1. Field of the Invention
The present invention relates generally to enhanced television systems, and relates more particularly to an apparatus and method for effectively implementing a wireless television system.
2. Description of the Background Art
Developing an effective method for implementing enhanced television systems is a significant consideration for contemporary television designers and manufacturers. In conventional television systems, a display device may be utilized to view program information received from a program source. The conventional display device is typically positioned in a stationary location because of restrictions imposed by various physical connections that electrically couple the display device to input devices, output devices, and operating power. Other considerations such as display size and display weight may also significantly restrict viewer mobility in traditional television systems.
Portable television displays may advantageously provide viewers with additional flexibility when choosing an appropriate viewing location. For example, in a home environment, a portable television may readily be relocated to view programming at various remote locations throughout the home. A user may thus flexibly view television programming, even while performing other tasks in locations that are remote from a stationary display device.
However, portable television systems typically possess certain detrimental operational characteristics that diminish their effectiveness for use in modern television systems. For example, in order to eliminate restrictive physical connections, portable televisions typically receive television signals that are propagated from a remote terrestrial television transmitter to an antenna that is integral with the portable television. Because of the size and positioning constraints associated with a portable antenna, such portable televisions typically exhibit relatively poor reception characteristics, and the subsequent display of the transmitted television signals is therefore often of inadequate quality.
Other factors and considerations are also relevant to effectively implementing an enhanced wireless television system. For example, the evolution of digital data network technology and wireless digital broadcasting techniques may provide additional flexibility and increased quality to portable television systems. However, current wireless data networks typically are not optimized for flexible transmission and reception of video information.
Furthermore, a significant proliferation in the number of potential program sources (both analog and digital) may benefit a system user by providing an abundance of program material for selective viewing. In particular, an economical wireless television system for flexible home use may enable television viewers to significantly improve their television-viewing experience by facilitating portability while simultaneously providing an increased number of program source selections.
However, because of the substantially increased system complexity, such an enhanced wireless television system may require additional resources for effectively managing the control and interaction of various system components and functionalities. Therefore, for all the foregoing reasons, developing an effective method for implementing enhanced television systems remains a significant consideration for designers and manufacturers of contemporary television systems.
In accordance with the present invention, an apparatus and method are disclosed for effectively implementing a wireless television system. In one embodiment of the present invention, initially, one or more program sources are provided to a wireless base station that preferably differentiates the various types of program sources depending on whether the program source includes any combination of digital A/V data, analog video, or analog audio information.
If the program source includes digital A/V data, then, the wireless base station preferably formats the digital A/V data into an appropriate format, and provides the formatted data to a subsystem processor in the wireless base station. The subsystem processor responsively processes the formatted data to generate processed data (for example, by transcoding).
Similarly, if the program source includes analog video, then, the wireless base station preferably formats the analog video into an appropriate format, and provides the formatted video to the subsystem processor. The subsystem processor then responsively processes the formatted video to generate processed video.
In addition, if the program source includes analog audio, then, the wireless base station preferably formats the analog audio into an appropriate format, and provides the formatted audio to the subsystem processor. The subsystem processor then responsively processes the formatted audio to generate processed audio.
Next, the subsystem processor preferably combines the processed audio, video, and data into a processed stream. A communications processor then receives the processed stream, and responsively performs a wireless network processing procedure to generate a transmitter-ready stream. The communications processor may also advantageously receive and process various types of information from a wide-area network (such as the Internet).
Finally, a transmitter device receives and modulates the transmitter-ready stream, and advantageously performs a wireless network transmission process to propagate a broadcast stream to a remote TV, a remote controller, an auxiliary base station, or any other compatible display receiver device, in accordance with the present invention.
In certain embodiments, the foregoing communications processor may also provide information from various sources to a local-area network for transmission to the remote TV from an auxiliary base station that may preferably be coupled to the local-area network. For example, the communications processor may advantageously receive information from a wide-area network through a wide-area network interface, and responsively provide the information from the wide-area network to the foregoing local-area network through a local-area network interface.
The remote TV (or any other compatible display receiver device) preferably receives the broadcast stream from the wireless base station. A RF subsystem in the remote TV then preferably performs a wireless network processing procedure to generate a baseband stream. The foregoing wireless network processing procedure may include various appropriate techniques, such as demodulation and down-conversion of the broadcast stream propagated from the wireless base station.
An A/V decoder then preferably receives and demultiplexes the baseband stream into separate components which may include separate data, video, and audio information. If the baseband stream includes data information, then, the A/V decoder preferably manipulates the data information into an appropriate format to thereby generate manipulated data. Similarly, if the baseband stream includes video information, then the A/V decoder preferably decompresses the video information to generate decompressed video. In addition, if the baseband stream includes audio information, then the A/V decoder preferably decompresses the audio information to generate decompressed audio. The A/V decoder may then preferably provide the decompressed audio to an amplifier and speakers which operate to aurally reproduce the decompressed audio.
Concurrently, a display controller preferably may access the manipulated data and the decompressed video, and responsively perform a graphical user interface (GUI) processing procedure to generate display data and display video for presentation on the remote TV. Finally, the display controller provides the display data and the display video to the remote TV for remote viewing by a user of the wireless television system.
Therefore, the present invention effectively implements a flexible wireless television system that utilizes various heterogeneous components to facilitate optimal system interoperability and functionality. The present invention thus effectively and efficiently implements an enhanced wireless television system.
The present invention relates to an improvement in television systems. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
The present invention may comprise an apparatus and method for effectively implementing a wireless television system, and may preferably include a communications processor and a transmitter device that may combine at least one of a local-area network interface, a wide-area network interface, and one or more television data interfaces for effectively performing a wireless network transmission process. A transmitted stream from the wireless television system may preferably be received via wireless network processing for viewing local-area network data, wide-area network data (such as Internet data), or television data by flexibly utilizing various electronic devices such as a notepad personal computer, a personal digital assistant (PDA), or a handheld TV remote control device.
Referring now to
In the
In alternate embodiments of the present invention, program sources 112 may readily be configured to include any other types of program sources or devices that are different from, or in addition to, those described in conjunction with the
The present invention also supports various types of supplemental data transmissions that may be implemented as a separate program source 112, or may alternately be incorporated into another program source 112. For example, relevant program guide information and/or video channel guide information may be provided as a program source 112, or may be incorporated into another program source 112. Such program guide information may be provided in any suitable manner, including from a television broadcast vertical-blanking interval (VBI) signal, from MPEG system data, or from the Internet through a wide-area network (WAN) connection.
In the
In accordance with the present invention, switcher 138 preferably also provides one or more program sources 112 to wireless base station 156 through path 154. In the
In accordance with the present invention, wireless base station 156 then advantageously processes the received program source(s) 112, and wirelessly transmits the processed program source(s) 112 as a broadcast stream to remote TV 158 for flexible remote viewing by a system user. The implementation and functionality of wireless base station 156 and remote TV 158 are further discussed below in conjunction with
Referring now to
In the
In alternate embodiments, remote TV 158 may readily be implemented in any other desired manner. For example, remote TV 158 may be implemented as a wireless non-portable television in order to perform various types of special viewing applications that may require a wireless display. The operation and functionality of remote TV 158 are further discussed below in conjunction with
Referring now to
In the
Remote controller screen 314 preferably includes display components that may be implemented using any appropriate and compatible display technology. Remote controller 310 may thus advantageously receive a broadcast stream from wireless base station 156 through either RF XMIT/RCVR 318 or IR XMIT/RCVR 316, and responsively display at least one selectable program source 112 on remote controller screen 314.
In one embodiment, remote controller screen 314 may thereby allow system users to preview various different selectable program sources 112 while simultaneously viewing an uninterrupted primary program source 112 on primary TV 152 or on remote TV 158. In the foregoing preview function, remote controller screen may receive a wireless transmission originating from a separate picture-in-picture (PIP) tuner in wireless television system 110. The preview function may therefore be utilized for functions like programming VCR 126 or previewing other channels without interrupting other concurrent program viewing activities. The operation and functionality of remote controller 310 are further discussed below in conjunction with
Referring now to
In the
In accordance with the present invention, RF repeater 414 may then receive and enhance a broadcast stream that is transmitted directly from wireless base station 156 using radio-frequency transmission techniques. Alternately, RF repeater 414 may receive and enhance program source transmissions and transport various types of control information provided over a hard-wired home network (wired local-area network (LAN) 416) that may be implemented using any suitable techniques and configurations.
In certain embodiments, wireless television system 110 may include multiple auxiliary base stations 410 that each operate on a different transmission subchannel. In accordance with the present invention, remote TV 158 or remote controller 310 may therefore advantageously search to locate a particular subchannel that provides the highest quality transmission signal, and then transparently switch to the corresponding auxiliary base station 410 for optimal wireless transmission.
In the
Referring now to
In the
In the
In accordance with the present invention, subsystem processor 518 preferably receives various information from program sources 112 that may be encoded using an extensive variety of formats and configurations. Subsystem processor 518 then preferably processes and manipulates the received program sources 112 to advantageously generate processed program information in a particular format that is compatible for downstream use by transmitter 524 and remote TV 158. For example, in an economical home-use installation, subsystem processor 518 may receive a high-frequency digital video bitstream, and responsively downconvert the video bitstream to a bit rate that is more appropriate for economical transmission techniques. Subsystem processor 518 may also perform various other functions, including image bit allocation based on a particular configuration of remote TV 158, programmable image resolution with filtered image-size scaling, and identifier-key detection for enabling access to premium programming.
In the case of analog video information, digitizer 516 converts the analog video on path 514 into digital video that subsystem processor 518 then receives via path 517. Subsystem processor 518 responsively performs various signal processing procedures on the received digital video, preferably including video compression 520. In one embodiment of the present invention, video compression 520 preferably includes various MPEG-2 techniques and processes. Following the foregoing video signal processing procedures, subsystem processor 518 preferably provides the processed video to transmitter 524 via path 522.
Processing of video may also include various forms of frame rate conversion in order to reduce the bit rate provided to transmitter 524. In a simple example of reducing the frame rate, a 60 field NTSC input video may be dropped down to 30 fields per second by dropping every other field. A more complex technique for reducing the frame rate may include de-interlacing the fields into frames either through processing the fields or by detection of film content and through the technique of “3:2 pull down” converting the fields back to the original 24 frames per second of the movie content. Most LCD displays are non-interlaced and de-interlacing prior to transmission may result in a more efficient system.
In the case of analog audio information, analog-to-digital converter (ADC) 530 converts analog audio on path 528 into digital audio that subsystem processor 518 then receives via path 532. Subsystem processor 518 responsively performs various signal processing procedures on the received digital audio, preferably including audio compression 534. In one embodiment of the present invention, audio compression 534 preferably includes various MPEG-2 techniques and processes. Following the foregoing audio signal processing procedures, subsystem processor 518 preferably provides the processed audio to transmitter 524 via path 522.
In the case of digital audio/video data received on path 536, subsystem processor 518 performs various signal processing procedures on the received digital audio/video bitstream, preferably including transcoding 538. In one embodiment of the present invention, transcoding 538 preferably converts the digital A/V data received on path 536 into processed data that includes a different and more appropriate bit rate, as discussed above. Digital A/V bus may follow a standard such as the IEEE 1394. Alternatively, the video may be in an analog format while the audio follows a digital standard such as S/PDIF (Sony/Philips Digital Interface) where the audio can either be in a compressed or non-compressed digital format. Compressed audio may include multi-channel audio such as rear channels or a subwoofer channel. In the case of multi-channel audio, the signal processing of 518 may perform processing to reduce the number of audio channels either through dropping of audio channels or through processing to produce the effect of multiple audio channels coded into a reduced number of audio channels. Following the foregoing signal processing procedures, subsystem processor 518 provides the processed data to transmitter 524 via path 522.
Therefore, subsystem processor 518 may advantageously receive one or more program sources 112 that are formatted in any appropriate manner, and responsively generate a processed stream that is formatted in any appropriate manner. For example, subsystem processor 518 may receive MPEG-2 variable bit rate video programming and responsively generate a constant bit rate stream that may be formatted as an MPEG-2 elementary, packetized elementary, program or transport stream. Similarly, subsystem processor 518 may receive high-definition television (HDTV) video programming and responsively generate a standard definition television stream.
In the
Referring now to
In the
In the
In addition, a tuner 626 may receive a coaxial television signal (Coax TV) on path 536 and responsively provide a selectable television source to subsystem processor 518 through either path 630 (for digital TV signals), or through path 628 (for analog TV signals). Subsystem processor 518 may also utilize universal serial bus (USB) 632 to communicate directly with various devices such as personal computer 114 (
In accordance with the present invention, subsystem processor 518 may also advantageously communicate with compatible components throughout wireless television system 110 using a control bus 634. In the
In the
In the
In the
In the
In accordance with the present invention, subsystem processor 518 may also utilize IR XMIT/RCVR 644 and RF XMIT/RCVR 640 to advantageously monitor all remotely-generated system control signals. Subsystem processor 518 may then responsively maintain corresponding system component status information in memory 646 to facilitate intelligent system control interaction in wireless television system 110. For example, a system user in a viewing location that is remote from program sources 112 may be unaware of the current status of a given program source, such as VCR 126. According to the present invention, subsystem processor 518 may therefore utilize the stored component status information to intelligently respond to a remote viewer request that is provided by wireless transmission from remote TV 158 or remote controller 310.
In the
Referring now to
In the
Input/output (I/O) controller 728 then preferably receives the baseband stream via path 726 and responsively provides the baseband stream via path 730 to audio/video (A/V) decoder 732. Under the control of central processing unit (CPU) 712, and in response to various software instructions stored in memory 716, A/V decoder then preferably demultiplexes and decodes the baseband stream to generate separate decoded video, audio, and data information.
Display controller 736 may then receive the decoded video and data via path 734, and temporarily store the decoded video and data into display memory 740 via path 738. At the appropriate time, display controller 736 may then retrieve the decoded video and data from display memory 740, and provide the decoded video and data via path 742 to remote TV screen 212 for display to a system user. Display controller 736 may also provide the decoded audio to an amplifier and speakers for aural reproduction via path 770.
In the
In accordance with the present invention, a system user may supply desired component control information to I/O controller 728 by using controls and lights 746 and path 744, or by using any other appropriate means. I/O controller may then wirelessly transmit the component control information to wireless base station 156 via path 726, RF subsystem 724, and path 722, or via path 756, IR subsystem 758, and path 760, as discussed above in conjunction with
In the
Referring now to
If program source 112 includes digital A/V data, then, in step 824, wireless base station 156 preferably formats the digital A/V data into an appropriate format, and provides the formatted data to subsystem processor 518 in wireless base station 156. In step 826, subsystem processor 518 responsively processes the formatted data to generate processed data (for example, by transcoding), and then the
Similarly, if program source 112 includes analog video, then, in step 814, wireless base station 156 formats the analog video into an appropriate format, and provides the formatted video to subsystem processor 518 in wireless base station 156. For example, ADC/Demod 612 may convert the analog video into an appropriate digital format. Then, in step 816, subsystem processor 518 responsively processes the formatted video to generate processed video, and the
In addition, if program source 112 includes analog audio, then, in step 820, wireless base station 156 formats the analog audio into an appropriate format, and provides the formatted audio to subsystem processor 518 in wireless base station 156. For example, ADC 530 may convert the analog audio into an appropriate digital format. In step 822, subsystem processor 518 responsively processes the formatted audio to generate processed audio, and then the
In step 818, subsystem processor 518 preferably combines the processed audio, video, and data into a processed stream. Then, in step 828, communications processor 636 receives the processed stream generated in foregoing step 818, and responsively performs a wireless network processing procedure to generate a transmitter-ready stream. Finally, in step 830, transmitter 524 receives and modulates the transmitter-ready stream, and advantageously performs a wireless network transmission process to propagate a broadcast stream to remote TV 158, remote controller 310, auxiliary base station 410, or any other compatible receiver device, in accordance with the present invention.
Referring now to
In the
In step 916, A/V decoder 732 preferably receives and demultiplexes the baseband stream into separate components which may include separate data, video, and audio information. If the baseband stream includes data information, then, in step 918, A/V decoder 732 preferably manipulates the data information into an appropriate format to generate manipulated data, and the
In addition, if the baseband stream includes audio information, then in step 926, A/V decoder 732 preferably decompresses the audio information to generate decompressed audio. In step 928, A/V decoder 732 may preferably provide the decompressed audio to an amplifier and speakers which operate to aurally reproduce the decompressed audio.
In step 922, display controller 736 preferably may access the manipulated data (step 918) and the decompressed video (step 920), and responsively perform a graphical user interface (GUI) processing procedure to generate display data and display video for presentation on remote TV 158. Finally, in step 924, display controller 736 provides the display data and the display video to remote TV screen 212 for viewing by a user of wireless television system 110.
The present invention therefore implements a flexible wireless television system that a user may effectively utilize in a wide variety of applications. For example, a video camera device may generate a wireless transmission to remote TV 158 for purposes such as surveillance and monitoring, or the transmission can be received by wireless base station 156 and the transmission stored on a connected storage device. Remote TV 158 may also generate a query to wireless television system 110 for purposes such as determining current programming of VCR 126. A user may likewise receive a telephone communication via remote TV 158 while simultaneously viewing a caller ID display, or may similarly utilize wireless television system to interact with an Internet browser program.
In addition, a viewer may flexibly utilize wireless television system 110 for displaying information from a home server (such as viewing a personal recipe collection while cooking), for displaying various user profiles (such as a particular viewer's favorite television channels), or for sequencing through images in a “picture frame” mode when remote TV 158 is not otherwise in use. Therefore, the present invention effectively implements a flexible wireless television system that utilizes various heterogeneous components to facilitate optimal system interoperability and functionality.
The invention has been explained above with reference to a preferred embodiment. Other embodiments will be apparent to those skilled in the art in light of this disclosure. For example, the present invention may readily be implemented using configurations other than those described in the preferred embodiment above. Additionally, the present invention may effectively be used in conjunction with systems other than the one described above as the preferred embodiment. Therefore, these and other variations upon the preferred embodiments are intended to be covered by the present invention, which is limited only by the appended claims.
This application is a continuation of, and claims priority in, U.S. patent application Ser. No. 09/318,904 entitled “Method For Effectively Implementing A Wireless Television System” that was filed on May 26, 1999 now U.S. Pat. No. 6,263,503. The foregoing related application is commonly assigned, and is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3416043 | Jorgensen | Dec 1968 | A |
4254303 | Takizawa | Mar 1981 | A |
5161021 | Tsai | Nov 1992 | A |
5237648 | Mills et al. | Aug 1993 | A |
5321846 | Yokota et al. | Jun 1994 | A |
5386493 | Degen et al. | Jan 1995 | A |
5434590 | Dinwiddie, Jr. et al. | Jul 1995 | A |
5493638 | Hooper et al. | Feb 1996 | A |
5602589 | Vishwanath et al. | Feb 1997 | A |
5661516 | Carles | Aug 1997 | A |
5666426 | Helms | Sep 1997 | A |
5682195 | Hendricks et al. | Oct 1997 | A |
5706290 | Shaw et al. | Jan 1998 | A |
5708961 | Hylton et al. | Jan 1998 | A |
5710605 | Nelson | Jan 1998 | A |
5722041 | Freadman | Feb 1998 | A |
5757416 | Birch et al. | May 1998 | A |
5774170 | Hite et al. | Jun 1998 | A |
5778077 | Davidson | Jul 1998 | A |
5794116 | Matsuda et al. | Aug 1998 | A |
5822537 | Katseff et al. | Oct 1998 | A |
5831664 | Wharton et al. | Nov 1998 | A |
5850482 | Meany et al. | Dec 1998 | A |
5852437 | Wugofski et al. | Dec 1998 | A |
5880721 | Yen | Mar 1999 | A |
5898679 | Brederveld et al. | Apr 1999 | A |
5909518 | Chui | Jun 1999 | A |
5911582 | Redford et al. | Jun 1999 | A |
5922072 | Hutchinson et al. | Jul 1999 | A |
5936968 | Lyons | Aug 1999 | A |
5968132 | Tokunaga | Oct 1999 | A |
5987501 | Hamilton et al. | Nov 1999 | A |
6002450 | Darbee et al. | Dec 1999 | A |
6008777 | Yiu | Dec 1999 | A |
6014694 | Aharoni et al. | Jan 2000 | A |
6020880 | Naimpally | Feb 2000 | A |
6031940 | Chui et al. | Feb 2000 | A |
6036601 | Heckel | Mar 2000 | A |
6040829 | Croy et al. | Mar 2000 | A |
6043837 | Driscoll, Jr. et al. | Mar 2000 | A |
6049671 | Slivka et al. | Apr 2000 | A |
6075906 | Fenwick et al. | Jun 2000 | A |
6088777 | Sorber | Jul 2000 | A |
6097441 | Allport | Aug 2000 | A |
6104334 | Allport | Aug 2000 | A |
6108041 | Faroudja et al. | Aug 2000 | A |
6115420 | Wang | Sep 2000 | A |
6117126 | Appelbaum et al. | Sep 2000 | A |
6141059 | Boyce et al. | Oct 2000 | A |
6141447 | Linzer et al. | Oct 2000 | A |
6160544 | Hayashi et al. | Dec 2000 | A |
6201536 | Hendricks et al. | Mar 2001 | B1 |
6212282 | Mershon | Apr 2001 | B1 |
6222885 | Chaddha et al. | Apr 2001 | B1 |
6223211 | Hamilton et al. | Apr 2001 | B1 |
6240459 | Roberts et al. | May 2001 | B1 |
6240531 | Spilo et al. | May 2001 | B1 |
6243596 | Kikinis | Jun 2001 | B1 |
6256019 | Allport | Jul 2001 | B1 |
6263503 | Margulis | Jul 2001 | B1 |
6279029 | Sampat et al. | Aug 2001 | B1 |
6282714 | Ghori et al. | Aug 2001 | B1 |
6286142 | Ehreth | Sep 2001 | B1 |
6310886 | Barton | Oct 2001 | B1 |
6340994 | Margulis et al. | Jan 2002 | B1 |
6353885 | Herzi et al. | Mar 2002 | B1 |
6356945 | Shaw et al. | Mar 2002 | B1 |
6357021 | Kitagawa et al. | Mar 2002 | B1 |
6389467 | Eyal | May 2002 | B1 |
6434113 | Gubbi | Aug 2002 | B1 |
6442067 | Chawla et al. | Aug 2002 | B1 |
6456340 | Margulis | Sep 2002 | B1 |
6466623 | Youn et al. | Oct 2002 | B1 |
6470378 | Tracton et al. | Oct 2002 | B1 |
6476826 | Plotkin et al. | Nov 2002 | B1 |
6487319 | Chai | Nov 2002 | B1 |
6493874 | Humpleman | Dec 2002 | B2 |
6493875 | Eames et al. | Dec 2002 | B1 |
6496122 | Sampsell | Dec 2002 | B2 |
6505169 | Bhagavath et al. | Jan 2003 | B1 |
6510177 | De Bonet et al. | Jan 2003 | B1 |
6529506 | Yamamoto et al. | Mar 2003 | B1 |
6553147 | Chai et al. | Apr 2003 | B2 |
6557031 | Mimura et al. | Apr 2003 | B1 |
6564004 | Kadono | May 2003 | B1 |
6567984 | Allport | May 2003 | B1 |
6584201 | Konstantinou et al. | Jun 2003 | B1 |
6584559 | Huh et al. | Jun 2003 | B1 |
6597375 | Yawitz | Jul 2003 | B1 |
6598159 | McAlister et al. | Jul 2003 | B1 |
6600838 | Chui | Jul 2003 | B2 |
6609253 | Swix et al. | Aug 2003 | B1 |
6611530 | Apostolopoulos | Aug 2003 | B1 |
6628716 | Tan et al. | Sep 2003 | B1 |
6642939 | Vallone et al. | Nov 2003 | B1 |
6647015 | Malkemes et al. | Nov 2003 | B2 |
6658019 | Chen et al. | Dec 2003 | B1 |
6665751 | Chen et al. | Dec 2003 | B1 |
6665813 | Forsman et al. | Dec 2003 | B1 |
6697356 | Kretschmer et al. | Feb 2004 | B1 |
6701380 | Schneider et al. | Mar 2004 | B2 |
6704678 | Minke et al. | Mar 2004 | B2 |
6708231 | Kitagawa | Mar 2004 | B1 |
6718551 | Swix et al. | Apr 2004 | B1 |
6754266 | Bahl et al. | Jun 2004 | B2 |
6754439 | Hensley et al. | Jun 2004 | B1 |
6757851 | Park et al. | Jun 2004 | B1 |
6757906 | Look et al. | Jun 2004 | B1 |
6766376 | Price | Jul 2004 | B2 |
6768775 | Wen et al. | Jul 2004 | B1 |
6771828 | Malvar | Aug 2004 | B1 |
6774912 | Ahmed et al. | Aug 2004 | B1 |
6781601 | Cheung | Aug 2004 | B2 |
6785700 | Masud et al. | Aug 2004 | B2 |
6795638 | Skelley, Jr. | Sep 2004 | B1 |
6798838 | Ngo | Sep 2004 | B1 |
6806909 | Radha et al. | Oct 2004 | B1 |
6807308 | Chui et al. | Oct 2004 | B2 |
6816194 | Zhang et al. | Nov 2004 | B2 |
6816858 | Coden et al. | Nov 2004 | B1 |
6826242 | Ojard et al. | Nov 2004 | B2 |
6834123 | Acharya et al. | Dec 2004 | B2 |
6839079 | Barlow et al. | Jan 2005 | B2 |
6847468 | Ferriere | Jan 2005 | B2 |
6850571 | Tardif | Feb 2005 | B2 |
6850649 | Malvar | Feb 2005 | B1 |
6868083 | Apostolopoulos et al. | Mar 2005 | B2 |
6889385 | Rakib et al. | May 2005 | B1 |
6892359 | Nason et al. | May 2005 | B1 |
6898583 | Rising, III | May 2005 | B1 |
6907602 | Tsai et al. | Jun 2005 | B2 |
6927685 | Wathen | Aug 2005 | B2 |
6930661 | Uchida et al. | Aug 2005 | B2 |
6941575 | Allen | Sep 2005 | B2 |
6944880 | Allen | Sep 2005 | B1 |
6952595 | Ikedo et al. | Oct 2005 | B2 |
6981050 | Tobias et al. | Dec 2005 | B1 |
7016337 | Wu et al. | Mar 2006 | B1 |
7020892 | Levesque et al. | Mar 2006 | B2 |
7032000 | Tripp | Apr 2006 | B2 |
7047305 | Brooks et al. | May 2006 | B1 |
7047554 | Lortz | May 2006 | B1 |
7110558 | Elliott | Sep 2006 | B1 |
7124366 | Foreman et al. | Oct 2006 | B2 |
7151575 | Landry et al. | Dec 2006 | B1 |
7155734 | Shimomura et al. | Dec 2006 | B1 |
7184433 | Oz | Feb 2007 | B1 |
7224323 | Uchida et al. | May 2007 | B2 |
7239800 | Bilbrey | Jul 2007 | B2 |
7344084 | DaCosta | Mar 2008 | B2 |
7398540 | Perlman | Jul 2008 | B1 |
7430686 | Wang et al. | Sep 2008 | B1 |
7464396 | Hejna, Jr. | Dec 2008 | B2 |
7502733 | Andrsen et al. | Mar 2009 | B2 |
7505480 | Zhang et al. | Mar 2009 | B1 |
20020004839 | Wine et al. | Jan 2002 | A1 |
20020010925 | Kikinis | Jan 2002 | A1 |
20020031333 | Mano et al. | Mar 2002 | A1 |
20020046404 | Mizutani | Apr 2002 | A1 |
20020053053 | Nagai et al. | May 2002 | A1 |
20020080753 | Lee | Jun 2002 | A1 |
20020090029 | Kim | Jul 2002 | A1 |
20020105529 | Bowser et al. | Aug 2002 | A1 |
20020122137 | Chen et al. | Sep 2002 | A1 |
20020131497 | Jang | Sep 2002 | A1 |
20020138843 | Samaan et al. | Sep 2002 | A1 |
20020143973 | Price | Oct 2002 | A1 |
20020147634 | Jacoby et al. | Oct 2002 | A1 |
20020147687 | Breiter et al. | Oct 2002 | A1 |
20020167458 | Baudisch et al. | Nov 2002 | A1 |
20020188818 | Nimura et al. | Dec 2002 | A1 |
20030028873 | Lemmons | Feb 2003 | A1 |
20030065915 | Yu et al. | Apr 2003 | A1 |
20030093260 | Dagtas et al. | May 2003 | A1 |
20030095791 | Barton et al. | May 2003 | A1 |
20030115167 | Sharif et al. | Jun 2003 | A1 |
20030159143 | Chan | Aug 2003 | A1 |
20030187657 | Erhart et al. | Oct 2003 | A1 |
20030192054 | Birks et al. | Oct 2003 | A1 |
20030231621 | Gubbi et al. | Dec 2003 | A1 |
20040003406 | Billmaier | Jan 2004 | A1 |
20040068334 | Tsai et al. | Apr 2004 | A1 |
20040100486 | Flamini et al. | May 2004 | A1 |
20040103340 | Sundareson et al. | May 2004 | A1 |
20040139047 | Rechsteiner et al. | Jul 2004 | A1 |
20040162845 | Kim et al. | Aug 2004 | A1 |
20040162903 | Oh | Aug 2004 | A1 |
20040172410 | Shimojima et al. | Sep 2004 | A1 |
20040205830 | Kaneko | Oct 2004 | A1 |
20040212640 | Mann et al. | Oct 2004 | A1 |
20040216173 | Horoszowski et al. | Oct 2004 | A1 |
20040236844 | Kocherlakota | Nov 2004 | A1 |
20040255249 | Chang et al. | Dec 2004 | A1 |
20050021398 | McCleskey et al. | Jan 2005 | A1 |
20050027821 | Alexander et al. | Feb 2005 | A1 |
20050038981 | Connor et al. | Feb 2005 | A1 |
20050044058 | Matthews et al. | Feb 2005 | A1 |
20050053356 | Mate et al. | Mar 2005 | A1 |
20050055595 | Frazer et al. | Mar 2005 | A1 |
20050097542 | Lee | May 2005 | A1 |
20050114852 | Chen et al. | May 2005 | A1 |
20050132351 | Randall et al. | Jun 2005 | A1 |
20050138560 | Lee et al. | Jun 2005 | A1 |
20050198584 | Matthews et al. | Sep 2005 | A1 |
20050204046 | Watanabe | Sep 2005 | A1 |
20050216851 | Hull et al. | Sep 2005 | A1 |
20050227621 | Katoh | Oct 2005 | A1 |
20050229118 | Chiu et al. | Oct 2005 | A1 |
20050246369 | Oreizy et al. | Nov 2005 | A1 |
20050251833 | Schedivy | Nov 2005 | A1 |
20050283791 | McCarthy et al. | Dec 2005 | A1 |
20050288999 | Lerner et al. | Dec 2005 | A1 |
20060011371 | Fahey | Jan 2006 | A1 |
20060031381 | Van Luijt et al. | Feb 2006 | A1 |
20060051055 | Ohkawa | Mar 2006 | A1 |
20060095401 | Krikorian et al. | May 2006 | A1 |
20060095471 | Krikorian et al. | May 2006 | A1 |
20060095472 | Krikorian et al. | May 2006 | A1 |
20060095942 | Van Beek | May 2006 | A1 |
20060095943 | Demircin et al. | May 2006 | A1 |
20060117371 | Margulis | Jun 2006 | A1 |
20060146174 | Hagino | Jul 2006 | A1 |
20060280157 | Karaoguz et al. | Dec 2006 | A1 |
20070003224 | Krikorian et al. | Jan 2007 | A1 |
20070005783 | Saint-Hillaire et al. | Jan 2007 | A1 |
20070022328 | Tarra et al. | Jan 2007 | A1 |
20070074115 | Patten et al. | Mar 2007 | A1 |
20070076604 | Litwack | Apr 2007 | A1 |
20070168543 | Krikorian et al. | Jul 2007 | A1 |
20070180485 | Dua | Aug 2007 | A1 |
20070198532 | Krikorian et al. | Aug 2007 | A1 |
20070234213 | Krikorian et al. | Oct 2007 | A1 |
20070286596 | Lonn | Dec 2007 | A1 |
20080019276 | Takatsuji et al. | Jan 2008 | A1 |
20080059533 | Krikorian | Mar 2008 | A1 |
20080134267 | Moghe et al. | Jun 2008 | A1 |
20080195744 | Bowra et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
1464685 | Dec 2003 | CN |
4407319 | Sep 1994 | DE |
0838945 | Apr 1998 | EP |
1077407 | Feb 2001 | EP |
1443766 | Aug 2004 | EP |
1691550 | Aug 2006 | EP |
1830558 | Sep 2007 | EP |
19990082855 | Nov 1999 | KR |
20010211410 | Aug 2001 | KR |
0133839 | May 2001 | WO |
0147248 | Jun 2001 | WO |
0193161 | Dec 2001 | WO |
03026232 | Mar 2003 | WO |
03052552 | Jun 2003 | WO |
03098897 | Nov 2003 | WO |
2004032511 | Apr 2004 | WO |
2005050898 | Jun 2005 | WO |
20060074110 | Jul 2006 | WO |
2007141555 | Dec 2007 | WO |
2007149466 | Dec 2007 | WO |
2008024723 | Feb 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20010021998 A1 | Sep 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09318904 | May 1999 | US |
Child | 09809868 | US |