Method for image encoding

Information

  • Patent Grant
  • 5930377
  • Patent Number
    5,930,377
  • Date Filed
    Thursday, May 7, 1998
    27 years ago
  • Date Issued
    Tuesday, July 27, 1999
    25 years ago
Abstract
A method and system for embedding signatures within visual images in both digital representation and print or film. A signature is inseparably embedded within the possible image, the signature persisting through image transforms that include resizing as well as conversion to print or film and back to digital form. Signature points are selected from among the pixels of an original image. The pixel values of the signature points and surrounding pixels are adjusted by an amount detectable by a digital scanner. The adjusted signature points form a digital signature which is stored for future identification of subject images derived from the image. In one embodiment, a signature is embedded within an image by locating relative extrema in the continuous space of pixel values and selecting the signature points from among the extrema. Preferably, the signature is redundantly embedded in the image such that any of the redundant representations can be used to identify the signature. Identification of a subject image includes ensuring that the subject image is normalized with respect to the original image or the signed image. Preferably, the normalized subject image is compared with the stored digital signature.
Description

TECHNICAL FIELD
This invention relates to a method of and system for encoding a signature into a digital image and auditing a digital subject image to determine if it was derived from the encoded image.
BACKGROUND OF THE INVENTION
Various images in traditional print or photographic media are commonly distributed to many users. Examples include the distribution of prints of paintings to the general public and photographs and film clips to and among the media. Owners may wish to audit usage of their images in print and electronic media, and so require a method to analyze print, film and digital images to determine if they were obtained directly from the owners or derived from their images. For example, the owner of an image may desire to limit access or use of the image. To monitor and enforce such a limitation, it would be beneficial to have a method of verifying that a subject image is copied or derived from the owner's image. The method of proof should be accurate and incapable of being circumvented. Further, the method should be able to detect unauthorized copies that have been resized, rotated, cropped, or otherwise altered slightly.
In the computer field, digital signatures have been applied to non-image digital data in order to identify the origin of the data. For various reasons these prior art digital signatures have not been applied to digital image data. One reason is that these prior art digital signatures are lost if the data to which they are applied are modified. Digital images are often modified each time they are printed, scanned, copied, or photographed due to unintentional "noise" created by the mechanical reproduction equipment used. Further, it is often desired to resize, rotate, crop or otherwise intentionally modify the image. Accordingly, the existing digital signatures are unacceptable for use with digital images.
SUMMARY OF THE INVENTION
The invention includes a method and system for embedding image signatures within visual images, applicable in the preferred embodiments described herein to digital representations as well as other media such as print or film. The signatures identify the source or ownership of images and distinguish between different copies of a single image. In preferred embodiments, these signatures persist through image transforms such as resizing and conversion to or from print or film and so provide a method to track subsequent use of digital images including derivative images in print or other form.
In a preferred embodiment described herein, a plurality of signature points are selected that are positioned within an original image having pixels with pixel values. The pixel values of the signature points are adjusted by an amount detectable by a digital scanner. The adjusted signature points form a digital signature that is stored for future identification of subject images derived from the image.
The preferred embodiment of the invention described herein embeds a signature within the original image by locating candidate points such as relative extrema in the pixel values. Signature points are selected from among the candidate points and a data bit is encoded at each signature point by adjusting the pixel value at and surrounding each point. Preferably, the signature is redundantly embedded in the image such that any of the redundant representations can be used to identify the signature. The signature is stored for later use in identifying a subject image.
According to a preferred embodiment, the identification of a subject image includes ensuring that the subject image is normalized, i.e., of the same size, rotation, and brightness level as the original image. If not already normalized, the subject image is normalized by aligning and adjusting the luminance values of subsets of the pixels in the subject image to match corresponding subsets in the original image. The normalized subject image is then subtracted from the original image and the result is compared with the stored digital signature. In an alternate embodiment, the normalized subject image is compared directly with the signed image.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram of a computer system used in a preferred embodiment of the present invention.
FIG. 2 is a sample digital image upon which a preferred embodiment of the present invention is employed.
FIG. 3 is a representation of a digital image in the form of an array of pixels with pixel values.
FIG. 4 is graphical representation of pixel values showing relative minima and maxima pixel values.
FIG. 5 is a digital subject image that is compared to the image of FIG. 2 according to a preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION
The present invention includes a method and system for embedding a signature into an original image to create a signed image. A preferred embodiment includes selecting a large number of candidate points in the original image and selecting a number of signature points from among the candidate points. The signature points are altered slightly to form the signature. The signature points are stored for later use in auditing a subject image to determine whether the subject image is derived from the signed image.
The signatures are encoded in the visible domain of the image and so become part of the image and cannot be detected or removed without prior knowledge of the signature. A key point is that while the changes manifested by the signature are too slight to be visible to the human eve, they are easily and consistently recognizable by a common digital image scanner, after which the signature is extracted, interpreted and verified by a software algorithm.
In contrast to prior art signature methods used on non-image date the signatures persist through significant image transformations that preserve the visible image but may completely change the digital data. The specific transforms allowed include resizing the image larger or smaller, rotating the image, uniformly adjusting color, brightness and/or contrast, and limited cropping. Significantly, the signatures persist through the process of printing the image to paper or film and rescanning it into digital form.
Shown in FIG. 1 is a computer system 10 that is used to carry out an embodiment of the present invention. The computer system 10 includes a computer 12 having the usual complement of memory and logic circuits, a display monitor 14, a keyboard 16, and a mouse 18 or other pointing device. The computer system also includes a digital scanner 20 that is used to create a digital image representative of an original image such as a photograph or painting. Typically, delicate images, such as paintings, are converted to print or film before being scanned into digital form. In one embodiment a printer 22 is connected to the computer 12 to print digital images output from the processor. In addition, digital images can be output in a data format to a storage medium 23 such as a floppy disk for displaying later at a remote site. Any digital display device may be used, such a common computer printer, X-Y plotter, or a display screen.
An example of the output of the scanner 20 to the computer 12 is a digital image 24 shown in FIG. 2. More accurately, the scanner outputs data representative of the digital image and the computer causes the digital image 24 to be displayed on the display monitor 14. As used herein "digital image" refers to the digital data representative of the digital image, the digital image displayed on the monitor or other display screen, and the digital image printed by the printer 22 or a remote printer.
The digital image 24 is depicted using numerous pixels 24 having various pixel values. In the gray-scale image 24 the pixel values are luminance values representing a brightness level varying from black to white. In a color image the pixels have color values and luminance values, both of which being pixel values. The color values can include the values of any components in a representation of the color by a vector. FIG. 3 shows digital image 24A in the form of an array of pixels 26. Each pixel is associated with one or more pixel values, which in the example shown in FIG. 3 are luminance values from 0 to 15.
The digital image 24 shown in FIG. 2 includes thousands of pixels. The digital image 24A represented in FIG. 3 includes 225 pixels. The invention preferably is used for images having pixels numbering in the millions. Therefore, the description herein is necessarily a simplistic discussion of the utility of the invention.
According to a preferred embodiment of the invention numerous candidate points are located within the original image. Signature points are selected from among the candidate points and are altered to form a signature. The signature is a pattern of any number of signature points. In a preferred embodiment, the signature is a binary number between 16 and 32 bits in length. The signature points may be anywhere within an image, but are preferably chosen to be as inconspicuous as possible. Preferably, the number of signature points is much greater than the number of bits in a signature. This allows the signature to be redundantly encoded in the image. Using a 16 to 32 bit signature, 50-200 signature points are preferable to obtain multiple signatures for the image.
A preferred embodiment of the invention locates candidate points by finding relative maxima and minima, collectively referred to as extrema, in the image. The extrema represent local extremes of luminance or color. FIG. 4 shows what is meant by relative extreme FIG. 4 is a graphical representation of the pixel values of a small portion of a digital image. The vertical axis of the graph shows pixel values while the horizontal axis shows pixel positions along a single line of the digital image. Small undulations in pixel values, indicated at 32, represent portions of the digital image where only small changes in luminance or color occur between pixels. A relative maximum 34 represents a pixel that has the highest pixel value for a given area of the image. Similarly, a relative minimum 36 represents a pixel that has the lowest pixel value for a given area of the image.
Relative extrema are preferred signature points for two major reasons. First, they are easily located by simple, well known processing. Second, they allow signature points to be encoded very inconspicuously.
One of the simplest methods to determine relative extrema is to use a "Difference of Averages" technique. This technique employs predetermined neighborhoods around each pixel 26; a small neighborhood 28 and a large neighborhood 30, as shown in FIGS. 2 and 3. In the present example the neighborhoods are square for simplicity, but a preferred embodiment employs circular neighborhoods. The technique determines the difference between the average pixel value in the small neighborhood and the average pixel value of the large neighborhood. If the difference is large compared to the difference for surrounding pixels then the first pixel value is a relative maxima or minima.
Using the image of FIG. 3 as an example, the Difference of Averages for the pixel 26A is determines as follows. The pixel values within the 3.times.3 pixel small neighborhood 28A add up to 69: dividing by 9 pixels gives an average of 7.67. The pixel values within the 5x: pixel large neighborhood 30A add up to 219; dividing by 25 pixels gives an average of 8.76 and a Difference of Averages of -1.09. Similarly, the average in small neighborhood 28G is 10.0; the average in large neighborhood 30G is 9.8; the Difference of Averages for pixel 26G is therefore 0.2. Similar computations on pixels 26B-26F produce the following table:
______________________________________ 26A 26B 26C 26D 26E 26F 26G______________________________________Small Neighborhood 7.67 10.56 12.89 14.11 13.11 11.56 10.0Large Neighborhood 8.76 10.56 12.0 12.52 12.52 11.36 9.8Difference of -1.09 0.0 0.89 1.59 0.59 0.2 0.2Averages______________________________________
Based on pixels 26A-26G, there may be a relative maximum at pixel 26D, whose Difference of Averages of 1.59 is greater than the Difference of Averages for the other examined pixels in the row. To determine whether pixel 26D is a relative maximum rather than merely a small undulation, its Difference of Averages must be compared with the Difference of Averages for the pixels surrounding it in a larger area.
Preferably, extrema within 10% of the image size of any side are not used as signature points. This protects against loss of signature points caused by the practice of cropping the border area of an image. It is also preferable that relative extrema that are randomly and widely spaced are used rather than those that appear in regular patterns.
Using the Difference of Averages technique or other known techniques, a large number of extrema are obtained, the number depending on the pixel density and contrast of the image. Of the total number of extrema found, a preferred embodiment chooses 50 to 200 signature, points. This may be done manually by a user choosing with the keyboard 16, mouse 18, or other pointing device each signature point from among the extrema displayed on the display monitor 14. The extrema may be displayed as a digital image with each point chosen by using the mouse or other pointing device to point to a pixel or they may be displayed as a list of coordinates which are chosen by keyboard, mouse, or other pointing device. Alternatively, the computer 12 can be programmed to choose signature points randomly or according to a preprogrammed pattern.
One bit of binary data is encoded in each signature point in the image by adjusting the pixel values at and surrounding the point. The image is modified by making a small, preferably 2%-10% positive or negative adjustment in the pixel value at the exact signature point, to represent a binary zero or one. The pixels surrounding each signature point, in approximately a 5.times.5 to 10.times.10 grid, are preferably adjusted proportionally to ensure a continuous transition to the new value at the signature point. A number of bits are encoded in the signature points to form a pattern which is the signature for the image.
In a preferred embodiment, the signature is a pattern of all of the signature points. When auditing a subject image, if a statistically significant number of potential signature points in the subject image match corresponding signature points in the signed image, then the subject image is deemed to be derived from the signed image. A statistically significant number is somewhat less than 100%, but enough to be reasonably confident that the subject image was derived from the signed image.
In an alternate embodiment, the signature is encoded using a redundant pattern that distributes it among the signature points in a manner that can be reliably retrieved using only a subset of the points. One embodiment simply encodes a predetermined number of exact duplicates of the signature. Other redundant representation methods, such as an error-correcting code, may also be used.
In order to allow future auditing of images to determine whether they match the signed image, the signature is stored in a database in which it is associated with the original image. The signature can be stored by associating the bit value of each signature point together with x-y coordinates of the signature point. The signature may be stored separately or as part of the signed image. The signed image is then distributed in digital form.
As discussed above, the signed image may be transformed and manipulated to form a derived image. The derived image is derived from the signal image by various transformations, such as resizing, rotating, adjusting color, brightness and/or contrast, cropping and converting to print or film. The derivation may take place in multiple steps or processes or may simply be the copying of the signed image directly.
It is assumed that derivations of these images that an owner wishes to track include only applications which substantially preserve the resolution and general quality of the image. While a size reduction by 90%, a significant color alteration or distinct-pixel-value reduction may destroy the signature, they also reduce the image's significance and value such that no auditing is desired.
In order to audit a subject image according to a preferred embodiment, a user identifies the original image of which the subject image is suspected of being a duplicate. For a print or film image, the subject image is scanned to create a digital image file. For a digital image, no scanning is necessary. The subject digital image is normalized using techniques as described below to the same size, and same overall brightness, contrast and color profile as the unmodified original image. The subject image is analyzed by the method described below to extract the signature, if present, and compare it to any signatures stored for that image.
The normalization process involves a sequence of steps to undo transformations previously made to the subject image, to return it as close as possible to the resolution and appearance of the original image. It is assumed that the subject image has been manipulated and transformed as described above. To align the subject image with the original image, a preferred embodiment chooses three or more points from the subject image which correspond to points in the original image. The three or more points of the subject image are aligned with the corresponding points in the original image. The points of the subject image not selected are rotated and resized as necessary to accommodate the alignment of the points selected.
For example, FIG. 5 shows a digital subject image 38 that is smaller than the original image 24 shown in FIG. 2. To resize the subject image, a user points to three points such as the mouth 40B, ear 42B and eye 44B of the subject image using the mouse 18 or other pointer. Since it is usually difficult to accurately point to a single pixel, the computer selects the nearest extrema to the pixel pointed to by the user. The user points to the mouth 40A, ear 42A, and eye 44, of the original image. The computer 12 resizes and rotates the subject image as necessary to ensure that points 40B, 42B, and 44B are positioned with respect to each other in the same way that points 40A, 42A, and 44A are positioned with respect to each other in the original image. The remaining pixels are repositioned in proportion to the repositioning of points 40B, 42B and 44B. By aligning three points the entire subject image is aligned with the original image without having to align each pixel independently.
After the subject image is aligned, the next step is to normalize the brightness, contrast and/or color of the subject image. Normalizing involves adjusting pixel values of the subject image to match the value-distribution profile of the original image. This is accomplished by a technique analogous to that used to align the subject image. A subset of the pixels in the subject image are adjusted to equal corresponding pixels in the original image. The pixels not in the subset are adjusted in proportion to the adjustments made to the pixels in the subset. The pixels of the subject image corresponding to the signature points should not be among the pixels in the subset. Otherwise any signature points in the subject image will be hidden from detection when they are adjusted to equal corresponding pixels in the original image.
In a preferred embodiment, the subset includes the brightest and darkest pixels of the subject image. These pixels are adjusted to have luminance values equal to the luminance values of corresponding pixels in the original image. To ensure that any signature points can be detected, no signature points should be selected during the signature embedding process described above that are among the brightest and darkest pixels of the original image. For example, one could use pixels among the brightest and darkest 3% for the adjusting subset, after selecting signature points among less than the brightest and darkest 5% to ensure that there is no overlap.
When the subject image is fully normalized, it is preferably compared to the original image. One way to compare images is to subtract one image from the other. The result of the subtraction is a digital image that includes any signature points that were present in the subject image. These signature points, if any, are compared to the stored signature points for the signed image. If the signature points do not match, then the subject image is not an image derived from the signed image, unless the subject image was changed substantially from the signed image.
In an alternative embodiment, the normalized subject image is compared directly with the signed image instead of subtracting the subject image from the original image. This comparison involves subtracting the subject image from the signed image. If there is little or no image resulting from the subtraction, then the subject image equals to the signed image, and therefore has been derived from the signed image.
In another alternate embodiment, instead of normalizing the entire subject image, only a section of the subject image surrounding each potential signature point is normalized to be of the same general resolution and appearance as a corresponding section of the original image. This is accomplished by selecting each potential signature point of the subject image and selecting sections surrounding each potential signature point. The normalization of each selected section proceeds according to methods similar to those disclosed above for normalizing the entire subject image.
Normalizing each selected section individually allows each potential signature point of the subject image to be compared directly with a corresponding signature point of the signed image. Preferably, an average is computed for each potential signature point by averaging the pixel value of the potential signature point with the pixel values of a plurality of pixels surrounding the potential signature point The average computed for each signature is compared directly with a corresponding signature point of the signed image.
While the methods of normalizing and extracting a signature from a subject image as described above are directed to luminance values, similar methods may be used for color values. Instead of or in addition to normalizing by altering luminance values, the color values of the subject image can also be adjusted to equal corresponding color values in an original color image. However, it is not necessary to adjust color values in order to encode a signature in or extract a signature from a color image. Color images use pixels having pixel values that include luminance values and color values. A digital signature can be encoded in any pixel values regardless of whether the pixel values are luminance values, color values, or any other type of pixel values. Luminance values are preferred because alterations may be made more easily to luminance values without the alterations being visible to the human eye.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims
  • 1. A method of processing an image encoded as points, each point having a parameter value, the method comprising:
  • identifying plural points within the image;
  • increasing the parameter value of each of a first group of said identified points, and also increasing the parameter values of a first patch of points surrounding each such point; and
  • decreasing the parameter value of each of a second group of said identified points and also decreasing the parameter values of a second patch of points surrounding each such point.
  • 2. The method of claim 1 wherein each point corresponds to an electronically represented pixel.
  • 3. The method of claim 1 wherein the parameter values of the points in each patch are changed by amounts having magnitudes that depend on their position within the patches.
  • 4. The method of claim 1 wherein the parameter values of the points in each first patch are increased by a first amount, and the parameter values of the points in each second patch are decreased by a second amount, the first and second amounts depending on position within the patch.
  • 5. The method of claim 1 further comprising associating each of said plural points with a plurality of adjacent points collectively forming a continuous patch, thereby defining several patches in the images.
  • 6. The method of claim 5 wherein the patches are disjoint.
  • 7. The method of claim 1 wherein the image is monochromatic.
  • 8. The method of claim 1 wherein the image is color.
  • 9. The method of claim 1 wherein the parameter is luminance.
  • 10. The method of claim 1 wherein the parameter is chrominance.
  • 11. The method of claim 1 wherein each patch is uniform in shape.
  • 12. The method of claim 11 wherein each patch is rectangular in shape.
  • 13. The method of claim 1 wherein each patch has a central point, and the identified point within each patch is said central point.
  • 14. Apparatus for embedding data in an image, the apparatus comprising:
  • a computer memory for storing the image as an ordered set of pixels, each pixel having a pixel parameter value;
  • means for identifying plural points within the image; and
  • image altering means for increasing the parameter value of each of a first group of said identified points, and also for increasing the parameter values of a first patch of points surrounding each such point;
  • said image altering means further decreasing the parameter value of each of a second group of said identified points, and also for decreasing the parameter values of a second patch of points surrounding each such point.
  • 15. The apparatus of claim 14 in which the image altering means increases the pixel parameter values of the pixels in the first patch by a first amount, and decreases the pixel parameter values of the pixels in each second patch by a second amount, the first and second amounts depending on position within the patch.
  • 16. A method of processing an original source signal to yield an encoded source signal having N-bits of auxiliary data hidden therein, N being at least one, the original source signal having a representation including plural elements, each having a parameter value, the method including changing the parameter values of said elements to encode the auxiliary data therein, and scaling a magnitude of said changes in accordance with said parameter values, wherein elements of the source signal representation having larger parameter values are changed relatively more than elements of the source signal representation having smaller parameter values.
  • 17. The method of claim 16 wherein the source signal is a pixel domain representation of an image, rather than a representation thereof in another domain, and said elements are pixels therein.
  • 18. The method of claim 16 wherein said changing includes increasing some parameter values, and decreasing other parameter values.
  • 19. The method of claim 16 wherein the source signal represents an image, and said parameter values are luminance values within said image.
  • 20. The method of claim 16 wherein said scaling is linear, so that elements having parameter values differing by a factor of two have corresponding changes whose magnitudes differ by a factor of two.
  • 21. The method of claim 16 wherein the source signal represents image data, and said changes are slight enough as to be inconspicuous to a human viewer of the image.
  • 22. The method of claim 16 wherein the source signal represents still image data.
  • 23. The method of claim 16 in which N is at least two.
  • 24. The method of claim 16 which includes changing parameter values at other elements adjoining said plural elements.
  • 25. The method of claim 24 in which said other elements adjoin said plural elements in the pixel domain.
  • 26. The method of claim 24 which includes increasing parameter values at elements adjoining plural elements whose parameter values are increased, and decreasing parameter values at elements adjoining plural elements whose parameter values are decreased.
  • 27. The method of claim 24 in which the values of said other elements are changed in value less than the values of said plural elements adjacent thereto.
  • 28. The method of claim 16 including selecting said plural elements so as to reduce human-perceptible corruption of the source signal.
  • 29. The method of claim 28 in which the source signal represents pixels of an image, and said selecting includes identifying pixels of relative extrema therein.
  • 30. A method of encoding N bits of first data, N being at least one, within a work of authorship represented by plural elements of second data, each element having a value, the method including, for each bit of the first data:
  • mapping said bit to at least one element of the second data by a process that includes a random function; and
  • changing the value of said at least one element of the second data;
  • wherein changes to the work of authorship are essentially human imperceptible.
  • 31. The method of claim 30 wherein N is at least two.
  • 32. The method of claim 30 wherein the work of authorship is an image, and the plural elements of second data comprise pixels.
  • 33. The method of claim 30 in which the change in value to said at least one element of the second data is dependent, at least in part, on the value of said bit of the first data.
  • 34. The method of claim 30 in which the mapping includes identifying elements of the second data having an advantageous data hiding property, and selecting from said identified elements.
  • 35. The method of claim 34 in which the advantageous data hiding property is a relative extrema among said plural elements.
  • 36. The method of claim 30 wherein the mapping comprises mapping said bit to plural elements of the second data.
  • 37. The method of claim 30 which further includes changing other elements of the second data that adjoin said at least one element.
  • 38. The method of claim 30 which further includes changing the value of said at least one element of the second data in accordance with another factor not related to the bit of the first data.
  • 39. A method of encoding N-bits of auxiliary data within a source signal, N being at least one, the method including:
  • evaluating data hiding characteristics of plural locations in the source signal; and
  • encoding the auxiliary data in the source signal, avoiding the locations that have poor data hiding characteristics;
  • wherein the auxiliary data is encoded where it is relatively less perceptible, said encoding resulting in changes to the source signal that are so slight as to be essentially imperceptible to humans.
  • 40. The method of claim 39 in which the source signal is comprised of samples, each having a binary value, and the encoding includes:
  • increasing the values of certain source signal samples;
  • decreasing the values of other source signal samples;
  • the foregoing steps changing the values of more than N samples, wherein redundant encoding of at least part of said auxiliary data is effected.
  • 41. The method of claim 39 wherein the source signal represents image data.
  • 42. The method of claim 39 wherein the source signal represents still image data.
  • 43. The method of claim 39 in which N is at least two.
  • 44. The method of claim 39 which includes increasing values of source signal samples adjoining the certain source signal samples whose values are increased, and decreasing values of source signal samples adjoining the certain source signal samples whose values are decreased.
  • 45. The method of claim 44 in which the values of the adjoining source signal samples are changed in value less than the certain source signal samples adjacent thereto.
  • 46. A method of encoding N-bits of auxiliary data within an image represented by a set of data, N being at least one, the method including:
  • evaluating data hiding characteristics of different portions of said set of data; and
  • encoding the auxiliary data in the set of data, avoiding the portions that have poor data hiding characteristics;
  • wherein the auxiliary data is encoded where it is relatively less perceptible, said encoding resulting in changes to the image that are so slight as to be essentially imperceptible to humans.
  • 47. The method of claim 46 in which N is at least two.
  • 48. A method of encoding N-bits of auxiliary data within an image represented by a set of data, N being at least one, the method including:
  • identifying portions of the set of data having a predetermined data hiding attribute; and
  • changing the set of data in at least certain of said portions to effect encoding of the auxiliary data therein;
  • wherein the auxiliary data is encoded where it is relatively less perceptible, said encoding resulting in changes to the image that are so slight as to be essentially imperceptible to humans.
  • 49. A method of encoding N-bits of auxiliary data within a source signal, N being at least one, the method including:
  • identifying portions of the source signal having a predetermined data hiding attribute; and
  • changing the source signal in at least certain of said portions to effect encoding of the auxiliary data therein;
  • wherein the auxiliary data is encoded where it is relatively less perceptible, said encoding resulting in changes to the source signal that are so slight as to be essentially imperceptible to humans.
  • 50. The method of claim 49 in which the source signal is comprised of samples, each having a binary value, and the encoding includes:
  • increasing the values of certain source signal samples;
  • decreasing the values of other source signal samples;
  • the foregoing steps changing the values of more than N samples, wherein redundant encoding of at least part of said auxiliary data is effected.
  • 51. The method of claim 49 wherein the source signal represents image data.
  • 52. The method of claim 49 wherein the source signal represents still image data.
  • 53. The method of claim 49 in which N is at least two.
  • 54. The method of claim 49 which includes increasing values of source signal samples adjoining the certain source signal samples whose values are increased, and decreasing values of source signal samples adjoining the certain source signal samples whose values are decreased.
  • 55. The method of claim 54 in which the values of the adjoining source signal samples are changed in value less than the certain source signal samples adjacent thereto.
Parent Case Info

This is a continuation of application No. 08/969,072, filed Nov. 12, 1997, now U.S. Pat. No. 5,809,160, which is a continuation of application 07/923,841, filed Jul. 31, 1992, now U.S. Pat. No. 5,721,788.

US Referenced Citations (160)
Number Name Date Kind
3493674 Houghton Feb 1970
3569619 Simjian Mar 1971
3576369 Wick et al. Apr 1971
3585290 Sanford Jun 1971
3638188 Pincoffs et al. Jan 1972
3665162 Yamamoto et al. May 1972
3703628 Philipson, Jr. Nov 1972
3805238 Rothfjell Apr 1974
3809806 Walker et al. May 1974
3838444 Loughlin et al. Sep 1974
3914877 Hines Oct 1975
3922074 Ikegami et al. Nov 1975
3971917 Maddox et al. Jul 1976
3977785 Harris Aug 1976
3982064 Barnaby Sep 1976
3984624 Waggener Oct 1976
4025851 Haselwood et al. May 1977
4184700 Greenaway Jan 1980
4225967 Miwa et al. Sep 1980
4230990 Lert, Jr. et al. Oct 1980
4231113 Blasbalg Oct 1980
4238849 Gassmann Dec 1980
4252995 Schmidt et al. Feb 1981
4262329 Bright et al. Apr 1981
4310180 Mowry, Jr. et al. Jan 1982
4313197 Maxemchuk Jan 1982
4367488 Leventer et al. Jan 1983
4379947 Warner Apr 1983
4380027 Leventer et al. Apr 1983
4389671 Posner et al. Jun 1983
4395600 Lundy et al. Jul 1983
4416001 Ackerman Nov 1983
4423415 Goldman Dec 1983
4425661 Moses et al. Jan 1984
4476468 Goldman Oct 1984
4488245 Dalke et al. Dec 1984
4528588 Lofberg Jul 1985
4532508 Ruell Jul 1985
4547804 Greenberg Oct 1985
4553261 Froessl Nov 1985
4590366 Rothfjell May 1986
4595950 Lofberg Jun 1986
4637051 Clark Jan 1987
4639779 Greenberg Jan 1987
4644582 Morishita et al. Feb 1987
4647974 Butler Mar 1987
4654867 Labedz et al. Mar 1987
4660221 Dlugos Apr 1987
4663518 Borror et al. May 1987
4665431 Cooper May 1987
4672605 Hustig et al. Jun 1987
4675746 Tetrick et al. Jun 1987
4677435 Cause D'Agraives et al. Jun 1987
4682794 Margolin Jul 1987
4703476 Howard Oct 1987
4712103 Gotanda Dec 1987
4718106 Weinblatt Jan 1988
4739377 Allen Apr 1988
4750173 Bluthgen Jun 1988
4765656 Becker et al. Aug 1988
4775901 Nakano Oct 1988
4776013 Kafri et al. Oct 1988
4805020 Greenberg Feb 1989
4807031 Broughton et al. Feb 1989
4811357 Betts et al. Mar 1989
4811408 Goldman Mar 1989
4820912 Samyn Apr 1989
4825393 Nishiya Apr 1989
4835517 van der Gracht et al. May 1989
4855827 Best Aug 1989
4864618 Wright et al. Sep 1989
4866771 Bain Sep 1989
4874936 Chandler et al. Oct 1989
4876617 Best et al. Oct 1989
4879747 Leighton et al. Nov 1989
4884139 Pommier Nov 1989
4885632 Mabey et al. Dec 1989
4903301 Kondo et al. Feb 1990
4908836 Rushforth et al. Mar 1990
4908873 Philibert et al. Mar 1990
4918484 Ujiie et al. Apr 1990
4920503 Cook Apr 1990
4921278 Shiang et al. May 1990
4939515 Adelson Jul 1990
4941150 Iwasaki Jul 1990
4943973 Werner Jul 1990
4943976 Ishigaki Jul 1990
4944036 Hyatt Jul 1990
4963998 Maufe Oct 1990
4965827 McDonald Oct 1990
4967273 Greenberg Oct 1990
4969041 O'Grady et al. Nov 1990
4972471 Gross et al. Nov 1990
4972475 Sant'Anselmo Nov 1990
4972476 Nathans Nov 1990
4979210 Nagata et al. Dec 1990
4993068 Piosenka et al. Feb 1991
4996530 Hilton Feb 1991
5003590 Lechner et al. Mar 1991
5010405 Schreiber et al. Apr 1991
5027401 Soltesz Jun 1991
5034982 Heninger et al. Jul 1991
5036513 Greenblatt Jul 1991
5063446 Gibson Nov 1991
5067162 Driscoll, Jr. et al. Nov 1991
5073899 Collier et al. Dec 1991
5073925 Nagata et al. Dec 1991
5075773 Pullen et al. Dec 1991
5077608 Dubner Dec 1991
5077795 Rourke et al. Dec 1991
5079648 Maufe Jan 1992
5091966 Bloomberg et al. Feb 1992
5093867 Hori et al. Mar 1992
5095196 Miyata Mar 1992
5113437 Best May 1992
5128525 Stearns et al. Jul 1992
5144660 Rose Sep 1992
5148498 Resnikoff et al. Sep 1992
5150409 Elsner Sep 1992
5161210 Druyvesteyn et al. Nov 1992
5166676 Milheiser Nov 1992
5168146 Bloomberg Dec 1992
5181786 Hujink Jan 1993
5185736 Tyrrell et al. Feb 1993
5199081 Saito et al. Mar 1993
5200822 Bronfin et al. Apr 1993
5212551 Conanan May 1993
5213337 Sherman May 1993
5228056 Schilling Jul 1993
5243423 DeJean et al. Sep 1993
5245165 Zhang Sep 1993
5245329 Gokcebay Sep 1993
5247364 Banker et al. Sep 1993
5253078 Balkanski et al. Oct 1993
5257119 Funada et al. Oct 1993
5259025 Monroe et al. Nov 1993
5293399 Hefti Mar 1994
5295203 Krause et al. Mar 1994
5305400 Butera Apr 1994
5315098 Tow May 1994
5319453 Copriviza et al. Jun 1994
5319724 Blonstein et al. Jun 1994
5319735 Preuss et al. Jun 1994
5325167 Melen Jun 1994
5327237 Gerdes et al. Jul 1994
5337361 Wang et al. Aug 1994
5349655 Mann Sep 1994
5374976 Spannenburg Dec 1994
5387941 Montgomery et al. Feb 1995
5394274 Kahn Feb 1995
5396559 McGrew Mar 1995
5408542 Callahan Apr 1995
5450122 Keene Sep 1995
5557333 Jungo et al. Sep 1996
5559559 Jungo et al. Sep 1996
5587743 Montgomery et al. Dec 1996
5617148 Montgomery Apr 1997
5689587 Bender et al. Nov 1997
5721788 Powell et al. Feb 1998
5809160 Powell et al. Sep 1998
Foreign Referenced Citations (1)
Number Date Country
0 058 482 Aug 1982 EPX
Continuations (2)
Number Date Country
Parent 969072 Nov 1997
Parent 923841 Jul 1992