Not applicable.
Not applicable.
1. Field of the Invention
The invention relates generally to the field of seismic imaging of the Earth's subsurface. More specifically, the invention relates to imaging of the Earth's subsurface using passive seismic sensing techniques.
2. Background Art
Passive seismic emission sensing techniques include detecting seismic signals from within the Earth's subsurface. As contrasted with conventional controlled source seismic exploration techniques (wherein a seismic source is actuated near the Earth's surface), in passive seismic sensing, the seismic signals are generated by seismic events taking place within the Earth's subsurface. The subsurface seismic events may be naturally-occurring or may be induced by manmade activities. The seismic signals are detected by an array of seismic sensors positioned at or near the Earth's surface generally above a target volume within the Earth's subsurface. Applications for passive seismic emission tomography include, for example, determining the point of origin of micro-earthquakes caused by movement along geologic faults, i.e., breaks in rock layers or formations, monitoring of fluid movement within the Earth's subsurface, and monitoring of fluid injected into the Earth's subsurface, e.g., in a hydraulic fracturing process or in monitoring movement of a fluid contact in a subsurface reservoir.
In some cases it may be undesirable to use conventional controlled source seismic techniques for evaluating the Earth's subsurface, for example, if a particular area is environmentally sensitive so as to make access and use of seismic sources unsafe or impracticable. There is a need for passive seismic methods that can make 3 dimensional images of the Earth's subsurface similar to those obtained using conventional controlled source seismic exploration techniques.
In one aspect, a method of imaging the Earth's subsurface using passive seismic emission tomography includes detecting seismic signals from within the Earth's subsurface over a selected time period using an array of seismic sensors positioned above a target in the Earth's subsurface. The seismic signals are generated by seismic events within the Earth's subsurface. The method further includes inducing a seismic event within the Earth's subsurface during at least a segment of the selected time period over which the seismic signals are detected. The method further includes cross-correlating signals detected by the seismic sensors to obtain a reflectivity series at each of the seismic sensors. The method may include using the reflectivity series at each of the seismic sensors to generate an image of the Earth's subsurface.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
The invention will now be described in detail with reference to a few examples, as illustrated in the accompanying drawings. In describing the examples, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to those skilled in the art that the invention may be practiced without some or all of such specific details. In other instances, well-known features and/or process steps have not been described in detail so as not to unnecessarily obscure the invention. In addition, like or identical reference numerals are used to identify common or similar elements.
In one example, the seismic sensors 12 may be arranged in a radially extending, spoke like pattern, with the center of the pattern disposed approximately about the surface position of the wellbore 22. Alternatively, if the geodetic position of the formations at which the fluid enters from the wellbore is different than the surface geodetic position of the wellbore 22, the sensor pattern may be centered about such geodetic position. Such sensor pattern is used in fracture monitoring services provided under the service mark FRACSTAR, which is a registered service mark of Microseismic, Inc., Houston, Tex., also the assignee of the present invention.
Referring to
The recorded seismic signals may be processed by certain procedures well known in the art of seismic data processing, including various forms of filtering, prior to interpretation, shown at 204. In some examples as explained above, the seismic sensors (12 in
Returning again to
An amplitude value for each time in the time series will be the degree of similarity of the cross-correlated sensor signal to the sensor signal in question.
In some examples, each sensor signal may be auto-correlated, that is, the signal record may be compared with itself at various values of time delay, just as for the cross-correlation.
The result of the cross-correlation, and the auto-correlation if performed, is a set of traces for each seismic sensor that correspond to seismic signals that would be recorded at such sensor if a seismic energy source were actuated at each one of the cross-correlated sensor locations.
The cross correlations made for each sensor may be processed according to well known techniques for controlled source seismic exploration, including for example, normal moveout correction, and summing or stacking to produce, for each such sensor, a band limited reflectivity series for the Earth's subsurface corresponding to the geodetic position of the sensor under investigation. The reflectivity series represents a record with respect to seismic travel time of reflection coefficients of each of what are inferred as subsurface acoustic impedance boundaries in the Earth's subsurface.
The method then includes using the reflectivity series to generate a two or three-dimensional (3D) image of the Earth's subsurface formation 208. Any suitable 3D seismic image software or tool known in the art may be used to generate the 3D image of the Earth's subsurface formation. Two non-limiting examples of such imaging software include those sold under the trademarks Ω-TIME and Ω-DEPTH, both of which are trademarks of WesternGeco LLC, Houston, Tex.
Seismic imaging techniques according to the various examples of the invention may provide images of the Earth's subsurface without the need to use controlled seismic energy sources such as vibrators or dynamite. By eliminating the need for controlled seismic energy sources, techniques according to the invention may present less environmental hazard than controlled source seismic techniques, and may provide access to seismic exploration where surface topographic conditions make controlled seismic exploration techniques impracticable.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.