Method for implementing TopN measurements in operations support systems

Abstract
In an OSS, storing a plurality, typically less than all, of name-value pairs from a sample space and calculating a “representative” value based on values in the entire sample space. Optionally, a “remainder” value can be generated based on name-value pairs in the sample space that were not stored as part of the plurality of name-value pairs. Displays may be generated based on the top “M” name-value pairs, with “M” typically being set by the user at some number less than “M.”
Description
BACKGROUND OF THE INVENTION

The term Operations Support System (OSS) generally refers to a system (or systems) that performs management, inventory, engineering, planning, and repair functions for communications service providers and their networks. Originally, OSS's were mainframe-based, stand-alone systems designed to support telephone company staff members in their daily jobs by automating manual processes, making operation of the network more error-free and efficient. Today's OSS's manage an increasingly complex set of products and services in a dynamic, competitive marketplace helping service providers maximize their return on investment (ROI) in one of their key assets—information. The ultimate goal of OSS's is to enable service providers to reduce costs, provide superior customer service, and accelerate their time to market for new products and services.


OSS's, such as the AGILENT QoS Manager, model the topography of the system under test and collect a variety of data describing the state of and activity on the system under test. For example, data can be gathered from individual applications, servers, network links and networking equipment. In general, the data comprises a stream of scalar values. OSS's receive and store the streams of values. The values are used to produce graphics describing the operation of the system under test. Such graphics may include graphs and charts, from which a trained user may assess end-to-end service performance. For example, displays may be formulated that provide an indication of whether the service provider is adhering to service level agreements with subscribers.


One type of display that has gained in popularity is TopN. TopN refers to a selected number “M” (n typically being a small value such as 5 or 10) of measurements selected from a sample space, wherein each selected measurement is in the top or bottom “M” of ordered measurements in the sample space. The sample space generally comprises all of the measurements taken over a predetermined period of time One example of a TopN measurement is the Top 10 response times for a particular web server. In this case the Top 10 responses are typically the 10 slowest responses, however it may represent the 10 quickest responses.


Current use of TopN measurements typically consists of the static presentation of the individual measurements within the TopN set of measurements. Because of the nature of the measurements, TopN measurements are not subject to the same analysis methods as other measurements, including such traditional OSS strengths as baselining and thresholding. One reason is that existing OSSs were programmed to process one scalar value at a time and are not adept at processing a chunk of measurements as presented by a TopN measurement.


Accordingly, the present inventors have recognized a need for new methods for handling TopN measurements that facilitates additional uses for TopN measurements within the framework of OSSs.




BRIEF DESCRIPTION OF THE DRAWINGS

An understanding of some embodiments the present invention can be gained from the following detailed description, taken in conjunction with the accompanying drawings of which:



FIG. 1 is a block diagram of an OSS system.



FIG. 2 is a flow chart of a method in accordance with an embodiment of the present invention.



FIG. 3 is a flow chart of a method in accordance with an embodiment of the present invention.



FIG. 4 is a representation of a screen displaying a graph in accordance with an embodiment of the present invention.



FIG. 5 is a representation of a screen displaying a graph in accordance with an embodiment of the present invention.



FIG. 6 is a representation of a screen displaying a graph in accordance with an embodiment of the present invention.



FIG. 7 is a representation of a screen displaying a graph in accordance with an embodiment of the present invention.




DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present invention, some of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. The detailed description which follows presents methods that may be embodied by routines and symbolic representations of operations of data bits within a computer readable medium, associated processors, general purpose personal computers and the like. These descriptions and representations are the means used by those skilled in the art effectively convey the substance of their work to others skilled in the art.


A method is here, and generally, conceived to be a sequence of steps or actions leading to a desired result, and as such, encompasses such terms of art as “routine,” “program,” “objects,” “functions,” “subroutines,” and “procedures.” The methods recited herein may operate on a general purpose computer or other network device selectively activated or reconfigured by a routine stored in the computer and interface with the necessary signal processing capabilities. More to the point, the methods presented herein are not inherently related to any particular device; rather, various devices may be used to implement the claimed methods. Machines useful for implementation of the described embodiments include those manufactured by such companies as AGILENT TECHNOLOGIES, INC. and HEWLETT PACKARD, as well as other manufacturers of computer and network equipment.


With respect to the software described herein, those of ordinary skill in the art will recognize that there exist a variety of platforms and languages for creating software for performing the methods outlined herein. Embodiments of the present invention can be implemented using any of a number of varieties of JAVA, however, those of ordinary skill in the art also recognize that the choice of the exact platform and language is often dictated by the specifics of the actual system constructed, such that what may work for one type of system may not be efficient on another system. It should also be understood that the methods described herein are not limited to being executed as software on a microprocessor, but can also be implemented in other types of processors. For example, the methods could be implemented with HDL (Hardware Design Language) in an ASIC (application specific integrated circuits).


In at least one embodiment of the present invention, a TopN data structure is formed by: selecting a number “M” of ‘name-value’ pairs from the total sample space; calculating a remainder value; calculating a representative value; and creating a data structure, such as an object, encapsulating the “M” name-value pairs (including the “M” name-value pairs), the remainder value, and the representative value.



FIG. 1 is a block diagram of an OSS system 100 upon which described embodiments of the present invention may be practiced. More specifically, the OSS system 100 is based upon the commercially available AGILENT QOS MANAGER OSS 5.5.0 (referred to hereinafter as the AGILENT system). General operation of the AGILENT system is presented in the AGILENT OSS QOS MANAGER 5.5.0 CONCEPTS GUIDE (part number 5188-3724, published July 2004) incorporated herein by reference. It is to be recognized that the OSS system 100 is but one example of an OSS upon which the present invention may be implemented. Further, while the following description will adopt the nomenclature of the AGILENT system, this in no way is intended to limit the present invention to the AGILENT system, rather the present invention is system independent.


The core of the OSS 100 is one or more diagnostic measurement servers (DMS) 102. The primary function of the DMS 102 is to manage and analyze data collected by agents 104n. Some of the typical functions of the DMS 102, include: storing and maintaining all measurement data; calculating baseline and thresholds; determining the health of elements of the system under test; implementing actions when a threshold is exceeded or a health state changes; and configuring agents.


The agents 104n are responsible for running tests, collecting measurements and forwarding measurement data to the DMS 102. Typically, at least one agent 104n is installed on the DMS 102. Other agents 104n may be installed on elements of the system under test, such as an FTP server 106, and SMTP server 108, and a HTML server 110. Agents 104n run independently from the DMS 102, in other words the availability of the DMS 102 does not affect the operation of the Agents 104n. Agents 104n are configured to interact with the elements they are to measure, for example agent 104b will use simple mail transfer protocol to communicate with SMTP server 108.


In accordance with at least one embodiment of the present invention, agents 104n are configured to generate measurements that comprise a collection of name-value pairs collected during a measurement interval. The name is typically an arbitrary string that provides some information regarding the data, such as a description or time and/or location the data was obtained. The value is typically a scalar value. For example, the value may comprise an elapsed time or a number quantifying an amount that some activity has occurred (e.g. handshakes, failed connections, etc . . . ). In one embodiment, the collection of name-value pairs is encapsulated in an object, however those of ordinary skill in the art will recognize that other data structures may be utilized.


The DMS 102 utilizes the service model 114 to identify elements of the system under test. The service model 114 integrates elements of the system under test into a hierarchical tree structure that permits the visualization of elements and their interdependencies. The service model is more fully explained in U.S. Pat. No. 6,336,138, entitled Template-Driven Approach For Generating Models of Network Services, issued Jan. 1, 2002 and incorporated herein by reference. The DMS 102 stores information, including name-value pairs, in at least one database, such as the database 112. The database could, for example, comprise an ORACLE database.


Graphical user interfaces 116n interact with the DMS 102 to provide a user with displays that facilitate interaction with the DMS 102 and agents 104n. Functions of the user interface include building and managing the service model 114; defining thresholds; defining event triggers; viewing events, and viewing graphs, reports, and service level compliance agreements.



FIG. 2 is a flow chart of a method in accordance with at least one embodiment of the present invention. More specifically, the embodiment shown in FIG. 2 is a method for forming a data structure containing a collection of name-value pairs. While other data structures may be utilized, the following discussion will adopt nomenclature associated with objects. The method shown in FIG. 2 produces an object, termed herein as a TopN object, containing a data set representative of the entire sample space. The term TopN generally refers to the concept that when a display is created only a user selected “N” (wherein “N”≦“M”) name-value pairs will be individually shown. The data set generally comprises “M” name-value pairs, a representative value and a remainder value.


Table 1 illustrates several TopN measurements that may be utilized in accordance with embodiments of the present invention.

TABLE 1ServiceExample TopN MeasurementsWeb ServiceTotal Http Response TimeTime ServiceTotal Ntp Response TimeNews ServiceTotal Nntp Response TimeEmail ServiceTotal Send Response TimeEmail ServiceTotal Receive Response TimeEmail ServiceMax Round TripTimeNetwork ServicesSA-Agent- Icmp Echo Response TimeNetwork ServicesSA-Agent- Udp Echo Response TimeNetwork ServicesSA-Agent- Tcp Connect TimeNetwork ServicesSA-Agent- Dns Response TimeNetwork ServicesSA-Agent- Dhcp Response TimeNetwork ServicesSA-Agent- Total Http Response TimeNetwork ServicesSA-Agent- Total Ftp Response TimeNetwork ServicesSA-Agent- Src-to-Dest Absolute JitterNetwork ServicesSA-Agent- Dest-to-Src Absolute JitterNetwork ServicesIcmp- Avg. DelayNetwork ServicesThruput- Packet LossNaming ServiceDns Cache Lookup TimeNaming ServiceDns Uncached Lookup TimeDatabase ServiceTotal DB Response TimeFile Transfer ServiceTotal Ftp Response TimeFile Transfer ServiceFtp Put RateFile Transfer ServiceFtp Get RateSecurity serviceRadius Authentication Time


The method starts in step 200. In step 202, a test to be conducted by an agent 104n is defined. Typically, a user defines the test using a GUI 116n. A test definition generally comprises indications of: 1) what to sample; 2) how often to sample; 3) an identification of the number of name value-pairs (“M”) to be stored with the data structure; and 4) an algorithm to select a representative value and a remainder value.


“What to sample,” also termed the “source,” generally comprises some service, or element(s) contributing to the service, mapped in the service model 114. However, the source could also be databases, such as the database 112, that contain data or information regarding the system under test. It is also possible that the source is another process that mines for information. For example a process could be designed to monitor a variety of systems for error conditions and summarize the occurrences of enumerated errors for each user.


“How often to sample” may include a frequency, termed the “measurement frequency,” for example 5 minutes. In this case the test would sample data from the source at five-minute intervals. Generally, a TopN object would be formed for each data sample interval.


In accordance with at least one embodiment of the present invention “M” name-value pairs are selected from the total sample space and stored in the TopN object. The “M” name-value pairs are typically selected to be the “top” name-value pairs. The determination of the top “M” name-value pairs may be done in real time or off-line using a stored version of the sample space. Because of the volume of data for many name-value pairs, real time may be the only option. The term ‘top “M” name-value pairs’ can take on any definition required, but generally refers to the name-value pairs in which the value is among the Mth greatest or least magnitudes of the sample space. By only storing “M” name-value pairs, storage space may be dramatically reduced providing the option of maintaining the TopN objects for periods of months or even years.


The representative value is a value representative of the values in the entire sample space. While the selection of a suitable algorithm may be automated, it may prove preferable to allow the end user to define the process for determining the representative value for each object. For example, in some situations an average of the values in the TopN set may prove to be a preferable representative value, while in other situations the maximum or minimum value in the TopN set may prove preferable. In yet other situations, other methods may prove beneficial, such as the median or standard deviation of the values in the total sample space. The calculation of a representative value provides a number of benefits, including the ability to process TopN objects using any function available to other measurement types, such as thresholding, generation of baselines, aggregation and intervalization.


The remainder value is a single numeric value representing the samples in the total sample space that that are not stored in the group of “M” name-value pairs. The remainder value may, but not necessarily, be calculated using the same method that is used to calculate the representative value. The remainder value provides a sense of scale to the TopN name-value pairs and the representative value.


Next in step 204, the appropriate agent(s) 104n are sent the test definitions. In step 206, the agents collect or otherwise access the total sample space and perform the test. In general, a single TopN object is produced for each measurement frequency. However, depending on the nature of the test, it is possible to produce a single object for the entire test or even some multiple of intervals. It is to be noted that even simple tests may produce an object containing several thousand name-value pairs for each measurement frequency. Next in step 208, the TopN object is time stamped. Thereafter in step 210, a representative value for the entire test space is calculated in accordance with a method selected in step 204. Next in step 212, a remainder value is calculated in accordance with a method selected in step 204.


In step 214, the top “M” name-value pairs are stored in the TopN object. Next in step 216, the TopN object is transmitted to the DMS. In step 218, a determination is made as to whether the method has been stopped by the user. If the method has not been stopped a return is made to step 206. Once the test is stopped, the method ends in step 220.


Table 2 is a representation of possible contents of a TopN object.

TABLE 2Representative Value12Remainder Value2NameValueLogin Errors - Joe12Login Errors - Sue5Sys Errors - Sally2I/O Errors - Bill1MethodsGet Time StampGet Representative ValueGet Remainder ValueGet Name-Value pairsGet Ordered Name-Value PairsGet Other ValueIntervalize


The TopN object shown in Table 2 starts with the representative value and the remainder value. It is to be noted that while the remainder should be calculated during the formation of the TopN object, depending on the selected method, the representative value need not be calculated and need not even be stored with the TopN object, so long as the number of name-value pairs is known (can be stored as part of the TopN object). Following the representative and remainder values is the “M” name value pairs. As noted the name can be any arbitrary text string while the value is typically a scalar value. Following is a set of methods provided by the TopN object.


Table 3 contains a segment of self-documented JAVA code describing the interface to the methods set forth in Table 2.

TABLE 3public interface FhTopN {/** * * @return timestamp in seconds since the epoch */public abstract int getTimestamp( );/** * * @return representitive value of this topn object */public abstract float getRepValue( );/** * * @return Map accessed by String component_name to retrieve * Float value. For aggregate TopN measurements, the component_name is the * fullname string of the source TopN measurement. */public abstract Map getComponents( );/** * Return the set of components in the order that they should be displayed * @param algorithm Intervalization algorithm. This should be the * algorithm that the topn object was intervalized with which is contained * in the interval wrapper, FhTopNInterval getAlgorithm( ). * @return An ArrayList where each element is an Object[2] where * Object[0] is a String name, and Object[1] is a Float value. */public abstract List getOrderedComponents(int algorithm);/** * * @return the remainder value. */public abstract float getRemainder( );/** * @param index Where to start calculating other value. * @param algorithm Intervalization algorithm. This should be the * algorithm that the topn object was intervalized with which is contained * in the interval wrapper, FhTopNInterval getAlgorithm( ). * @return A value that is calculated from all components from * the getOrderedComponents ArrayList that start at index. This value * can will include the remainder. */public abstract float getOtherValue(int index, int algorithm);/** * @param exclude_names List of names for components that are not to be * included in the other value calculation. * @param algorithm Intervalization algorithm. This should be the * algorithm that the topn object was intervalized with which is contained * in the interval wrapper, FhTopNInterval getAlgorithm( ). * @return A value this is calculated from all components from the * getOrdereComponents ArrayList that is not included in the exclude_names * list. This value will also include the remainder. */public abstract float getOtherValue(List exclude_names, intalgorithm);/** * Create an intervalized array of TopN objects. * @param topn Source array of objects in timestamp order to intervalize. * @param start Beginning of requested historical timespan in seconds since * the epoch inclusive * @param end End of requested historical timespan in seconds since the * epoch exclusive * @param size Size of requested intervals in seconds * @param algorithm Algorithm to use. These are suggestions and may not * be applicable to all topn objects. * @return array of TopNInterval objects in timestamp order intervalized to size */public abstract FhTopNInterval[] intervalize(FhTopNInterval[]topn, int start, int end, int size, int algorithm);public static final int DEFAULT_INTERVALIZATION_ALG = 0;public static final int AVG_INTERVALIZATION_ALG = 1;public static final int MIN_INTERVALIZATION_ALG = 2;public static final int MAX_INTERVALIZATION_ALG = 3;public static final int SUM_INTERVALIZATION_ALG = 4;/** * @return The localized label for remainder in topn graphs. */public abstract String getRemainderLabel( );}/** * * @return this topn object stringified for use in public exporting and * logging */public abstract String toString( );



FIG. 3 is a flow chart of a method in accordance with an embodiment of the present invention. More specifically FIG. 3 illustrates a method that may be utilized by a DMS (such as the DMS 102) to process TopN Objects received from agent(s) 104n. One benefit of embodiments of the present invention is the limited amount of code changes necessary to existing DMSs and agents to allow them to handle TopN objects. By utilizing the representative value associated with the TopN object as scalar value, existing processes such as graphing, thresholding and baselining may be performed on TopN objects without significant modification of existing processes.


The method starts in step 300. In step 302, the DMS receives a TopN object from an agent. Next in step 304, the DMS updates baselines defined for the test that produced TopN object. The baseline may be updated using representative value, permitting the use of existing baselining methods. The DMS may also push an update to any GUI that currently has a display associated with the baseline.


Next in step 306, a determination is made as to whether the representative value has exceeded a preset threshold. If a threshold has been exceeded, the method proceeds to step 308, otherwise the method proceeds to step 312. In step 308 an event is triggered. Next, the health state of the appropriate elements in the service model is updated in step 310. The DMS may also push an update to any GUI that currently has a display associated with the health state. Thereafter, the method goes to step 312. In step 312, the TopN object is sent to storage, such as the database 112. The method then ends in step 314.


One benefit of certain embodiments of the present invention is the formation of values representative of the data space summarized by the TopN object, such as the representative value and the remainder. A third value that may prove useful is the “other” value. As used herein the “other” value refers to a value representative of values in the sample space but not included in the displayed values (usually the top “N”). Table 4 provides a summary of the relationship among the various values discussed herein.

TABLE 4SAMPLE SPACE(Used to Calculate the Representative Value)“M”Remainder(# of stored name-value pairs)(representative of values insample space outside of “M”)“N”Other(user selected name-value(representative of values in the samplepairs to individuallyspace other than those in the “M” pairs)display)


The calculation of representative value, remainder value, and other value facilitates the use of existing OSS functionality to analyze and react to TopN objects. In many cases, representative values are simply passed to existing routines for processing as if they were otherwise normal measurements. The other value may be display in association with the top “M” name-value pairs to provide a sense of scale. In many situations, even where the sample space includes thousands of name-value pairs, a small number of name-value pairs (for example 3 or 5) will have a value significantly outside the remaining values. By displaying a representation of the other value, users can discern whether they have selected an appropriate value for “N,” i.e. that they are viewing those name-value pairs most deserving of consideration.


Once a TopN object has been formed, additional operations such as aggregation and intervalization may be undertaken.


Aggregation is the creation a single TopN measurement object representing a series of TopN measurement objects. In general this involves populating the aggregate object with name-value pairs with the object names and representative value from each of the objects being aggregated. The representative and remainder values would be calculated based on a selected algorithm. For example, TABLE 5 represents four objects being aggregated and TABLE 6 represents the aggregated object wherein the representative value is calculated by selecting the maximum value from the name-value pairs.

TABLE 5Object1Representative0.7Bad Cheese3Bad Bagel2Bad Coffee2Remainder2Object2Representative0.6Bad Tea2Bad Bagel1Remainder2Object 3Representative0.5Bad Donuts7Bad Tea3Remainder10Object 4Representative0.75Bad Cheese9Bad Bagels4Bad Scones2Remainder5









TABLE 6








Aggregate Object


















Representative value
0.75



Object4
0.75



Object1
0.7



Object2
0.6



Object3
0.5



Remainder
(None)










Intervalization is the creation of a single TopN measurement object from a set of TopN objects. However, in intervalization, the name-value pairs are preserved and combined using the TopN algorithm. This facilitates the displaying of data using different measurement intervals, for example taking 3 five minute TopN objects and creating a single 15 minute TopN object. TABLES 7 and 8 illustrate intervalization. In this case Object1 and Object2 represents 10 samples while Object3 represents 20 samples. The objects are designed to capture the error rate, e.g. the number of bad items in the sample space. The representative values can be thought of as an error rate. Using object 1 as an example, the representative value is calculated by dividing 7 (the total number of bad items (errors)) by 10 (the total sample space). The representative value of the new object is calculated by averaging the representative values of the individual objects weighting based on the number of samples in each object.

TABLE 7Object1Representative Value0.7Bad Cheese3Bad Bagels2Bad Coffee2Remainder0Object2Representative Value0.9Bad Tea5Bad Bagels4Remainder0Object3Representative Value0.6Bad Donuts7Bad Tea3Bad Scones2Remainder0









TABLE 8








Intervalized Object


















Representative Value
0.7



Bad Tea
8



Bad Donuts
7



Bad Bagels
6



Bad Cheese
3



Bad Coffee
2



Bad Scones
2



Remainder
(none)










Once TopN objects have been formed (and possible aggregated and intervalized), displays may be created to provide the user with useful information based on the name-value pairs and data contained in the objects. FIGS. 4 through 7 contain example of displays that may be presented using TopN data formed in accordance with the method shown in FIG. 2. FIGS. 4 through 8 were generated using AGILENT'S QOS MANAGER, however those of ordinary skill in the art will recognize the applicability of embodiments of the present invention to other measurement systems, including many if not all competing OSSs.



FIG. 4 is a representation of a screen 400 displaying a graph 406 in accordance with an embodiment of the present invention. In FIG. 4, the user has selected a TopN Aggregate measurement node 404 in the Services View 402 that has resulted in a graph 406 of the name-value pairs of a TopN measurement object. The graph 406 is one of a variety of possible graph types suitable for the display of TopN data. More specifically, the graph 406 is a histogram graph, of ‘name-value’ pairs stored in the TopN Measurement object. The user may select the number (i.e. the “N”) of pairs to be displayed. Bars 408a through 408i provide the total response time for Http servers exhibiting the top response times (in this case translating into the worst performance). Bar 410 corresponds to an “other” value that represents the response times in the total sample space but not shown individually in the display. The other value may be calculated based on the same algorithm as the representative value. In FIG. 4, the other value represents the sum of the response times in the total sample space but not shown individually in the display.



FIG. 5 is a representation of a screen 500 displaying a graph 506 in accordance with an embodiment of the present invention. In FIG. 5, the user has selected a TopN measurement node 504 in the Services View 502 that has resulted in a graph 506 of multiple TopN measurement objects. Each bar 508n represents the ‘name-value’ pairs in a single TopN measurement object. The graph 506 is a time series graph, of the ‘name-value’ pairs displayed as stacked bar for each time point in the graph. To reduce clutter, the selection method may be employed to limit the number of name-value pairs shown across the graph. In this case, the user has requested a selection method that selects the top two (e.g. N=2) servers (e.g. the two servers exhibiting the worst response) from the last time interval. For each of the preceding intervals, the values corresponding to the two identified servers (as described by the “name” of the name-value pair) are selected for display—irregardless of whether they are in the top “M” for that interval. In this case the display interval for the name-value pairs was five minutes, giving 13 bars total.


The selection method to choose which name-value pairs to display from the various objects may be customized either by the user or the programmer. Other selection methods may be utilized with respect to the graph shown in FIG. 5. For example, the top “M” from the first object could be selected. Alternatively, the top “M” from each object can be selected and either displayed as a group for each bar in the graph, or just in the pertinent object's bar. The top “M” from the object having the largest or smallest representative value is yet another selection mechanism. Yet another example of a selection mechanism would be to sum each of the values for each server over the requested time period and select the servers with the top or bottom “M” sum (more or less integrating the times for each server over the displayed period). Other selection methods may be used and the present invention is not limited to the enumerated methods.



FIG. 6 is a representation of a screen 600 displaying a graph 606 in accordance with an embodiment of the present invention. In FIG. 6, the user has selected a TopN measurement node 604 in the Services View 602 that has resulted in a graph 606. The TopN Measurement has been displayed as a Measurement graph by displaying the TopN Measurement's representative value over the time period. By using a single numeric value to represent the TopN measurement objects, complex objects may be processed as if they were simple numeric data. This allows the use of current services provided by the OSS, for example, baselining and thresholding—both of which are illustrated in FIG. 6. In FIG. 6, Warning, Minor, Major, and Critical thresholds are shown on the graph. Baseline calculations are also displayed as bars next to each representative value (value on the right, baseline on the left).



FIG. 7 is a representation of a screen 700 displaying a graph 706 in accordance with an embodiment of the present invention. In FIG. 7, the user has selected an event 703 in an events view 701 that has caused the appropriate measurement node 704 to be selected in the services view 702. This in turn has caused a graph 706 of the values during the time period in which the event occurred to be displayed. The graph 706 is a typical Measurement graph, of discrete values over a time period. As with FIG. 6, the representative values of the various TopN objects are used to create the measurement graph 706. In most OSS systems, such as the AGILENT QOS MANAGER, events are generated when a value (in this case the representative value) exceeds a threshold value for that value.


Although some embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.

Claims
  • 1. A method of measuring comprising: storing “M” name-value pairs from a sample space over a period of time; and calculating a representative value based on all of the name-value pairs in the sample space.
  • 2. A method, as set forth in claim 1 wherein the representative value is selected from the group comprising: the largest value in the sample space, the smallest value in the sample space, the average of the values in the sample space, and the sum of all the values in the sample space.
  • 3. A method, as set forth in claim 1 further comprising: displaying a graphic based on the top “M” name-value pairs wherein N≦M.
  • 4. A method, as set forth in claim 3 further comprising: calculating an other value representative of values in the sample space other than the values included in the top “M” name-value pairs; and displaying a representation of the other value in association with the graphic.
  • 5. A method, as set forth in claim 1, further comprising: generating a plurality of data structures encapsulating the “M” name-value pairs and representative value for each period of time.
  • 6. A method, as set forth in claim 5, wherein the plurality of data structures comprise objects.
  • 7. A method, as set forth in claim 5, further comprising: aggregating at least two data structures.
  • 8. A method, as set forth in claim 5, further comprising: intervalizing at least two data structures.
  • 9. A method, as set forth in claim 1, further comprising: calculating a remainder value based on name-value pairs taken during the period of time not included in the group of “M” name-value pairs.
  • 10. A method, as set forth in claim 9, wherein the remainder value is selected from the group comprising: the largest of the name-value pairs taken during the period of time not included in the group of “M” name-value pairs, the smallest of the name-value pairs taken during the period of time not included in the group of “M” name-value pairs; the average of name-value pairs taken during the period of time not included in the group of “M” name-value pairs; the sum of name-value pairs taken during the period of time not included in the group of “M” name-value pairs.
  • 11. A method, as set forth in claim 1, further comprising: creating a bar graph having at least one segmented bar with “M” segments representing the respective values of the top “M” name-value pair and at least one segment representing an other value based on name-value pairs taken during the period of time not included in the top “M” name-value pairs.
  • 12. A method, as set forth in claim 11, further comprising: storing a second set of “M” name-value pairs from a sample space over a second period of time; identifying top “M” name-value pairs of the second set of “M” name-value pairs; calculating an other value based on name-value pairs taken during the second period of time not included in the group of“M” name-value pairs; and wherein the step of creating a bar graph comprises creating a bar graph having at least two segmented bars with the first segmented bar representing the top “M” name-value pairs from the first period of time and the first other value and the second segmented bar representing the top “M” name-value pairs from the second period of time and the second other value.
  • 13. A method, as set forth in claim 1, wherein the step of storing “M” name-value pairs comprises: receiving a set of name-value pairs over a period of time; and storing the top “M” name-value pairs of the set of name-value pairs.
  • 14. A method, as set forth in claim 13, further comprising: performing a mathematical operation on the name-value pairs in the set of name-value pairs but not in the top “M” name-value pairs to generate a remainder value.
  • 15. A method, as set forth in claim 13, further comprising: performing a mathematical operation on the name-value pairs in the set of name-value pairs but not in the top “M” name-value pairs where N≦M to generate an other value.
  • 16. An OSS system comprising: at least one agent that measures values related to a system under test, the agent forming an object based on a sample space for each measurement frequency, the object comprising “M” name-value pairs from the sample space, a representative value for the entire sample space, and a remainder value representative of measured values in the sample space but not included in the “M” name-value pairs.
  • 17. An OSS system, as set forth in claim 16, further comprising: a database system to store the objects created by the agents.
  • 18. An OSS system, as set forth in claim 16, further comprising: a graphical user interface adapted to generate graphics based on the objects formed by the agent.
  • 19. An OSS system, as set forth in claim 18, wherein the graphical user interface generates a bar graph display with a single bar for each representative value of each object.
  • 20. An OSS system, as set forth in claim 18, wherein the graphical user interface generates a bar graph for a single object with a bar for each name-value pair in the top “M” name-value pairs.
  • 21. An OSS system, as set forth in claim 20, wherein the bar graph includes a bar representative of the values of the name-value pairs outside of the top “M” name-value pairs.