nm17









MDSC_
0.73
0.77
0.78
0.77


nm18









MDSC_
0.87
0.88
0.88
0.86


nm19









MDSC_
0.81
0.84
0.84
0.85


nm20









MDSC_
0.84
0.83
0.83
0.84


nm21









MDSC_
0.96
0.96
0.96
0.96


nm22









MDSC_
0.84
0.85
0.86
0.87


nm23









MDSC_
0.93
0.93
0.93
0.94


nm24









MDSC_
0.85
0.87
0.85
0.81


nm25









MDSC_
0.87
0.89
0.84
0.81


nm26









MDSC_
0.86
0.89
0.91
0.91


nm27









MDSC_
0.83
0.84
0.84
0.82


nm28









MDSC_
0.88
0.88
0.88
0.86


nm29









MDSC_
0.86
0.85
0.86
0.86


nm30









MDSC_
0.76
0.77
0.74
0.76


nm31









MDSC_
0.76
0.79
0.83
0.81


nm32









MDSC_
0.82
0.83
0.82
0.83


nm33









MDSC_
0.75
0.74
0.75
0.75


nm34









MDSC_
0.81
0.82
0.81
0.81


nm35









MDSC_
0.79
0.79
0.78
0.79


nm36









MDSC_
0.82
0.83
0.85
0.83


nm37









MDSC_
0.93
0.92
0.92
0.91


nm38









MDSC_
0.80
0.82
0.83
0.83


nm39









MDSC_
0.76
0.69
0.77
0.73


nm40









MDSC_
0.69
0.80
0.82
0.74


nm41









MDSC_
0.63
0.68
0.71
0.69


nm42









MDSC_
0.67
0.66
0.67
0.68


nm43









MDSC_
0.62
0.65
0.45
0.13


nm44









MDSC_
0.65
0.57
0.64
0.61


nm45









MDSC_
0.54
0.64
0.66
0.63


nm46









MDSC_
0.77
0.77
0.79
0.79


nm47









MDSC_
0.75
0.82
0.81
0.81


nm48









MDSC_
0.80
0.80
0.74
0.87


nm49









MDSC_
0.75
0.78
0.79
0.80


nm50









MDSC_
0.71
0.75
0.78
0.79


nm51









MDSC_
0.61
0.80
0.77
0.72


nm52









MDSC_
0.64
0.77
0.72
0.70


nm53









MDSC_
0.76
0.81
0.77
0.81


nm54









MDSC_
0.76
0.81
0.77
0.76


nm55









MDSC_
0.77
0.73
0.72
0.72


nm56









MDSC_
0.59
0.69
0.68
0.63


nm57








CD8 +




CD4 +

Cytoto-
CD8 +


Marker
NK
CD4 +
toxic
naive


ID-
T cells
TFH
T-cells
T8n_1





MDSC_
0.83
0.90
0.96
0.94


nm1









MDSC_
0.92
0.94
0.97
0.96


nm2









MDSC_
0.79
0.91
0.87
0.93


nm3









MDSC_
0.80
0.62
0.93
0.91


nm4 









MDSC_
0.88
0.90
0.95
0.94


nm5









MDSC_
0.91
0.91
0.93
0.90


nm6









MDSC_
0.88
0.91
0.95
0.96


nm7









MDSC_
0.90
0.88
0.92
0.91


nm8









MDSC_
0.90
0.90
0.91
0.88


nm9









MDSC_
0.94
0.97
0.96
0.93


nm10









MDSC_
0.84
0.89
0.91
0.89


nm11









MDSC_
0.89
0.91
0.92
0.90


nm12









MDSC_
0.89
0.89
0.89
0.88


nm13









MDSC_
0.78
0.88
0.91
0.91


nm14









MDSC_
0.88
0.89
0.90
0.90


nm15









MDSC_
0.84
0.87
0.89
0.90


nm16









MDSC_
0.87
0.86
0.86
0.91


nm17









MDSC_
0.76
0.68
0.87
0.91


nm18









MDSC_
0.78
0.84
0.89
0.86


nm19









MDSC_
0.78
0.83
0.86
0.86


nm20









MDSC_
0.84
0.80
0.87
0.87


nm21









MDSC_
0.92
0.93
0.97
0.95


nm22









MDSC_
0.76
0.81
0.89
0.84


nm23









MDSC_
0.87
0.87
0.93
0.90


nm24









MDSC_
0.82
0.71
0.91
0.87


nm25









MDSC_
0.76
0.89
0.86
0.87


nm26









MDSC_
0.75
0.79
0.90
0.80


nm27









MDSC_
0.79
0.79
0.86
0.87


nm28









MDSC_
0.80
0.82
0.66
0.44


nm29









MDSC_
0.77
0.83
0.85
0.86


nm30









MDSC_
0.76
0.74
0.83
0.88


nm31









MDSC_
0.80
0.85
0.84
0.90


nm32









MDSC_
0.84
0.82
0.85
0.83


nm33









MDSC_
0.73
0.61
0.86
0.85


nm34









MDSC_
0.76
0.77
0.87
0.87


nm35









MDSC_
0.68
0.77
0.83
0.82


nm36









MDSC_
0.80
0.75
0.84
0.87


nm37









MDSC_
0.86
0.81
0.80
0.84


nm38









MDSC_
0.78
0.83
0.80
0.78


nm39









MDSC_
0.76
0.69
0.79
0.87


nm40









MDSC_
0.73
0.75
0.82
0.87


nm41









MDSC_
0.70
0.61
0.76
0.85


nm42









MDSC_
0.61
0.68
0.79
0.86


nm43









MDSC_
0.79
0.55
0.52
0.91


nm44









MDSC_
0.71
0.59
0.76
0.84


nm45









MDSC_
0.52
0.54
0.77
0.82


nm46









MDSC_
0.78
0.74
0.83
0.89


nm47









MDSC_
0.78
0.70
0.85
0.87


nm48









MDSC_
0.68
0.72
0.56
0.85


nm49









MDSC_
0.75
0.78
0.82
0.87


nm50









MDSC_
0.68
0.70
0.82
0.89


nm51









MDSC_
0.68
0.77
0.79
0.89


nm52









MDSC_
0.71
0.73
0.80
0.87


nm53









MDSC_
0.65
0.73
0.81
0.77


nm54









MDSC_
0.68
0.82
0.86
0.87


nm55









MDSC_
0.74
0.66
0.79
0.84


nm56









MDSC_
0.61
0.45
0.76
0.88


nm57







CD8 +
CD8 +





Th
Th



Marker
CD8 +
Central 
Effect.



ID-
act.
Mem.
Mem.
TEMRA





MDSC_
0.95
0.94
0.95
0.94


nm1









MDSC_
0.95
0.96
0.96
0.96


nm2









MDSC_
0.92
0.82
0.88
0.60


nm3









MDSC_
0.83
0.88
0.87
0.91


nm4 









MDSC_
0.91
0.88
0.93
0.95


nm5









MDSC_
0.92
0.90
0.91
0.90


nm6









MDSC_
0.83
0.92
0.88
0.87


nm7









MDSC_
0.90
0.91
0.91
0.90


nm8









MDSC_
0.90
0.87
0.88
0.87


nm9









MDSC_
0.97
0.98
0.97
0.98


nm10









MDSC_
0.88
0.89
0.83
0.83


nm11









MDSC_
0.89
0.89
0.85
0.89


nm12









MDSC_
0.89
0.86
0.86
0.86


nm13









MDSC_
0.91
0.90
0.88
0.87


nm14









MDSC_
0.88
0.89
0.89
0.90


nm15









MDSC_
0.85
0.87
0.84
0.86


nm16









MDSC_
0.80
0.82
0.80
0.78


nm17









MDSC_
0.80
0.89
0.86
0.87


nm18









MDSC_
0.81
0.78
0.81
0.83


nm19









MDSC_
0.79
0.80
0.78
0.64


nm20









MDSC_
0.84
0.86
0.79
0.84


nm21









MDSC_
0.92
0.88
0.94
0.97


nm22









MDSC_
0.83
0.80
0.78
0.83


nm23









MDSC_
0.92
0.86
0.91
0.89


nm24









MDSC_
0.85
0.90
0.82
0.85


nm25









MDSC_
0.86
0.87
0.71
0.45


nm26









MDSC_
0.78
0.76
0.78
0.78


nm27









MDSC_
0.80
0.77
0.84
0.86


nm28









MDSC_
0.80
0.83
0.89
0.86


nm29









MDSC_
0.84
0.81
0.49
0.84


nm30









MDSC_
0.74
0.78
0.75
0.78


nm31









MDSC_
0.70
0.84
0.72
0.68


nm32









MDSC_
0.81
0.79
0.78
0.77


nm33









MDSC_
0.78
0.78
0.79
0.82


nm34









MDSC_
0.85
0.79
0.79
0.83


nm35









MDSC_
0.79
0.79
0.76
0.81


nm36









MDSC_
0.72
0.75
0.69
0.76


nm37









MDSC_
0.56
0.80
0.83
0.96


nm38









MDSC_
0.83
0.79
0.76
0.81


nm39









MDSC_
0.61
0.66
0.67
0.77


nm40









MDSC_
0.72
0.78
0.62
0.52


nm41









MDSC_
0.73
0.71
0.70
0.78


nm42









MDSC_
0.62
0.69
0.67
0.67


nm43









MDSC_
0.38
0.88
0.82
0.67


nm44









MDSC_
0.65
0.72
0.62
0.60


nm45









MDSC_
0.57
0.66
0.55
0.56


nm46









MDSC_
0.75
0.77
0.75
0.79


nm47









MDSC_
0.85
0.82
0.80
0.77


nm48









MDSC_
0.88
0.81
0.85
0.86


nm49









MDSC_
0.69
0.78
0.76
0.76


nm50









MDSC_
0.70
0.73
0.69
0.62


nm51









MDSC_
0.72
0.67
0.61
0.59


nm52









MDSC_
0.70
0.79
0.69
0.63


nm53









MDSC_
0.73
0.70
0.73
0.73


nm54









MDSC_
0.84
0.85
0.78
0.77


nm55









MDSC_
0.75
0.72
0.70
0.61


nm56









MDSC_
0.65
0.69
0.52
0.68


nm57






CD8 +





Marker
NK
NK












ID-
T cells
T-Cells
Discovery Fragment





MDSC_
0.88
0.89
CGCCTGGAGC


nm1


GCCTCCCACTG





CAGACGTCTGT





CCGCCTCCAGC





CGCTCTC





MDSC_
0.95
0.96
CGCCGGGCCA


nm2


ACACAGGATCT





GATAGTGCAG





GGTCAACGCCT





ACGTGGGA





MDSC_
0.59
0.72
CGCGCCCCCAC


nm3


GCCCCTGCCCA





CAGGCCTGCAT





TGAAGGCGCTT





CCGCTC





MDSC_
0.81
0.87
AAGGATGGCA


nm4 


TCCATCCGTAA





AGGGCTTCCTC





GGTCCAGCGCC





AGGAACG





MDSC_
0.93
0.93
CGCGGCCGAG


nm5


CTGTCTGTCCA





AGCCTGGGCCC





CAGCACCCAG





CGCAAGCT





MDSC_
0.91
0.91
GAGTGTTGGCT


nm6


CACGTGTTCCT





GAGCCTGTCTG





TTTTTAGTTAG





TGTCCG





MDSC_
0.85
0.90
CGGGCAGATA


nm7


CGAGCAGATT





GACTCGCCAG





GACTGTCATTG





GGCCACCGC





MDSC_
0.91
0.91
CTGACCTCATC


nm8


CCGGAGGCCG





CTTCAGTTCTC





GAATGGATGTC





TCTTCCG





MDSC_
0.89
0.90
CGCCACAGGA


nm9


ATGGCTCTTAT





GATCCTTTTGG





ATGGCTAGATT





TCTGAAA





MDSC_
0.97
0.98
CCTCCTGTGAG


nm10


CAACCTTTCGG





CGTCTGCAGAG





CTCGTGGCGTA





AGAGCG





MDSC_
0.82
0.85 
CGACAGCAAT


nm11


CCCGTGAGAA





ACTGTGGGAC





AGAACCACCC





AGCTAAGCAG





MDSC_
0.88 
0.89
CGGCAAAGGC


nm12


AGCCAATTGCT





TGGCTGACGA





AGCCAGGAAA





ATCCCACAT





MDSC_
0.88
0.88
AAAGAATGAG


nm13


GTCACTGTCAC





CAATGAAGTC





ACCACTGCATG





ATTCATCG





MDSC_
0.87
0.88
TGTGGATTCCT


nm14


CCAAACTGTGA





TTGCTACATCT





TAATTTTTCAGC





AGGACG





MDSC_
0.90
0.90
AGATACTGGG


nm15


GGACGTGCTTC





GGTTGTCCTGG





TCGATATCCCT





AGGGTCG





MDSC_
0.86
0.88
TGGCAAGTCGC


nm16


TCATGGAAACC





ATTAGTGTCCA





TCAGTCATCAG





AAGGCG





MDSC_
0.75
0.76
CCATAGCACCC


nm17


CCATAATAAA





GCAGCCCGTG





AGGGCAGCCT





GGCTGTTCG





MDSC_
0.83
0.84
CGGAGCAGGC


nm18


CACAGTCAGG





GTGGAAGAAA





ACGAGGGAAG





ACTGAGAAAC





MDSC_
0.77
0.85
CGGCACTGCCT


nm19


GATCTGGTCTC





TCAAGTTCAAC





CTCTTACAACT





CATGTG





MDSC_
0.79
0.80
GCCTTGTCCTG


nm20


GGGCTGAGCA





GTGGTGCAACC





CAGCCCTGAG





GAATTCCG





MDSC_
0.85
0.85
CCACCTGAGGT


nm21


GAGCAATCAG





AGGACACCCCT





CGAGTCACTGG





GAGTTCG





MDSC_
0.90
0.96
CGGCACGTCC


nm22


CGCCCACCACT





AGAAAGCCCG





CTCCCGCCAGC





TCTCGCC





MDSC_
0.74
0.85
AGCTTTGTATA


nm23


GATGCATGCAC





TTGGAAACCA





GCAAAGCTAA





AAATACCG





MDSC_
0.93
0.93
CGCAGGAGCG


nm24


CACACACGTTC





CCACACGCCAC





TCAATTCCAGA





ACAACGG





MDSC_
0.85
0.86
GTATGTGTGAG


nm25


TCAATCTAATG





TGCCCTCCCTC





AGCATAATCCT





GTCACG





MDSC_
0.53
0.66
TGGAAATCTCT


nm26


TTCGTCAAGGC





CTCTAGTGACC





GCTGGGGATTC





TTCTCG





MDSC_
0.74
0.76
TCATACATTTC


nm27


AACTTGCTGCT





GTTCTGAGTAG





GGTGATGAAAT





CTTGCG





MDSC_
0.81
0.82
CGGAGTAGTCT


nm28


TGAAAGACAT





GACAAATCAC





CAGACCTGGG





AAGAAGCTA





MDSC_
0.85
0.90
GGCGGCGGGG


nm29


CACAGCGTGG





GGGTGTGCAGT





GACTGAGAGA





TGGTTCACG





MDSC_
0.68
0.64
GAATGATCTCT


nm30


GCACTGTAGG





ACATCCTTGGC





CCTGCCTACCA





AATGACG





MDSC_
0.80
0.78
CGGCTGTTCCA


nm31


GACCCTAATGA





GTTCAGTTGTC





CTACAAAGCA





GGAAGAG





MDSC_
0.71
0.69
CGGGGTGTCAC


nm32


TCCTACAAGAC





AAGAAAAGCC





CAGGATTGCTG





GCCAATG





MDSC_
0.80
0.82
ATACACAGTTC


nm33


CCTGCACACAC





TCGGCTAACTG





TGACCAGGGT





GAGAGCG





MDSC_
0.81
0.80
ATGACCCTGTG


nm34


ACTAACATCTG





TCAGGCAGCTG





ACAAACAGCT





ATTCACG





MDSC_
0.81
0.81
CTGTTAGGCAG


nm35


AGCAGCCTAAT





GGGAGCAGTG





TGACTCATGGA





CCTCACG





MDSC_
0.77
0.76
TCATCCAAGCT


nm36


TGTGTGAGTCA





CAATGAGCAG





AAAGCATTCTT





CCACCCG





MDSC_
0.64
0.77
CGGCCCCAGC


nm37


ACTGCAAAGCT





GTCATCGCTCC





TCTCCAGGGAG





CCATCCT





MDSC_
0.85
0.89
CGGCCCATGTG


nm38


TCGCACTCGCC





TCGGCTCCCAC





ACAGCCGCCTC





TGCTCC





MDSC_
0.81
0.81
CTACTTTCAAT


nm39


CTCTATGGATT





TCCCTATTCAG





GACATTTTCTA





TAAACG





MDSC_
0.73
0.74
TATGCTTACTC


nm40


CCTCTCCCTCT





TGTCTGTGTCC





CTGTGTGGCCT





GAAGCG





MDSC_
0.56
0.53
CGGAGAGCCA


nm41


ACACCACCAGT





GACTCACCCAA





GCTGGAAATTT





AAGCATC





MDSC_
0.67
0.71
CGTCTGCAAGA


nm42


ACAGGGGAGA





ACTAAGGTCCC





AAGCAGCAAA





AGTTAAAA





MDSC_
0.70
0.68
CGGCATCTTCA


nm43


TTTGAGTGGGT





GCGGGAAGGA





CCTCATTTTGG





AACCACA





MDSC_
0.83
0.74
CGCGTGCCTCT


nm44


GTGCAGTCAGT





GAGAAGGGCT





CCCGTTCAGAA





TGGGCAG





MDSC_
0.65
0.63
CGTGAGCCAG


nm45


AGAGAGCTGG





CTTTCAGTGTT





GTCACCATGGT





TACTGCTA





MDSC_
0.56
0.63
CGACTGCTCCT


nm46


CTGGCAAGCA





GGACCCATTTC





TAAAGCATGA





GTCACTAC





MDSC_
0.79
0.78
CGCTTCAGACG


nm47


CATCTCTTCTC





AGTGAGTCAG





CTGTGGGCCCC





ACTCAGG





MDSC_
0.72
0.72
CGGAAAACTT


nm48


GCTAATGCTGG





CTGATTCTCAT





TCGTGGGTTTA





CTAGTTC





MDSC_
0.85
0.70
CGCTTTATGGA


nm49


GCAGCAAAGA





AAGTGATTTCT





TGAGATGGGTT





CTACTCT





MDSC_
0.76
0.76
TAAAATTATTT


nm50


TTTTCCCTAAA





CCCAATCTCTC





CTCTTCCTCCT





CTGTCG





MDSC_
0.74
0.68
CGCTGTCAGGA


nm51


ATTGTCTCCTG





GTTCAACCCAC





TCCTGCCTTAG





GCCCAC





MDSC_
0.60
0.57
CGATGGTGAG


nm52


CAAAAGGTGTT





GACAGGCCTG





GCATGGTGACT





CACCCTG





MDSC_
0.69
0.64
TCCAAGTCAC


nm53


CAGCCCTTAAA





TGAGCCACCA





GGTTACCTTG





CATCACG





MDSC_
0.72
0.74
CGGAGGCCCA


nm54


GAGAAGGGAA





GTGACATGCTC





AAGGTAACAC





TGCTAACCA





MDSC_
0.75
0.71
CGTGAGGTTGT


nm55


GTCTTACTGAG





CTCCATCATA





ATTCCTGTGTG





CACAGA





MDSC_
0.63
0.63
CGAGGACAGT


nm56


TCCTCCAGAAA





TCCAGGTCAGT





CACAAGACAA





AGAAAAGA





MDSC_
0.57
0.47
CGGCCTCTGAG


nm57


AGCTGACACG





GAACTTGCATC





ATTTCTGATGC
















TABLE 4J





Total Lymphocytes Marker




























Baso-
Eosino-
Neutro
Clas-
Non-







phil
phil
phil
sical
classical



Marker-
Target-

Acces-
Granu-
Granu-
Granu-
Mono-
Mono-
NK


ID
ID
SYMBOL
sion
locytes
locytes
locytes
cytes
cytes
classical





LYMP_
cg1443
LTA
NM_
0.94
0.96
0.95
0.95
0.96
0.13


nm1
7551

000595











LYMP_
cg0266
KLF2
NM_0162
0.89
0.90
0.93
0.90
0.80
0.04


nm2
8248

70











LYMP_
cg0044
LIME1
NM_0178
0.78
0.68
0.89
0.78
0.72
0.03


nm3
6123

06











LYMP_
cg2195
VOPP1
NM_0307
0.84
0.81
0.89
0.87
0.84
0.08


nm4
9598

96











LYMP_
cg1716
TBCID10C
NM_1985
0.83
0.82
0.81
0.79
0.73
0.08


nm5
1520

17











LYMP_
cg0396
RUNX3 
NM_0010
0.61
0.77
0.85
0.85
0.79
0.08


nm6
1551

31680











LYMP_
cg0445
SLC22A23
NM_0219
0.53
0.78
0.79
0.77
0.81
0.04


nm7
0994

45











LYMP_
cg1892
LY9
NM_0010
0.81
0.83
0.83
0.68
0.63
0.08


nm8
0397

33667











LYMP_
cg1882
RAD51L1
NM_1335
0.64
0.66
0.73
0.71
0.65
0.11


nm9
5221

09











LYMP_
cg1132
C21orf70
NM_0581
0.02
0.02
0.01
0.02
0.04
0.94


nm10
7657

90











LYMP_
cg1159


0.03
0.02
0.10
0.03
0.06
0.95


nm11
7902













LYMP_
cg2115
SSBP3
NM_0010
0.03
0.01
0.00
0.02
0.05
0.95


nm12
9128

09955











LYMP_
cg0532
SLCO4A1
NM_0163
0.03
0.01
0.01
0.01
0.07
0.82


nm13
7789

54











LYMP_
cg2670
CRISPLD2
NM_0314
0.19
0.03
0.03
0.04
0.09
0.96


nm14
9988

76











LYMP_
cg0526


0.05
0.03
0.03
0.02
0.06
0.90


nm15
0077













LYMP_
cg1069


0.13
0.24
0.06
0.02
0.06
0.95


nm16
0440













LYMP_
cg2042
ZNF516
NM_0146
0.28
0.05
0.02
0.04
0.08
0.96


nm17
9104

43











LYMP_
cg0286
UBR4
NM_0207
0.07
0.03
0.03
0.04
0.09
0.90


nm18
2467

65











LYMP_
cg0050
OSBPL5
NM_0208
0.04
0.02
0.01
0.16
0.26
0.92


nm19
0359

96











LYMP_
cg1118


0.11
0.05
0.28
0.05
0.10
0.95


nm20
6858













LYMP_
cg1508
NCOR2
NM_0063
0.03
0.06
0.01
0.01
0.01
0.72


nm2l
5899

12











LYMP_
cg0840
CARS2
NM_0245
0.04
0.02
0.04
0.15
0.11
0.95


nm22
0494

37











LYMP_
cg1985
TUBGCP6
NM_0204
0.02
0.02
0.00
0.01
0.03
0.85


nm23
1816

61











LYMP_
cg2356


0.05
0.04
0.02
0.05
0.10
0.89


nm24
8192













LYMP_
cg0016
ETS2
NM_0052
0.06
0.07
0.04
0.04
0.08
0.84


nm25
8694

39











LYMP_
cg0629


0.07
0.10
0.04
0.04
0.09
0.90


nm26
8740













LYMP_
cg2007
BRD4
NM_0582
0.05
0.04
0.03
0.04
0.06
0.87


nm27
8972

43











LYMP_
cg2694
GFOD1 
NM_0189
0.06
0.07
0.05
0.05
0.11
0.90


nm28
2829

88











LYMP_
cg0340
C16orf68
NM_0241
0.26
0.01
0.01
0.01
0.06
0.82


nm29
8945

09











LYMP_
cg0637
ERCC3
NM_0001
0.06
0.05
0.06
0.06
0.14
0.90


nm30
3940

22











LYMP_
cg2557
C14orf34
NR_0267
0.05
0.04
0.04
0.04
0.08
0.91


nm31
6997

96











LYMP_
cg1170
TFDP1
NR_0265
0.07
0.05
0.06
0.09
0.13
0.91


nm32
3212

80











LYMP_
cg0647
HTRA1
NM_0027
0.03
0.21
0.06
0.02
0.04
0.93


nm33
4225

75











LYMP_
cg0473
MYB
NM_0053
0.10
0.04
0.03
0.05
0.08
0.88


nm34
9200

75











LYMP_
cg0728
HRH4
NM_0216
0.08
0.06
0.04
0.07
0.15
0.92


nm35
3015

24











LYMP_
cg1045
ETNK1 
NM_0186
0.11
0.15
0.06
0.05
0.11
0.93


nm36
6459

38











LYMP_
cg2031
FER1L5
NM_0011
0.08
0.08
0.06
0.05
0.08
0.86


nm37
2012

13382











LYMP_
cg0447
ABR
NM_0219
0.44
0.11
0.14
0.07
0.10
0.96


nm38
8251

62











LYMP_
cg0603


0.05
0.05
0.05
0.05
0.06
0.89


nm39
0535













LYMP_
cg0771
RREB1 
NM_0010
0.14
0.06
0.06
0.05
0.08
0.87


nm40
4276

03700











LYMP_
cg1734
TRIM27
NM_0065
0.26
0.05
0.02
0.02
0.05
0.89


nm41
4091

10











LYMP_
cg0235
LOC285550
NM_0011
0.04
0.02
0.07
0.03
0.07
0.89


nm42
3916

45191











LYMP_
cg2350


0.12
0.08
0.06
0.04
0.05
0.91


nm43
6143













LYMP_
cg1308
ECE1
NM_0011
0.06
0.07
0.04
0.05
0.09
0.88


nm44
6983

13348











LYMP_
cg1224
KSR1
NM_0142
0.08
0.05
0.04
0.04
0.08
0.86


nm45
9234

38











LYMP_
cg1338
PHLPP1
NM_1944
0.12
0.08
0.06
0.06
0.14
0.83


nm46
1110

49











LYMP_
cg0199
SNX29
NM_0010
0.01
0.03
0.02
0.01
0.03
0.38


nm47
0910

80530











LYMP_
cg2510
H6PD
NM_0042
0.04
0.04
0.02
0.02
0.05
0.76


nm48
3337

85










CD4+
CD4+
CD8 +






CD4 +


Th
Th
Cyto-




Marker-

Th
CD4 +
CD4 +
Central
Effect.
toxic
NK



ID
B-Cells
naive
Th1
Th2
Mem.
Mem.
T-Cells
T-Cells
Discovery Fragment





LYMP_
0.04
0.11
0.02
0.02
0.02
0.03
0.04
0.03
AGAGGAAGCGGC


nm1








AGTGGCAGCGTGG











CAGGCAGCGGGCG











GGTTCTAGGTCG





LYMP_
0.06
0.10
0.02
0.03
0.02
0.06
0.03
0.05
CGTGCCTTCTCGC


nm2








GCTCCGATCACCT











GGCGCTGCACATG











AAACGGCACAT





LYMP_
0.05
0.05
0.03
0.03
0.03
0.03
0.02
0.02
TCAGAACAGTGCG


nm3








GGCTAGAGGCGCA











CACGTTTCATCTA











GGCTTCGGGCG





LYMP_
0.12
0.17
0.10
0.11
0.13
0.12
0.17
0.08
ATAAAAGCAACCC


nm4








AGGGAGCTATTTG











GTGGCTTCTGGCT











TCTGACTGCCG





LYMP_
0.05
0.09
0.11
0.08
0.10
0.15
0.05
0.09
GGTGCTCACTGGC


nm5








TCCAGACGTGGAT











CTGCAGCTGGGAA











TCAAGTGATCG





LYMP_
0.13
0.08
0.06
0.06
0.07
0.08
0.07
0.07
TTTCCCAGTCAGC


nm6








AGGATGGGCACTG











CAGATGTGTGTCT











GCATGCCAGCG





LYMP_
0.17
0.03
0.01
0.03
0.03
0.03
0.04
0.02
CGGGCTCTCACAC


nm7








GTGGGCCACCATC











CGCCTGCCCCAGT











CACCCCGGGGC





LYMP_
0.14
0.09
0.05
0.05
0.05
0.07
0.05
0.06
CGCAGGCAGGTAG


nm8








AGGTCCCAAGTCT











ATTCAGGGCCTCA











TTTGTGACTGA





LYMP_
0.04
0.04
0.02
0.03
0.02
0.03
0.04
0.07
AGAAAGCACCACA


nm9








GGTAATAAAAACA











CCTAAAAAGGTCA











GCAGAAACTCG





LYMP_
0.97
0.95
0.97
0.96
0.98
0.96
0.96
0.97
CGCAACCCCCAGT


nm10








GACACAACCCCCA











GTGACGCAACCCC











GCCACCCAATG





LYMP_
0.95
0.94
0.96
0.96
0.95
0.95
0.97
0.96
CGAGGAGCGGGCG


nm11








TGCTGCGCTGCTT











CTCTTTGAGTCATC











TGGGTCCTCG





LYMP_
0.86
0.95
0.93
0.92
0.94
0.93
0.96
0.93
CGACAATGTAAGC


nm12








CTCGCCCCCTGCC











TGTTGCTCTCGTCC











CCACGGCCTG





LYMP_
0.95
0.95
0.94
0.95
0.93
0.95
0.96
0.87
CGGCCACGGCGGG


nm13








CACTCAGCATTTC











CTGATGACAGAAC











AGTGCCGTTGG





LYMP_
0.96
0.95
0.96
0.96
0.97
0.95
0.97
0.97
CGCAAAAGCCTTG


nm14








CAACACACAACAG











CACAGACAAACCC











CCCAGACACGG





LYMP_
0.91
0.90
0.91
0.90
0.89
0.89
0.92
0.90
ATTTCGAAATAAA


nm15








GGAGCTTGCATGA











ATGACGATTTCCA











AACTTCTCTCG





LYMP_
0.97
0.96
0.96
0.97
0.98
0.96
0.97
0.95
CCTGCGCTCTGAC


nm16








ACCAGCCGTGTAA











GGGCACAGACTCG











GCTGCTGTTCG





LYMP_
0.97
0.96
0.96
0.96
0.97
0.96
0.96
0.93
CGTTCAGATCTGT


nm17








TGCGACTCTTCAG











ATCACTTCCCGTTT











TGCAATCACG





LYMP_
0.86
0.90
0.92
0.91
0.92
0.93
0.93
0.92
CACATCCTGCCCC


nm18








CTGAGCAGTGGAG











AGCCACACGTGTG











GAAATCTTGCG





LYMP_
0.97
0.96
0.96
0.96
0.97
0.96
0.97
0.96
CGCCCACTTTGCC


nm19








GGTGGGACAGAGT











GGCTGACGGCGTG











TGGCACAGGCG





LYMP_
0.95
0.96
0.97
0.98
0.97
0.96
0.98
0.97
CGCACTAACGTGA


nm20








ATGCCGCATGTAC











AGATGACCACAGT











GCTCGGAGGGT





LYMP_
0.43
0.89
0.97
0.97
0.98
0.96
0.97
0.97
GAGTGGCAGAGGC


nm2l








GAGAACGGATCGC











TGGAGGCCCGACG











TCTCGTTCACG





LYMP_
0.83
0.93
0.95
0.95
0.94
0.94
0.96
0.94
ATATTTAAGGCAT


nm22








CGCCCCTCAGGGA











GCCGAGCACTGAT











TTCCACAGCCG





LYMP_
0.62
0.83
0.89
0.92
0.90
0.92
0.92
0.93
CGTGCGTGCTCCA


nm23








TCTCCCGCAGCCG











AGCCGCCCATTGC











TCATCTTTTGC





LYMP_
0.87
0.90
0.89
0.88
0.90
0.90
0.94
0.91
AGCGGGTAAGTAA


nm24








TGCATTCAAGGTT











GCACAACTAGTAA











ATGCTTCATCG





LYMP_
0.93
0.92
0.90
0.91
0.91
0.92
0.93
0.87
CGTGGGATCCCAT


nm25








GCCACCTTCCTGC











CAAATGACCATGT











GTAAATTGCTT





LYMP_
0.91
0.91
0.91
0.91
0.91
0.92
0.92
0.92
CGAACCAGGAACT


nm26








CTCTTATTCCATGG











ACTGTGGTCTGGG











TCAGTAGGCT





LYMP_
0.88
0.88
0.89
0.89
0.89
0.90
0.90
0.87
CGGCTTCTTTAATT


nm27








GTGCAATCTGTGT











CAGTGGGGAAGCA











CAAATAGGAT





LYMP_
0.91
0.91
0.90
0.90
0.91
0.90
0.92
0.90
CGGAGATTGCCCA


nm28








ACCAAAGAGCAGA











AGTTCACAGAATA











TCTCTTCTTGG





LYMP_
0.88
0.85
0.94
0.93
0.92
0.93
0.92
0.96
CGGGCTCCACCAC


nm29








GAAGCGCAGCTTG











CCATCTGCGAGCT











GCTCCAGCGCG





LYMP_
0.84
0.90
0.92
0.92
0.94
0.91
0.93
0.92
GTATTTGTTACAG


nm30








CAGTACCCTATTC











CCCGTACCAAAAA











TCTGTGTTACG





LYMP_
0.86
0.91
0.85
0.85
0.88
0.86
0.90
0.90
AATGATGAAATCC


nm31








AGCCATTCTGACA











CTGTTCCTTATCTA











GGATCTCTCG





LYMP_
0.89
0.92
0.92
0.91
0.93
0.91
0.92
0.94
GAGTCTGGAGAGA


nm32








GCAATGTCTCCAT











GGAGCGGGTGCCT











GGCTGTGGTCG





LYMP_
0.93
0.92
0.87
0.88
0.90
0.89
0.89
0.84
CGGCGAATCTCAT


nm33








CAAACTTTGAGAA











AAAAAAACAGCTC











ATCACAGAGAT





LYMP_
0.88
0.88
0.90
0.89
0.89
0.90
0.89
0.88
CGCCAGCAAGGTG


nm34








CATGATCGTCCAC











CAGGGCACCATTC











TGGATAATGTT





LYMP_
0.93
0.91
0.91
0.89
0.90
0.89
0.92
0.91
CGGATGAGGTCTG


nm35








CAGTTGCCCCACC











TTACTATCTTGAG











AGTTCCCAGGG





LYMP_
0.92
0.91
0.92
0.92
0.93
0.94
0.93
0.91
ACGAATTTAAGCT


nm36








TTATGCCACAATT











TCCCAATTCAACA











TAAAGCTAACG





LYMP_
0.86
0.90
0.90
0.91
0.90
0.91
0.91
0.91
GTTTTGTTTCCTCA


nm37








TACCTTACATTGT











GAAATACAAAATT











AGCTAATGCG





LYMP_
0.95
0.94
0.97
0.96
0.96
0.97
0.97
0.97
CGCGACGCGCTCA


nm38








TCTGCCACCCACA











CGAAGACAAAACA











CAATGGTTATG





LYMP_
0.88
0.88
0.88
0.86
0.87
0.88
0.89
0.87
CAGAGGCCAGAGA


nm39








CTTGAATTTACAA











GGAGGGTCCTCAA











CACAGACATCG





LYMP_
0.87
0.90
0.91
0.91
0.90
0.91
0.92
0.90
ACCCTGGTATTTC


nm40








ATCACTTTCTTGCC











TAACTTAGCAGAA











ACATGTATCG





LYMP_
0.90
0.89
0.91
0.89
0.90
0.90
0.91
0.91
GTTACACTATAAA


nm41








TAGATGTTCACTG











ACCAAATACTCCT











ACTAGTTCTCG





LYMP_
0.85
0.85
0.89
0.88
0.86
0.90
0.88
0.85
CGGCATTGATGTT


nm42








GCTTCACGTTGCT











GATGCTTAAGCAA











TGTATATTGTG





LYMP_
0.89
0.85
0.86
0.88
0.90
0.86
0.92
0.90
CGTCGTTTTAAA


nm43








ATGTGCTATCATTT











CCTTGTTATAGTTG











TGCAAGATT





LYMP_
0.83
0.88
0.90
0.90
0.90
0.90
0.90
0.89
TGGCTCCAGTTTC


nm44








CAAGTGACGCAAC











CAAGTGTCTGGAT











TCAGAGAATCG





LYMP_
0.86
0.88
0.87
0.89
0.87
0.89
0.90
0.86
ACAAATGTAAAAG


nm45








CCTGGCAGCTTCC











CCAGGAGAGTGCG











GGTATGGGCCG





LYMP_
0.89
0.90
0.93
0.93
0.91
0.92
0.94
0.94
CATAGTGCTCGTGT


nm46








CGTAATAATCTGG











CAGCTGGTCCAGC











TGGTAGTGCCG





LYMP_
0.59
0.88
0.96
0.97
0.96
0.96
0.93
0.94
CGCCGGCCAAATG


nm47








CAACCAGCAGAGA











TATGACCCCGACC











CGTCTAAAGCC





LYMP_
0.73
0.87
0.89
0.90
0.88
0.89
0.89
0.88
TGGGGCCAACAGG


nm48








CATGATTACCACA









In table 4, regions that contain CpGs that are specific for the blood cell types granulocytes, monocytes, CD4+ cells, cytotoxic T-cells, B-cells, Natural Killer-cells, and Natural Killer T-cells are listed, as well as their SEQ ID NOs for the so-called “discovery fragment” (preferred region) and the discriminative “region of interest” (more preferred region). The discovery fragments comprise at least one CpG that is specific for the cell type as indicated, and thus suitable to distinguish this cell type from all other cell types of the haemogram. The discriminative region of interest (ROT) sequences are regions that are positioned around the discovery region, and which form the basis for the design of the specific assay for a specific cell type as indicated, and contain additional relevant CpGs, that is, a sequence of CpGs that can also be used in order to distinguish between the call types as indicated.


In table 4A to 4J, regions that contain CpGs that are specific for the respective blood cell types as shown in each table header are listed. The sequence provided in the column “discovery fragment” is the preferred region and comprises at least one CpG that is specific for the cell type of the respective table (identifiable by the shown data). Also comprised in the context of the various embodiments and aspects of the invention is a region 500 base pairs upstream and downstream of (therefore “around”) the sequence of the “discovery fragment” in the human genome for each marker. The region 500 base pairs upstream and downstream of the “discovery fragment” are the discriminative ROI of the marker of the tables 4A to 4J.


The present invention therefore also pertains to a bisulfite conversion of at least one CpG position within any one of the “discovery fragments” or ROI (500 bp up and downstream for each “discovery fragment” in the human genome) of any one of the Tables 4 and 4A to 4J as shown above, which is indicative for a respective cell type as listed in the tables 4. The T-lymphocytogram in all of the embodiments and aspects of the invention may therefore contain any of the cell types listed in the above tables 4 and 4A to 4J, and any combinations of these cell types.


An additional region for neutrophilic granulocytes (nGRC) is derived from the Lipocalin-2, neutrophil gelatinase-associated lipocalin (LCN2) genomic region (Ensembl-ID: ENSG00000148346); herein designated AMP1730. The AMP 1730 genomic sequence and the discriminative ROI 1132 are SEQ ID NOs: 686 and 685 respectively. See also FIG. 2.


Additional regions for eosinophilic granulocytes (eGRC) arc derived from the proteoglycan 2 (PRG2) genomic region (Ensembl-ID: ENSG00000186652), herein designated as AMP 2034 and 2035, respectively. The AMP 2034 and 2035 genomic sequences, and the discriminative ROI1403 are SEQ ID NOs: 687, 688, and 689, respectively. See also FIG. 3.


Preferably, the cell-specific gene regions as described herein are selected to discriminate one cell type or subpopulation of cells from all other cell types, such as the leukocytogram, T-lymphocytogram, granulocytogram, monocytogram, B-lymphocytogram and/or NK cytogram as described herein. Thus, highly specific cell-type markers are used as a basis for identification and quantification that are not based on protein expression levels but on cell type-specific epigenetic information. The method provides a clear yes/no information and is independent of thresholding as the cell-specific CpG-rich genomic region is bisulfite convertible or not, is detectable by qPCR or not as well as genomic copies do not vary. The method also detects and identifies as well as quantifies a potentially unlimited number of subpopulations of cells, and the detection limit for, for example, regulatory T cells is at 0.3%.


Preferred is a method according to the present invention, wherein the cells that are detected and thus for the epigenetic haemogram are selected from a leukocytogram, and/or a T-lymphocytogram, and/or a granulocytogram, and/or a monocytogram, and/or a B-lymphocytogram, and/or a NK cytogram.


Preferably, said marker regions as analyzed are specific for the cells of a pre-selected haemogram, and these cells are preferably selected from T-lymphocytes, natural killer cells, B-lymphocytes, monocytes, granulocytes, and combinations thereof, for a leukocytogram, selected from CD3+CD4+, CD4+ memory, CD4+ effector cells, CD4+ naïve, CD3+CD8+, CD8 positive, CD8+ memory, CD8+ effector cells, CD8+ naïve, CD3+CD8CD4, CD3+CD8+CD4+, NKT cells, iTreg, Treg, Tfh, Th1, Th2, TH9, Th17, Th19, Th21, Th22, memory and effector T helper cells, and combinations thereof, for a T-lymphocytogram, selected from basophilic, eosinophilic, neutrophilic granulocytes, and/or granulocytic myeloid-derived suppressor cells, and combinations thereof, for a granulocytogram, selected from CD14+ monocytes, CD14monocytes, macrophages, plasmacytoid dendritic cells, myeloid-dendritic cells, intermediate monocytes, classical monocytes, non-classical monocytes, and/or overall dendritic cells, and combinations thereof, for a monocytogram, selected from naïve B cells, pre B cells, memory B cells, transitional B cells and/or immature B cells, and combinations thereof, for a B cell cytogram, and selected from CD56dim and/or CD56bright NK cells for an NK cytogram.


In contrast to the term “cell-specific regions”, the term “cell-unspecific regions” herein shall mean genetic regions in the genome of cells and/or nucleic acids that are selected to be unspecific, i.e. arc specific for more than one, preferably all, cell type and/or subpopulation of cells. These cell-unspecific regions also include the genes of certain markers (such as, for example, certain protein markers), such as 5′ untranslated regions, promoter regions, introns, exons, intron/exon borders, 3′ regions, CpG islands, and in particular include specific regions as amplified after bisulfite treatment (amplicons) that are “informative” for more than one cell type and/or subpopulation of cells. Examples for these cell-unspecific regions are known from the literature, and are selected from, for example regions comprising a housekeeping gene, such as GAPDH, ACTB (beta-actin), UBC (ubiquitin C), ribosomal proteins (e.g. RPS27A, RPS20, RPL11, RPL38, RPL7, RPS11, RPL26L1), CALR (calreticulin), ACTG1 (gamma actin) RPS20 (ribosomal protein S20), HNRPD (ribonucleoprotein D), NACA (nascent poly-peptide-associated complex subunit alpha), NONO (octamer-binding protein), PTMAP7 (prothymosin), GFRA4 (GDNF receptor alpha-4), CDC42 (GTP-binding protein), EIF3H (translation initiation factor), UBE2D3 (ubiquitin-conjugating enzyme), and genes as described in, for example, She et al. (Definition, conservation and epigenetics of housekeeping and tissue-enriched genes. BMC Genomics. 2009 Jun. 17; 10:269.), and PCT/EP2011/051601.


The method according to the present invention generally identifies the quantitative cellular composition of a biological sample. Preferred is a method according to the present invention, wherein said biological sample is a sample of unknown cellular composition. Nevertheless, also samples of known cellular composition, or even partially known composition can be quantified.


Biological samples to be analyzed can be stored fresh-frozen, paraffin-embedded or Heparin, Citrate or EDTA-stabilized as cells in samples do not need to be intact. The present method is very robust and allows, in contrast to flow cytometry, a parallel, independent assessment of cell identity and quantity as well as sample composition. A very good correlation to FACS is provided, too.


The biological sample to be analyzed can be any sample comprising one or more type(s) of cells or that is suspected of comprising one or more type(s) of cells that are to be quantified. Preferred materials/biological samples are selected from a blood sample, in particular peripheral, capillary or venous blood samples, blood clots, or samples that are considered to contain blood cells as e.g. synovial fluid, lymph fluid, sputum, urine, tumor samples, as well as other fluid and tissue samples, histological preparations, DBS, artificially generated cells and mixtures thereof (e.g. cell culture samples).


Yet another aspect of the present invention then relates to a method according to the present invention, further comprising the step of concluding on the immune status of a mammal based on said epigenetic haemogram as produced.


Yet another aspect of the present invention then relates to a method according to the present invention, further comprising the step of monitoring said cellular composition in said biological sample as identified by comparing said composition and/or haemogram as identified with the composition in an earlier biological sample taken from the same mammal, and/or with the composition in a control sample. In this aspect, for example, modifications and changes of the cellular composition in a patient can be monitored during a medical treatment.


Yet another aspect of the present invention then relates to a method for diagnosing a disease or a predisposition for a disease, comprising a method according to the present invention as described above, and the step of concluding on the disease or a predisposition for said disease based on the cellular composition in said biological sample as identified. In this aspect, for example, modifications and changes of the cellular composition in a patient can be used for diagnosing a disease or a predisposition for a disease, in particular when the sample is compared to a sample of a healthy subject or to medical reference ranges. Preferably, said biological sample is a blood sample, in particular a whole or peripheral blood sample, and said cell-specific regions in the genome of cells in said sample are selected from regions specific for blood cell types. The disease to be diagnosed can be selected from the group consisting of immune diseases or conditions, transplant rejections, infection diseases, cancer, neurological diseases, allergy, primary and secondary immune deficiencies and hematologic malignancies such as, for example, lymphatic neoplasms, mature B-cell neoplasms, mature T- and NK-cell neoplasms, Hodgkin lymphomas, lympho-proliferative processes after transplantations, HIV and AIDS, Graft versus Host disease, rheumatoid arthritis, lupus erythematosus, breast cancer, colorectal cancer, esophageal cancer, stomach cancer, leukemia/lymphoma, lung cancer, prostate cancer, uterine cancer, skin cancer, endocrine cancer, kidney cancer, urinary cancer, pancreatic cancer, other gastrointestinal cancers, ovarian cancer, cervical cancer, head and neck cancer, adenomas, birth defects, myopathies, mental retardation, obesity, diabetes, gestational diabetes, multiple sclerosis, and asthma.


In one preferred embodiment of the present invention, the diagnostic use of the epigenetic haemogram is also based on the use of ratios of different populations and/or/to different subpopulations (subhaemograms) and/or/to of cells belonging to one subhaemogram according to the said epigenetic haemogram. Such ratios are e.g. but are not limited to, population of regulatory T cells in relation to CD3+ T-lymphocytes, or regulatory T cells in relation to population of CD4+ T-lymphocytes, or regulatory T cells in relation to population of CD8+ T-lymphocytes, or CD3+ T-lymphocytes to CD4+ T-helper cells, or CD3+ T-lymphocytes to CD8+ cytotoxic T cells, or CD4+ T-helper cells to CD8+ cytotoxic T-cells, or Th1 to Th2, or Th1 to Th17, or Th2 to Th17, or memory or naïve CD4+ T-helper cells to CD3+ T-lymphocytes, or memory CD8+ cytotoxic T-cells to CD3+ T-lymphocytes, all as subpopulations of the T-lymphocytogram; or CD3+ T-lymphocytes related to neutrophilic granulocytes, or macrophages to CD4+ T-helper cells; CD4+ T-lymphocytes related to neutrophilic granulocytes, or CD8+ T-lymphocytes related to neutrophilic granulocytes all as relations between cells of different subhaemograms; or CD3+ T-lymphocytes related to granulocytes, or B-lymphocytes to CD3+ T-lymphocytes, or monocytes to CD3+ T-lymphocytes, or monocytes to B-lymphocytes all as ratios out of populations of the leukocytogram; or CD3+ T-lymphocytes or monocytes or B-lymphocytes, or granulocytes or NK cells related to overall leukocytes. But also other ratios of subpopulations assessed according to the present invention and according to the epigenetic haemogram can be used as a diagnostic method. The disease can be selected from the group consisting of immune diseases or conditions, transplant rejections, infection diseases, cancer, neurological diseases, allergy, primary and secondary immune deficiencies and hematologic malignancies such as, for example, lymphatic neoplasms, mature B-cell neoplasms; mature T- and NK-cell neoplasms, Hodgkin lymphomas, lympho-proliferative processes after transplantations, HIV and AIDS, Graft versus Host disease, rheumatoid arthritis, lupus erythematosus, breast cancer, colorectal cancer, esophageal cancer, stomach cancer, leukemia/lymphoma, lung cancer, prostate cancer, uterine cancer, skin cancer, endocrine cancer, kidney cancer, urinary cancer, pancreatic cancer, other gastrointestinal cancers, ovarian cancer, cervical cancer, head and neck cancer, adenomas, birth defects, myopathies, mental retardation, obesity, diabetes, gestational diabetes, multiple sclerosis, and asthma. The diagnostic use encompasses but is not limited to the diagnosis of a disease and/or the follow-up of a disease and/or the predisposition for a disease and/or the monitoring of an effect of a chemical or biological substance.


The epigenetic haemogram of the invention is in another embodiment used for the assessment of the risk to develop a disease in a patient, therefore for diagnostic purposes. In one preferred embodiment of the present invention, the use of the epigenetic haemogram for the assessment of the risk to develop a disease is also based on the use of ratios of different populations and/or/to different subpopulations (subhaemograms) and/or/to of cells belonging to one subhaemogram according to the said epigenetic haemogram. Such ratios are e.g. but are not limited to, population of regulatory T cells in relation to CD3+ T-lymphocytes, or regulatory T cells in relation to population of CD4+ T-lymphocytes, or regulatory T cells in relation to population of CD8+ T-lymphocytes, or CD3+ T-lymphocytes to CD4+ T-helper cells, or CD3+ T-lymphocytes to CD8+ cytotoxic T cells, or CD4+ T-helper cells to CD8+ cytotoxic T-cells, or Th1 to Th2, or Th1 to Th17, or Th2 to Th17, or memory or naïve CD4+ T-helper cells to CD3+ T-lymphocytes, or memory CD8+ cytotoxic T-cells to CD3+ T-lymphocytes, all as subpopulations of the T-lymphocytogram; or CD3+ T-lymphocytes related to neutrophilic granulocytes, or macrophages to CD4+ T-helper cells; CD4+ T-lymphocytes related to neutrophilic granulocytes, or CD8+ T-lymphocytes related to neutrophilic granulocytes all as relations between cells of different subhaemograms; or CD3+ T-lymphocytes related to granulocytes, or B-lymphocytes to CD3+ T-lymphocytes, or monocytes to CD3+ T-lymphocytes, or monocytes to B-lymphocytes all as ratios out of populations of the leukocytogram; or CD3+ T-lymphocytes or monocytes or B-lymphocytes, or granulocytes or NK cells related to overall leukocytes.


But also other ratios of subpopulations as assessed in accordance with the present invention and according to the epigenetic haemogram can be used to assess the risk for developing a disease. The disease for the herein described embodiment can be selected from the group consisting of immune diseases or conditions, transplant rejections, infection diseases, cancer, neurological diseases, allergy, primary and secondary immune deficiencies and hematologic malignancies such as, for example, lymphatic neoplasms, mature B-cell neoplasms, mature T- and NK-cell neoplasms, Hodgkin lymphomas, lympho-proliferative processes after transplantations, HIV and AIDS, Graft versus Host disease, rheumatoid arthritis, lupus erythematosus, breast cancer, colorectal cancer, esophageal cancer, stomach cancer, leukemia/lymphoma, lung cancer, prostate cancer, uterine cancer, skin cancer, endocrine cancer, kidney cancer, urinary cancer, pancreatic cancer, other gastrointestinal cancers, ovarian cancer, cervical cancer, head and neck cancer, adenomas, birth defects, myopathies, mental retardation, obesity, diabetes, gestational diabetes, multiple sclerosis, and asthma. The diagnostic use encompasses but is not limited to the diagnosis of a disease and/or the follow-up of a disease and/or the predisposition and/or the assessment of a risk for a disease and/or the monitoring of an effect of a chemical or biological substance.


As indicated, the above mentioned ratios as assessed in accordance with the present invention bear the potential to indicate e.g. the risk to develop a certain disease during the life time of a subject. A clinical role in risk assessment was found for the ratio of regulatory T-lymphocytes to CD3+T-lymphocytes. Particularly preferred in the context of the present invention is that an increase in the ratio of regulatory T-lymphocytes to CD3+T-lymphocytes indicates a risk to develop cancer (cancerous disease) during life time. The cancer is selected from but not limited to the list as provided herein above, wherein a high impact of an increased ratio of regulatory T-lymphocytes to CD3+T-lymphocytes is expected for the development of lung cancer, which is particularly preferred. Furthermore, ratios bear the potential to predict the development of Graft versus Host Disease wherein an increased ratio of regulatory T-lymphocytes to CD4+T-lymphocytes within the first two weeks after stem cell transplantation predicts the development of a graft versus host disease.


Yet another aspect of the present invention then relates to a method for identifying the effect of a chemical or biological substance or drug on the composition of cells, comprising performing the method according to the present invention as described above, preferably on a blood sample obtained from a mammal treated with or exposed to said substance, and comparing the composition of cells in said sample with the composition of samples before treatment or with the composition of an untreated sample. The mammal to be treated with said chemical or biological substance or drug might be healthy or suffers from a disease selected from the group consisting of immune diseases or conditions, transplant rejections, infection diseases, cancer, neurological diseases, allergy, primary and secondary immune deficiencies and hematologic malignancies such as, for example, lymphatic neoplasms, mature B-cell neoplasms, mature T- and NK-cell neoplasms, Hodgkin lymphomas, lympho-proliferative processes after transplantations, HIV and AIDS, Graft versus Host disease, rheumatoid arthritis, lupus erythematosus, breast cancer, colorectal cancer, esophageal cancer, stomach cancer, leukemia/lymphoma, lung cancer, prostate cancer, uterine cancer, skin cancer, endocrine cancer, kidney cancer, urinary cancer, pancreatic cancer, other gastrointestinal cancers, ovarian cancer, cervical cancer, head and neck cancer, adenomas, birth defects, myopathies, mental retardation, obesity, diabetes, gestational diabetes, multiple sclerosis, and asthma.


Yet another aspect of the present invention then relates to a diagnostic kit and its use, comprising materials for performing the method according to the invention as described herein, optionally with instructions for use. The diagnostic kit particularly contains oligonucleotides (e.g. for producing amplicons) specific for regions of interest, bisulfite reagents, and/or components for PCR. The diagnostic kit and its use encompasses but is not limited to the diagnosis of a disease and/or the follow-up of a disease and/or the predisposition and/or the assessment of a risk for a disease and/or the monitoring of an effect of a chemical or biological substance.


As mentioned above, currently, in both, clinical diagnostics and research, and drug development, a new method to provide a precise and comprehensive quantification of leukocytes and their subpopulations is desired even if biological samples are not intact anymore. The present invention, overcomes most problems of current, routinely used quantitative methods, flow cytometry and immune histochemistry, but more importantly, overcomes several biochemical and technical problems of qPCR in regard to absolute quantification of target cells. The present invention thus provides a method to effectively detect and quantify the different cell populations. In particular, the present method for the first time allows for an expression-independent method for the assessment of a comprehensive blood cell picture. Moreover, the present invention enables flexible time framing which is not dependent on quick sample processing but rather allows long term sample storage and individual coordination between sample collecting and sample processing.





The present invention will now be explained further in the following examples and figures, nevertheless, without being limited thereto. For the purposes of the present invention, all references as cited herein are incorporated by reference in their entireties.



FIG. 1 shows a schematic overview over the epigenetic haemogram. The haemogram comprises the leukocytogram, which includes B cells, monocytes, granulocytes, CD3+ T-lymphocytes, and NK cells. Each subpopulation establishes an additional cytogram, respectively i.e. the B-lymphocytogram, monocytogram, granulocytogram, T-lymphocytogram, and NK cytogram. For these five sub-cytograms, the corresponding cell types are depicted. Each of these five sub-cytograms can be divided into additional subpopulations, e.g., the T cell cytogram can be further divided into the CD4+ T-helper cytogram and the CD8+ cytotoxogram.



FIG. 2 shows a matrix indicating bisulfite-non-convertibility in cell-type specific genomic marker region. Different cell types were analyzed indicating that CpGs within genomic region AMP1730 are completely convertible by bisulfite treatment corresponding to 0% bisulfite-non-convertibility. The total fraction of granulocytes corresponds to neutrophilic granulocytes. Neutrophilic granulocytes account for about 90% of granulocytes, eosinophilic for about 7%, and basophilic for about 3% (see Example 4)



FIG. 3 shows a matrix indicating bisulfite-non-convertibility in cell-type specific genomic marker regions. Different cell types were analyzed indicating that CpGs within genomic region AMP2034 and 2035 are, in contrary to other cell types given, convertible by bisulfite to a high extent and indicative for this specific cell-type (see Example 5).



FIG. 4 shows the results of the test-template as amplified according to Example 7. unM (TpG Template): bisulfite-converted test-DNA; Meth (CpG template): non-bisulfite converted test-DNA; NTC: no template control; left panel: Mg2+ concentration 3.2 mM; right panel: Mg2+ concentration 3.6 mM.





SEQ ID No. 1 to 689 show sequences as used in the context of the present invention.


EXAMPLES

The present examples have been performed on a sample of known and unknown leukocyte and T-lymphocyte compositions. The person of skill will understand how to modify the experiments in order to identify and quantify other cell types, in particular blood cells in the context of an epigenetic haemogram, without undue burden and/or the need to become inventive.


Example 1
Assessment of Cell-Specific Assay-Correction Factors Using a Sample of Known Composition

The inventors provided a human blood sample of known leukocyte and T-lymphocyte composition. The composition of this blood sample was analyzed via flow cytometry. The sample contained 61% granulocytes, 12% monocytes, 3% B-lymphocyte, 4% natural killer cells, and 19% T-lymphocytes (Table 5). The T cell population consisted of 13% of CD4+ T helper cells, 1.4% regulatory T cells, 5% CD8+ cytotoxic cells, and 2% naïve CD8+ cells.


In a next step, this sample of known leukocyte and T-lymphocyte composition was analyzed for the relative amount of bisulfite convertible chromatin in cell-type specific gene regions, resulting in a unique, discriminating cell-type specific pattern of bisulfite convertible chromatin, e.g. for granulocytes a region in the gene for neutrophil gelatinase-associated lipocalin, for monocytes a region in the leukocyte immunoglobulin-like receptor gene, for B cells in a region of the gene for the low-affinity receptor for IgE, for natural killer cells a region in the gene for oxysterol-binding protein-like protein 5 isoform a, for T-lymphocytesin a region in the CD3D/G gene, for CD4+ T helper cells in a region in the CD4 gene, for regulatory T cells in a region in the FOXP3 gene, for CD8+ cytotoxic T cells in a region in the CD8A/B gene, for naïve CD8+ cells a region in the endosialin gene. Analyses were performed by qPCR using a bisulfite-converted normalization standard indicating the relative amount of numbers of gene copies containing mentioned unique, said cell-type specific pattern of bisulfite convertibility. These relative numbers of cell-specific gene copies indicate the relative amount of said specific cells.


This relative number of specific cells (said leukocytes and T-lymphocytes) was compared with the result of flow cytometry. Both results were set in relation, and a correction factor was determined (Table 1). Flow cytometry revealed 61% and qPCR 91.6% of granulocytes, and therefore the cell-specific granulocyte assay-correction factor was 1.502.


Correction factors were determined separately for each set of assessments as well as are incorporated into data base for assay-specific correction factors. In addition to the individual and separate determination of correction factors (for each set of assessments), the average of past correction factors can be used as well.









TABLE 5







Assessment of cell-specific assay-correction factors. Cell composition


of human blood sample was assessed by flow cytometry and qPCR


for leukocytes as well as T-lymphocytes. qPCR was performed using


a bisulfite-converted normalizations standard. Correction factors for


following qPCRs on samples of unknown composition were determined


by ratio of qPCR/FC. (C-Factor) correction factor, (FC) Flow


cytometry, (GRK01) internal sample number. (qPCR) real


time quantitative polymerase chain reaction.











FC GRK01
qPCR




(%)
GRK01
C-Factor
















Leukocytogram






granulozytes
61.0
91.6
1.502



monozytes
12.0
29.9
2.494



B cells
3.0
1.3
0.429



natural killer cells
4.0
3.9
0.977



T cells
19.0
29.8
1.568



T-Lymphocytogram



CD4+ T helper cells
13.0
9.7
0.745



regulatory T cells
1.4.
2.3
1.668



CD8+ cytotoxix T cells
5.0
8.0
1.594



naive CD8+ cells
2.0
2.1
1.051










Example 2
Assessment of Absolute Cell Composition in an Unknown Blood Sample of Healthy Volunteers Using an Assay-Correction Factor Determined Using a Sample of Known Composition (as Shown in Example 1)

Human blood samples of unknown leukocyte and T-lymphocyte composition of healthy volunteers were obtained for assessment of absolute leukocyte and T-lymphocyte composition via qPCR. As for Example 1, DNA of blood samples were isolated, bisulfite converted and relative amount of bisulfite converted DNA assessed via qPCR under the use of Bisulfite-converted normalization standards. Amount of bisulfite convertible DNA in cell-specific gene regions was set in relation to bisulfite-convertible DNA of cell-unspecific DNA region (always, cell independent, constant pattern of bisulfite-convertibility) to obtain relative amount of assessed cells.


Cell-specific assay-correction factors were determined in a parallel experimental set for assays of granulocytes, monocytes, B-lymphocytes, natural killer cells, T-lymphocytes, CD4+ T helper cells, regulatory T cells, and CD8+ cytotoxic T cells using flow cytometry on a human blood sample (methodology see example 1, human blood sample differs for Example 2 compared to Example 1). Relative amounts of assessed cells as obtained were corrected using the cell-specific assay correction factors. E.g., qPCR for monocytes patient sample S04 gave a relative amount of monocytes of 7.94%, but the correction revealed an absolute cell amount of 3.69% monocytes.


One would expect the sum of cells belonging to a leukocytogram to be 100%, and the sum of cells belonging to a T-lymphocytogram to have exactly the same amount of cells as determined for T-lymphocytes in the leukocytogram. It is known that even the flow cytometry quantification is not without limitations, as described above.


Flow cytometry measurement errors are reflected in qPCR corrections. On the other hand, the epigenetics based qPCR, as described herein, detected cell types independently of marker expression. Even if a cell-specific marker is expressed at a very low amount, or is not present at all, epigenetic-qPCR can detect these cells (e.g. as found for Th17 cells, see above). In addition, certain cells do express cell-specific markers, even if these cells did not enter a specific cellular state known to be associated with the marker expression (e.g. as found for regulatory T cells, see description above). Such cells are not detected by epigenetic-based qPCR. Additionally, for this example, the selection of T-lymphocytes (CD4+ T helper cells, CD8+ cytotoxic cells) does not represent the complete T-lymphocyte set (see FIG. 1). Cytograms represent the current status of scientific knowledge and cannot exclude the existence of additional cell types or of the incorrect definition of subpopulations thereof.









TABLE 6





Assessment of absolute cell composition of blood from healthy


volunteers. Cell composition of human blood samples were assessed


by qPCR for leukocytes as well as T-lymphocytes. qPCR was performed


using a bisulfite-converted normalizations standard. Correction factors for


qPCRs were determined in a parallel set of experiments (not described in


detail here, example of assessment of C-Factor see Example 1).


(C-Factor) correction factor, (FC) Flow cytometry, (S04)(S08) internal


sample numbers. (qPCR) real time quantitative polymerase chain reaction.







Leukocytogram (% relative cell amount)












qPCR-S04
qPCR-S08





granulozytes

79.74
81.29


monozytes

7.94
11.05


B cells

1.63
1.68


natural killer cells

2.74
2.04


T cells

23.25
22.09












embedded image







Leukocytogram (% absolute cell amount)














C-Factor
qPCR-S04
qPCR-S08





granulozytes
1.23
64.74
65.99


monozytes
2.15
3.69
5.13


B cells
0.39
4.13
4.26


natural killer cells
0.97
2.88
2.11


T cells
1.54
19.27
18.31


Sum

94.71
95.8










T-Lymphocytogram (% relative cell amount)












qPCR-S04
qPCR-S08





CD4+ T helper cells

5.89
5.11


regulatory T cells

1.67
1.15


CD8+ cytotoxix T cells

5.26
3.80












embedded image







T-Lymphocytogram (% absolute cell amount)














C-Factor
qPCR-S04
qPCR-S08





CD4+ T helper cells
0.45
13.16
11.42


regulatory T cells
1.1
1.52
1.05


CD8+ cytotoxix T cells
1.09
4.85
3.5


Sum

19.53
15.97









Example 3
Assessment of Absolute Cell Composition in an Unknown Blood Sample of Auto-Immune Diseased Volunteers Using an Assay-Correction Factor Determined Using a Sample of Known Composition (as Shown in Example 1)

Human blood samples of unknown leukocyte and T-lymphocyte composition of auto-immune diseased volunteers were obtained for assessment of absolute leukocyte and T-lymphocyte composition via qPCR. As for Example 1, DNA of blood samples were isolated, bisulfite converted and relative amount of bisulfite converted DNA assessed via qPCR. Amount of bisulfite convertible DNA in cell-specific gene regions was set in relation to bisulfite convertible DNA of cell-unspecific DNA region (always, cell independent, constant pattern of bisulfite convertibility) to obtain relative amount of assessed cells.


Cell-specific assay-correction factors were determined in a parallel experimental set for assays of granulocytes, monocytes, B-lymphocytes, natural killer cells, T-lymphocytes, CD4+ T helper cells, regulatory T cells, and CD8+ cytotoxic T cells using flow cytometry on a human blood sample (methodology see example 1, human blood sample differs for Example 3 compared to Example 1). Obtained relative amounts of assessed cells were corrected using these cell-specific assay correction factors. E.g., qPCR for T-lymphocytes assessed a relative amount of T-lymphocytes of 8.49% for patient M06 and 23.94% for patient M10. Correction revealed an absolute cell amount of 5.4% and 15.3% T cells, respectively.


In comparison to data from healthy patients, see Example 2, for auto-immune diseased patient M06 an obvious decrease in 4 of the 5 subtypes of leukocytes within the leukocytogram was observed. For patient M10 an obvious decrease in absolute number of only B-lymphocytes and monocytes was observed.


Additionally, also for T-lymphocyte subtypes, differences, between both patients were observed. qPCR analysis of three subtypes of T-lymphocytes for patient M06 revealed a strong decrease of CD4+T helper cells as well as CD8+ cytotoxic cells whereas the decrease in level of regulatory T cells was less pronounced. For patient M10 all three cell levels decreased simultaneously by about 50-60% compared to the average of the two healthy patients in Example 2.


All these differences might be related to e.g. a different medication and/or disease stage of these both patients and offer a clinical routine instrument for disease diagnosis, prediction as well as accompanying monitoring.









TABLE 8





Assessment of absolute cell composition of blood from auto-immune


diseased patients. Cell composition of human blood samples were assessed


by qPCR for leukocytes as well as T-lymphocytes. qPCR was performed


using a bisulfite-converted normalizations standard. An obvious decrease


of the level of certain cell populations was seen that is known for auto


immune diseases. Correction factors for qPCRs were determined in a


parallel set of experiments (not described in detail here, example of


assessment of C-Factor see Example 1). (C-Factor) correction factor,


(FC) Flow cytometry, (S04)(S08) internal sample numbers.


(qPCR) real time quantitative polymerase chain reaction.







Leukocytogram (% relative cell amount)












qPCR-M06
qPCR-M10





granulozytes

126.62
116.26


monozytes

3.12
3.36


B cells

0.21
0.72


natural killer cells

0.51
2.76


T cells

8.49
23.94












embedded image







Leukocytogram (% absolute cell amount)











C-Factor
qPCR-M06
qPCR-M10





granulozytes
1.50
84.3
77.4


monozytes
2.49
1.3
1.3


B cells
0.43
0.5
1.7


natural killer cells
0.98
0.5
2.8


T cells
1.57
5.4
15.3


Sum

92.0
98.5










T-Lymphocytogram (% relative cell amount)












qPCR-M06
qPCR-M10





CD4+ T helper cells

1.97
6.35


regulatory T cells

1.58
0.97


CD8+ cytotoxix T cells

2.09
3.35












embedded image







T-Lymphocytogram (% absolute cell amount)











C-Factor
qPCR-M06
qPCR-M10





CD4+ T helper cells
0.7
2.6
8.5


regulatory T cells
1.7
0.9
0.6


CD8+ cytotoxix T cells
1.6
1.3
2.1


Sum

4.8
11.2









Example 4
Detection of Neutrophilic Granulocytes Based on AMP1730 in the Gene for Neutrophil Gelatinase-Associated Lipocalin (LCN2) (See FIG. 2)


FIG. 2 shows a matrix indicating bisulfite-unconvertibility in cell-type specific genomic marker region. Different cell types were analyzed indicating that CpGs within genomic region AMP1730 are completely convertible by bisulfite treatment corresponding to 0% bisulfite-unconvertibility. Within basophil and eosinophil granulocytes specific CpGs of AMP1730 are not convertible by bisulfite. Therefore, the term “(Total) Granulocytes” within figure corresponds to neutrophilic granulocytes. Neutrophilic granulocytes account for about 90% of granulocytes, eosinophilic for about 7%, and basophilic for about 3%.









TABLE 7







Discriminatory quality of AMP1730: qPCR using assay specific primers


for AMP1730 was performed on cells indicated under “sample” to


analyze amount of bisulfite-convertibility of CpGs present in genomic


region given by AMP1730. DNA from purified cell samples was isolated,


bisulfite treated and qPCR assay performed under the use of a bisulfite-


converted normalization standard. Relative amount of cells was assessed


via comparing copy numbers of busulfite-convertible DNA of AMP1730


with bisulfite-unconvertible DNA of AMP1730, named “TpG/CpG-


System”. (copy numer convertible/(copy number convertible + copy


number non-convertible) = % cell type). Cells were purified and sorted


via flow cytometry. Within the neutrophiles cell sample, more than 95% of


the cells were detected as neutrohiles using AMP1730. (bGRAN)


basophiles, (eGRAN) eosinophiles (nGRAN) neutrophiles, (MOC)


monocytes, (THC) CD3+CD4+ T-lymphocyets, (CTL) cytotoxic


CD3+CD8+ T-lymphocytes, (NKC) CD3 natural killer cells, (NKT)


CD3+ natural killer cells, (BLC) B-lymphocytes.


AMP1730 - neutrophilic granulocytes assay











PCR-System specific to
PCR-System specific to




“TpG”
“CpG”














copy numbers

copy numbers
% nGRC



CP
acc. To
CP
acc. To
‘TpG”


Sample
Value
plasmid units
Value
plasmid units
variant















bGRAN
35.49
14.27
29.09
875.33
1.60


eGRAN
25.24
16.20
30.68
300.00
5.12


nGRAN
30.52
270.67
35.73
11.70
95.86


MOC
35.72
12.93
29.85
525.00
2.40


THC
42.70
0.91
30.80
278.00
0.33


CTL
37.72
5.04
29.41
706.00
0.71


NKC
36.95
7.03
29.34
740.33
0.94


NKT
38.35
3.85
30.37
369.67
1.03


BLC
39.75
2.41
29.91
502.67
0.48









Example 5
Detection of Eosinophilic Granulocytes Based on AMP 2034 and/or 2035 (PRG2)

Matrix indicating bisulfite-inconvertibility in cell-type specific genomic marker regions. Different cell types were analyzed indicating that CpGs within genomic region AMP2034 and 2035 arc, in contrary to other cell types given, convertible by bisulfite to a high extent and indicative for this specific cell-type (see FIG. 3).


Example 6
Assessment of Cell-Specific Assay-Correction Factor Using a Non-Bisulfite-Converted Nucleic Acid Molecule (Plasmid Standard) as Normalization Standard

The inventors developed non-bisulfite converted, genomic plasmid standards as a normalization standard. One of these genomic plasmid standards comprises marker regions being specific for stable regulatory T cells (TSDR region)(Treg cells) as well as marker regions being cell-type unspecific (GAPDH, housekeeping gene, detecting all cells, 100% of cells). This plasmid standard is used to determine the Treg-specific assay correction factor that allows assessing the absolute amount of stable Tregs within an unknown blood sample.


In a first step, a human blood sample of unknown composition was provided, DNA isolated, and bisulfite treated. Following, the amount of bisulfite converted TSDR copies and GAPDH copies were assessed (Table 8, section 2). These qPCR analyses were performed using a bisulfite-converted normalization standard (Table 8, section 1) indicating the number of bisulfite-converted DNA copies containing the TSDR marker region as well as the GAPDH marker region (Table 8 section 2). The relative amount of stable Tregs is calculated as number of bisulfite converted TSDR copies related to bisulfite converted GAPDH copies in percent.





no. bisulfite-converted TSDR copies/no. bisulfite-converted GAPDH copies×100=% Treg





67.70/6026.67×100=1.123%


The cell-type specific region for stable regulatory T cells, TSDR, is located on the X-chromosome. For women an epigenetic silencing of one allele of the X-chromosome is known. This affect is deduced by using a factor 2 when calculating relative amount of stable Tregs (final result=2.25% stable Tregs)(Table 8, section 2).


In a second step, Treg-specific assay-correction factor based on said genomic plasmid standard was assessed. Said plasmid standard was bisulfite converted and number of plasmid copies assessed by qPCR using primers specific for bisulfite-converted marker regions for Treg cells and for GAPDH. These qPCR analyses were also performed using the bisulfite-converted normalization standard (Table 8, section 1). The efficiency of qPCR for Treg cells and GAPDH should be equal as the novel genomic, non-bisulfite converted plasmid standard (the substrate) contains an equimolar amount of Treg cell-specific and GAPDH-specific genomic copies. Therefore, assessed deviation of Treg copy numbers from GAPDH copy numbers corresponds to differences in assay effiCiencies.





Treg(TSDR) copy numbers=6760 vs. GAPDH copy numbers=6273,33


This deviation defines the cell-type assay-specific correction factor. E.g.:





Treg(TSDR)copy numbers/GAPDH copy numbers/100=6760/6273.33=1.077.


For Treg cells an assay correction factor of 1.1 (average, n=3) was assessed (Table 8, section 3). Correcting the relative amount of Treg cells by factor 1.1 results in an absolute amount of 2.05% Treg cells within the unknown blood sample WB01.





relative amount of Treg cells/specific assay-correction factor=absolute amount of Treg





2.25%/1.1=2.05% Treg cells









TABLE 8





Assessment of Treg-specific assay-correction factor using a bisulfite-unconverted


nucleic acid molecule as a plasmid standard.


qPCR1 (FOXP3 TSDR) Assay Run-ID: 115_genomSTD_NormalizationFactorTreg







1) qPCR for bisulfite-converted normalization standard:










qPCR for TSDR bisulfite-
qPCR for GAPDH bisulfite-



converted normalization
convered normalization



standard
standard













copy numbers

copy numbers


Standards for Quantification

normalization

normalization












Standard-ID
Plasmid Units
CP Value
standard
CP Value
standard





Standard-1
31250 units
23.18
31500.00
23.10
32766.67


Standard-2
 6250 units
25.55
6150.00
25.49
6010.00


Standard-3
 1250 units
27.86
1250.00
27.71
1243.33


Standard-4
 250 units
30.20
249.00
29.91
260.00


Standard-5
  50 units
32.86
53.00
32.78
44.13


Standard-6
  30 units
34.05
31.80
33.36
32.70










2) qPCR on blood sample of unknow composition for assessment of relative amount of


Treg cells using the bisulfite-converted normalization standard as given under 1):













qPCR for TSDR bisulfite
qPCR for GAPDH bisulfite





converted DNA
converted DNA














Sample ID


copy numbers

copy numbers



unknown


acc. to

acc. to
relative


blood


normalization

normalization
amount stable


sample
gender
CP Value
standard (1)
CP Value
standard (1)
Treg





WB01
female
32.38
67.70
25.49
6026.67
2.25%










3) qPCR on genomic plasmid standard for assessment of Treg-specific correction factor













qPCR for TSDR bisulfite
qPCR for GAPDH bisulfite





converted DNA
converted DNA

















copy numbers

copy numbers
% stable


Sample ID
dilution

acc. to

acc. to
Treg/GAPDH


genomic
genom.

normalization

normalization
genomic


standard
standard
CP Value
standard (1)
CP Value
standard (1)
plasmid units





GP5000
1
25.41
6760.00
25.44
6273.33
107.76


GP1000
1:5 
27.71
1380.00
27.75
1206.67
114.36


GP200
1:25
29.93
301.00
29.82
278.00
108.27








Mean: 110.13








Normalization Factor: 1.10










4) Correction of relative amount of Tregs using Treg-specific correction factor to obtain absolute amount of Treg cells









Treg

Treg


relative
Normalization
absolute


amount
Factor
amount





2.25%
1.1
2.05%









Example 7
Development of Cell-Specific qPCR Assay for Detection and Discrimination of Neutrophil Granulocytes
Detecting Cell-Type Specific, Differential Bisulfite Convertibility:

DNA from the purified neutrophil granulocytes (neutrophils), monocytes, CD4+ cells CD8+ cells, B cells, NK-cells, and NKT cells was bisulfite-treated and bisulfite converted DNA analyzed at various CpG dinucleotide motifs. The inventors then compared the bisulfite convertibility (finding C as for Cytosine that was methylated in the original (genomic) sequence versus T for cytosine that was unmethylated in the original sequence) of these CpG dinucleotides (see Table 4, position 259).


Surprisingly, it was found that specific areas in the genomic region of lipocalin-2 were differentially methylated in neutrophil granulocytes compared to all other blood cell types tested. These areas were defined as discovery fragments, such as e.g. SEQ ID 517 for neutrophils (Table 4, position 259).


Validation of Bisulfite Convertibility:

Then, upon finding of the differential bisulfite convertibility, the inventors analyzed larger genomic regions by means of bisulfite sequencing. This latter procedure served for exploring and extending the discovered, differentially methylated areas and was conducted, for example with the differentially bisulfite converted discovery fragment, SEQ ID 517, within the gene lipocalin-2 as disclosed herein (see Table 4, SEQ ID 517 discovery fragment and 518 discriminative region of interest (ROI)).


Within the discriminative ROI defined as SEQ ID 518 a preferred region of interest including preferable CpG positions to be analyzed was identified (amplicon (AMP) 1730, see FIG. 2 and SEQ ID 685).


Development of Cell-Type Specific qPCR Assay:


In AMP 1730, a detailed analysis was performed in order to develop a highly specific qPCR assay based on the use of amplification primers and probes. Amplification primers (forward and reverse) for bisulfite converted neutrophils specific AMP 1730 as well as probes were designed and tested (data not shown).


In order to develop a particularly preferred “perfect” primer system for the assay, primers were developed that do not correspond 100% to the original bisulfite converted sequence but include specific mismatches that surprisingly increased the specificity. Mismatches in the primer sequence are underlined and bold.


TpG System (Detecting TpG Positions in Bisulfite-Converted DNA):











Forward Primer:



q1730 nm2Fw2_M1: 



ACCAAAAATACAACACTTCAA;







Reverse Primer: 



q1730 nm2R2: 



GGTAATTGTTAGTAATTTTTGTG;







Hydrolysis Probe:



q1730 nm2P4: 



FAM-CACTCTCCCCATCCCTCTATC-BHQ1.






CpG System (Detecting CpG Positions in Bisulfite-Converted DNA):











Forward Primer:



q1730_m2F1: 



TACCAAAAATACAACACTCCG







Reverse Primer: 



q1730_m2R2_M1: 



AGGTAATTGTTAGTAATTTTTACG







Hydrolysis Probe:



q1730 m2P1: 



HEX-CTCACTCTCCCCGTCCCTCTATC-BHQ1






The technical specificity of the TpG-specific PCR-system was tested based on test-templates (see FIG. 4). TpG and the CpG specific PCR system were found to be highly specific for the bisulfite converted and the non-bisulfite converted template, respectively. Additionally, the TpG-specific and CpG-specific PCR system show no cross reactivity with the CpG and the TpG templates, respectively (FIG. 4 shown for TpG-specific PCR system). In order to further increase specificity of the qPCR primer system, Mg2+ concentration was increased from 3.2 mM (usually applied) to 3.5 mM (see FIG. 4).


The biological specificity of the neutrophils-specific qPCR-system was tested using certain sorted cell fractions as well as using whole blood samples (see Table 9). The established qPCR assay was found to be highly specific for neutrophils.









TABLE 9







summarizes the results of the qPCR-analysis of sorted immune cells and whole blood samples. Shown are the CP-values for plasmid


standards, for immune cell types and whole blood samples, each for the bisulfite converted, neutrophil-specific marker copies (TpG PCR-system)


and the non-bisulfite converted, neutrophil-specific marker copies (CpG PCR-system) system. Based on the plasmid standard the corresponding


copy numbers (plasmid copies) were calculated from the CP-value as measured. (NTC) no template control; (nGRC) neutrophil granulocytes.








q1730* (nGRC) Assay
Run-ID: UBq1730_b_BSCT-Valid.







qPCR for bisulfite-converted normalization standard:













qPCR for nGRC bisulfite-converted
qPCR for nGRC non-bisulfite-converted


Standards for Quantification
normalization standard (TpG)
normalization standard (CpG)












Standard-ID
Plasmid Units
CP Value
Plasmid Units
CP Value
Plasmid Units





Standard-1
31250 units
23.5
30433.3
23.8
30766.7


Standard-2
 6250 units
25.8
6340.0
26.2
6300.0


Standard-3
 1250 units
28.2
1316.7
28.6
1240.0


Standard-4
 250 units
30.6
257.7
30.9
256.0


Standard-5
  50 units
32.8
62.2
33.1
60.5


Standard-6
  30 units






NTC
NTC
ND
ND
ND
ND













Analyzed Samples
PCR-System specific to “TpG”
PCR-System specific to “CpG”
% nGRC













Epionts-ID
Cell Type
CP Value
Plasmid units
CP Value
Plasmid units
‘TpG”/“CpG”





bGRAN06
Basophila
35.49
14.27
29.09
875.33
1.60


eGRAN09
Eosinophila
35.24
16.20
30.68
300.00
5.12


nGRAN02
Neutrophils
30.52
270.67
35.73
11.70
95.86


MOC28
Monocytes
35.72
12.93
29.85
525.00
2.40


THC14
T-helper cells
42.70
0.91
30.80
278.00
0.33


CTL16
Cyototox. T-cells
37.72
5.04
29.41
706.00
0.71


NKC_Pool
NK Cells
36.95
7.03
29.34
740.33
0.94


NKT19
NK T-cells
38.35
3.85
30.37
369.67
1.03


BLC06
B-Lymphocytes
39.57
2.41
29.91
502.67
0.48


WBL51
Whole Blood
30.61
253.67
31.69
152.67
62.43


WBL55
Whole Blood
29.43
561.00
30.84
268.67
67.62


WBL57
Whole Blood
31.59
134.00
32.08
117.67
53.25


WBL58
Whole Blood
31.94
107.33
31.68
154.33
41.02









The relative amount of neutrophils in the sample is calculated from the number of bisulfite converted, neutrophil-specific marker copies and the sum of bisulfite converted and non-bisulfite converted neutrophil-specific marker copies in the sample as follows:





% neutrophils=no. of bisulfite converted neutrophil copies/no. of non-bisulfite converted neutrophil copies×100;





% neutrophils=253.67/(253.67+152.67)×100=62.43


The present assay is special in the sense that the amplification of the bisulfite-converted neutrophils-target-DNA using “common” fitted primers and standard PCR-protocols does not provide a sufficient result. Only after using amplification primers that were designed having a mutation (a “mismatch”) at strategic sites as identified herein, together with the use of a much higher Mg2+-concentration in the PCR allows for the efficient amplification of the neutrophils-target region.


In a next step a genomic plasmid standard can be designed and cell-specific assay-correction factor can be assessed (see Example 6).


Example 8
Assessment of Cell-Specific Assay-Correction Factor Using a Non-Bisulfite-Converted Nucleic Acid Molecule (Genomic Plasmid Standard) as Normalization Standard to Quantify Absolute Number of Cells Per Microliter

The inventors developed non-bisulfite converted, genomic-plasmid standards as a normalization standard. One of these genomic plasmid standards comprises a marker region being specific for T-lymphocytes as well as a marker region being cell-type unspecific (GAPDH, housekeeping gene, detecting all cells, 100% of cells). Each single plasmid contains the same number of copies of these two marker regions (equimolar); two of these plasmids correspond to the number of DNA copies per one single immune cell and are therefore counted as one single cell. A stock solution containing defined numbers of said genomic plasmid molecules is used to determine the T-lymphocyte-specific assay-correction factor as well as to assess the absolute number of T-lymphocytes per microliter within an unknown blood sample.


In a first step, DNA of four human blood samples of unknown composition was isolated. This isolated DNA as well as the genomic plasmids of genomic plasmid standard were bisulfite treated. Following, the amount of copies of bisulfite converted T-lymphocyte-specific and GAPDH-specific marker regions were assessed by qPCR (Table 10, section B, C). These qPCR analyses were performed using a bisulfite-converted normalization standard (Table 10, section A) indicating the relative number of bisulfite-converted DNA as well as relative number of genomic plasmid copies containing the T-lymphocyte-specific marker region and the GAPDH marker region (Table 10 section B, C).


The relative amount of T-lymphocytes in percent within unknown blood samples is calculated as number of bisulfite converted T-lymphocyte-specific marker copies related to bisulfite converted GAPDH copies (Table 10, section B).







%





T


-


lymphocytes

=











no
.




bisulfite



-


converted





T


-


lymphocyte


-


specific











marker





copies
×
100












no
.




bisulfite



-


converted





GAPDH





copies















(


e
.
g
.




RD






260314

)



:







1896.7
/
6570.0

×
100

=

28.87

%










In a next step, T-lymphocyte-specific assay-correction factor based on said genomic plasmid standard was assessed (Table GR, section C). As described above, said genomic plasmid standard was bisulfite converted and number of plasmid copies assessed by qPCR using primers specific for bisulfite-converted marker regions for T-lymphocytes and for GAPDH. These qPCR analyses were also performed using the bisulfite-converted normalization standard (Table 10, section A). The efficiency of qPCR for T-lymphocytes and GAPDH should be equal as the novel genomic, non-bisulfite converted plasmid standard contains an equimolar amount of copies T-lymphocyte-specific and GAPDH-specific marker regions. Therefore, assessed deviation of genomic T-lymphocyte copy numbers from GAPDH copy numbers corresponds to differences in qPCR assay efficiencies.





e.g. Mean T-lymphocyte copy numbers=6058 vs. mean GAPDH copy numbers=5483


This deviation defines the cell-type assay-specific correction factor.:





Mean T-lymphocytes copy numbers/GAPDH copy numbers=6058/5483=1.1.


For T-lymphocytes an assay correction factor of 1.1 (average, n=2) was assessed (Table 10, section C). Correcting the relative amount of T-lymphocytes by factor 1,1 results in an absolute amount, e.g., of 26.24% T-lymphocytes within the unknown blood sample RD260314 (Table 10, section D).





absolute amount of T-lymphocytes=relative amount of T-lymphocytes/specific assay-correction factor





e.g.:28.87%/1.1=26.24% Treg cells


Additionally, the absolute number of T-lymphocytes per microliter within unknown blood samples was assessed (Table 10, section E). As described above, said genomic plasmid standard (stock solution of 6250 copies per microliter) was bisulfite converted and number of plasmid copies assessed by qPCR using primers specific for bisulfite-converted marker region for T-lymphocytes (section C). These qPCR was performed using the bisulfite-converted normalization standard (section A).


The amount of T-lymphocytes per microliter within unknown blood samples is calculated from relation of known, initial number of genomic plasmids of stock solution (6250 copies) and qPCR assessed number of copies of T-lymphocyte-specific marker within unknown blood samples (see section B) to qPCR assessed number of copies of genomic plasmid standard (see section C).







T


-


lymphocytes


/


µl

=






no
.




plasmid






copies


/


µl
×







no
.




bisulfite



-


converted





T


-


lymphocyte


-


specific





Mean






no
.




of






qPCR





assessed





plasmid





copies
×
2










(


e
.
g
.




RD






260314

)



:








(

6250
×
1896.7

)

/

(

6058.3
×
2

)



=

978





T


-


lymphocytes


/


µl





(See Table 10 below.)









TABLE 10





Assessment of Treg-specific assay-correction factor using a


bisulfite-unconverted nucleic acid molecule as a plasmid standard.


Assessment of absolute cell number in % as well as of cells per μl







A) qPCR for bisulfite-converted normalization standard:












qPCR for T-lymphocyte
qPCR for GAPDH




bisulfite-converted
bisulfite-convered




normalization standard
normalization standard















copy

copy











Standards for Quantification

numbers

numbers












Standard-
Plasmid
CP
normalization
CP
normalization


ID
Units
Value
standard
Value
standard





Standard-1
31250 units
23.99
30500.00
23.30
31533.33


Standard-2
 6250 units
26.22
6510.00
25.62
6263.33


Standard-3
 1250 units
28.65
1223.33
27.93
1260.00


Standard-4
 250 units
30.90
258.67
30.30
241.33


Standard-5
  50 units
33.14
50.00
32.86
48.93










B) qPCR on blood sample of unknow composition for assessment of relative amount of


T-Lymphocytes using the bisulfite-converted normalization standard as given under A):











qPCR for T-lymphocyte-specific
qPCR for GAPDH-specific




bisulfite converted DNA
bisulfite converted DNA













Sample ID

copy numbers

copy numbers
relative


unknown

acc. to

acc. to
amount T-


blood
CP
normalization
CP
normalization
lymphocytes


sample
Value
standard (A)
Value
standard (A)
(%)





RD260314
28.01
1896.7
25.55
6570.0
28.87


BF260314
27.54
2626.7
24.72
11700.0
22.45


MK260314
27.49
2703.3
24.86
10566.7
25.58


LK260314
27.69
2363.3
24.85
10700.0
22.09










C) qPCR on genomic plasmid standard for assessment of T-Lymphocyte-specific correction factor













qPCR for T-lymphocyte-specific
qPCR for GAPDH-specific





bisulfite converted DNA
bisulfite converted DNA
% T-
















copy numbers

copy numbers
lymphocytes/


Sample ID
number

acc. to

acc. to
GAPDH


genomic
plasmid copies
CP
normalization
CP
normalization
genomic


standard
per microliter
Value
standard (A)
Value
standard (A)
plasmid units





gnomSTD_02
6250
26.47
5503.3
25.88
5213.3
106


gnomSTD_02
6250
26.20
6613.3
25.74
5753.3
115





Mean: 6058.3

Mean: 5483
Mean: 110

















Normalization Factor: 1.1










D) Correction of relative amount of T-lymphocytes using assay-specific


correction factor (C) to obtain absolute amount of T-Lymphocytes (in %)










Sample ID


T-


unknown
Relative

lymphocytes


blood
amount T-
Normalization
absolute


sample
lymphocytes
Factor
amount





RD260314
28.87
1.1
26.24%


BF260314
22.45
1.1
20.41%


MK260314
25.58
1.1
23.26%


LK260314
22.09
1.1
20.08%










E) Normalizing relative amount of T-lymphocyte


to cell number per microliter using genomic plasmid standard










copy numbers
no. plasmid copies


Sample ID
of T-lymphocyte-specific
per μl × no. copies T-I bcDNA


unknown
bisulfite converted DNA
Mean qPCR assessed


blood sample
(see B)
no. of plasmid copies × 2





RD260314
1896.7
 978 T-Lympohcytes/μl


BF260314
2626.7
1355 T-Lympohcytes/μl


MK260314
2703.3
1394 T-Lympohcytes/μl


LK260314
2363.3
1219 T-Lympohcytes/μl








Claims
  • 1. A method for producing an epigenetic haemogram, comprising the steps of epigenetically detecting blood cells in a biological sample, and quantifying said blood cells as detected using a normalization standard, wherein said normalization standard is a nucleic acid molecule comprising at least one marker-region being specific for each of the blood cells to be detected, and at least one control-region being cell-unspecific, wherein said regions are present in the same number of copies on said molecule and/or a natural blood cell sample of known composition.
  • 2. The method according to claim 1, wherein said normalization standard is a bisulfite-unconverted or bisulfite-converted nucleic acid molecule.
  • 3. The method according to claim 2, wherein said bisulfite-unconverted or bisulfite-converted nucleic acid molecule is selected from a plasmid, a yeast artificial chromosome (YAC), human artificial chromosome (HAC), P1-derived artificial chromosome (PAC), a bacterial artificial chromosome (BAC), and a PCR-product.
  • 4. The method according to claim 1, wherein said natural blood cell sample is a blood sample of known cellular composition, and/or of known composition of blood and immune cell types.
  • 5. The method according to claim 1, further comprising the step of correcting said epigenetic haemogram as produced with an assay specific correction factor.
  • 6. The method according to claim 1, further comprising the step of obtaining a comprehensive blood picture, based on said detecting and quantifying.
  • 7. The method according to claim 1, wherein cell-type marker regions are detected that discriminate a specific cell type and/or at least one specific subpopulation of cells from other cells of a leukocytogram, a T-lymphocytogram, a granulocytogram, a monocytogram, a B-lymphocytogram and/or a NK-cytogram.
  • 8. The method according to claim 1, wherein said at least one cell-unspecific control-region is selected from a gene expressed in all cells to be detected.
  • 9. The method according to claim 1, wherein said normalization standard is bisulfite-unconverted and contains at least one bisulfite-convertible CpG position.
  • 10. The method according to claim 1, wherein said quantifying of cell types in said biological sample is based on normalization of the relative amount of cell-type specific and unspecific chromatin using a bisulfite-unconverted normalization standard or using a bisulfate-converted normalization standard.
  • 11. The method according to claim 1, wherein said normalization using a bisulfite-unconverted normalization standard is indicative for an absolute amount and/or percentage of content of cells within said biological sample.
  • 12. The method according to claim 5, wherein said assay correction factor for each cell-type specific and unspecific assay is obtained by comparing the quantitative composition of said natural blood cell sample with the relative amount of bisulfite-convertible chromatin of said natural blood cell sample using the normalization standard.
  • 13. The method according to claim 5, wherein said correction of relative amount of cells within said biological sample is obtained by using the assay correction factor, and is indicative for the absolute amount and percentage of the content of cells within the biological sample.
  • 14. The method according to claim 1, wherein said biological sample is a sample of unknown cellular composition.
  • 15. The method according to claim 1, wherein said biological sample is selected from a mammalian body fluid.
  • 16. The method according to claim 1, wherein said epigenetic haemogram comprises a leukocytogram, and/or a T-lymphocytogram, and/or a granulocytogram, and/or a monocytogram, and/or a B-lymphocytogram, and/or a NK cytogram.
  • 17. The method according to claim 16, wherein a) said leukocytogram is selected from T-lymphocytes, natural killer cells, B-lymphocytes, monocytes, and/or granulocytes, and combinations thereof,b) said T-lymphocytogram is selected from CD3+CD4+, CD4+ memory, CD4+ effector cells, CD4+ naïve, CD3+CD8+, CD8+ memory, CD8+ effector cells, CD8+ naïve, CD3+CD8−CD4+, CD3+CD8+CD4+, NKT cells, iTreg, Treg, Tfh, Th1, Th2, TH9, Th17, Th19, Th21, Th22, memory and/or effector T helper cells, and combinations thereof,c) said granulocytogram is selected from basophilic, eosinophilic, neutrophilic-, overall neutrophil granulocytes, and/or granulocytic myeloid-derived suppressor cells, and combinations thereof,d) said monocytogram is selected from CD14+ monocytes, CD14− monocytes, macrophages, plasmacytoid dendritic cells, monocytic myeloid-derived suppressor cells, intermediate monocytes, classical monocytes, non-classical monocytes, and/or overall dendritic cells, and combinations thereof,e) said B-lymphocytogram is selected from naïve B cells, pre B cells, memory B cells, transitional B cells and/or immature B cells, and combinations thereof, andf) said NK cytogram is selected from CD56dim and/or CD56bright NK cells.
  • 18. The method according to claim 1, wherein said at least one CpG position to be analyzed is present in a marker region in a 5′ region upstream from the transcription start, a promoter region, a 5′ or 3′ untranslated region, an intron, an exon/intron border, and/or in a 3′ region downstream of the transcriptional stop.
  • 19. The method according to claim 1, wherein a bisulfite conversion of at least one CpG position within any one of SEQ ID NOs:1 to 684 is indicative for a respective cell type as listed in table 4 or wherein a bisulfite conversion of at least one CpG position within any one of SEQ ID NO:685 or 686 is indicative for a neutrophilic granulocyte, or wherein a bisulfite conversion of at least one CpG position within any one of SEQ ID NOs:687 to 689 is indicative for an eosinophilic granulocyte.
  • 20. The method according to claim 1, further comprising the step of generating a knowledge base comprising information about the cell-specific assay-correction factors estimated during previous assessment of epigenetic haemograms.
  • 21. The method according to claim 1, wherein said determining the relative amount of bisulfite-convertible and/or non-bisulfite convertible DNA or nucleic acid comprises a method selected from specific enzymatic digests or dye exclusion technologies; bisulfite sequencing; next generation sequencing nanopore sequencing; single molecule real-time sequencing; analyses of epigenetic modifications in promoter regions; using primers specific for bisulfite-converted DNA; using blocking oligonucleotides specific for bisulfite-converted DNA; using fluorescence-labeled, quenched oligonucleotide probes; using primers for single nucleotide primer extension specific for bisulfite-converted DNA; digital or quantitative PCR analysis; and specific selective (nucleic acid and/or chromatin) precipitation.
  • 22. The method according to claim 1, further comprising the step of concluding on an immune status of a mammal based on said epigenetic haemogram.
  • 23. The method according to claim 1, further comprising the step of monitoring said cellular composition in said biological sample as identified by comparing said composition and/or haemogram with the composition in an earlier sample taken from the same mammal, and/or with the composition in a control sample.
  • 24. A method for diagnosing a disease or a predisposition for a disease or to assess the risk to develop a disease, comprising a method according to claim 1, and concluding on the disease or a predisposition for said disease based on the cellular composition in said biological sample as identified.
  • 25. A method for identifying the effect of a chemical or biological substance on the composition of cells, comprising performing the method according to claim 1 on a blood sample obtained from a mammal treated with said substance, and comparing the composition of cells in said sample with the composition in an untreated sample.
  • 26. A kit for producing an epigenetic haemogram, comprising materials for performing the method according to claim 1, optionally with instructions for use.
  • 27. (canceled)
Priority Claims (1)
Number Date Country Kind
13173442.8 Jun 2013 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/058087 4/22/2014 WO 00
Provisional Applications (1)
Number Date Country
61813802 Apr 2013 US