The present invention relates to the field of forensic analysis and, more specifically, to the use of multi-view digital imaging of forensic samples at multiple reflected, scattered, emitted, transmitted or absorbed wavelengths to provide new, detailed information to distinguish and differentiate forensic materials and samples. This method allows more subtle forensic features to be observed and related to the image of the sample or to known reference samples than heretofore possible.
Forensic analysis involves the observation and identification of an object that may exist in part or in its entirety on some sort of supporting surface. This analysis typically compares the sample in question to other possible reference samples or reference data to make an association that relates it to a specific person, place or event. Forensic analysis is widely used in law enforcement or legal disputes as evidence in a range of situations from homicide to fraud. More specifically, the goal is usually to provide evidence of the existence of a direct link, for example, between a suspect and a crime scene, a victim and a suspect, a weapon and a suspect, etc. To do so with a high degree of specificity and discrimination from possible variations of the sample is essential. Examples of forensic samples include, but are not limited to, fingerprints, gunshot residues, condom lubricants, multi-layer paint chips, fibers, ink samples and thin layer chromatography plates.
The quality of a forensic analysis is critical in making the association of evidence as unambiguous as possible, thereby providing compelling identifications and linkages. In many cases, such as with fingerprints, this identification has widely accepted requirements where as in others, such as fiber characterization and comparison, the uniqueness of the results can be disputed. Even the most unique and definitive identification of biological evidence based on genetic information has been successfully questioned and removed as compelling evidence. Minimizing the subjective components or features of a forensic analysis to make compelling identifications and linkages therefore becomes a critical aspect of all forensic analysis. Doing so quickly and in a cost effective manner is equally important.
Advances in science and technology have enabled many new approaches to sample analysis, bringing forensic science into an era which goes far beyond the classic perception of an investigator looking thru a magnifying glass for small traces of evidence. Numerous techniques exist that allow detailed chemical and elemental identification. This includes most all analytical chemistry methods, such as mass spectroscopy, x-ray analysis, scanning electron microscopy and chromatography, that are widely used today to characterize gaseous, liquid and solid materials. Many of these methods are extremely sensitive and require finite material for their use that is consumed as part of the analysis process. Advances in the sensitivity of analytical chemistry methods and instruments over the years have reduced this problem but these methods are still not considered non-destructive. This becomes increasingly important as smaller and smaller pieces of pieces of evidence are examined and required in forensic analysis.
Optical spectroscopy is a type of detection and analysis method that need not destroy a sample and that can often be chemically specific. Infrared (reflection or transmission) spectroscopy, Raman spectroscopy, light polarization spectroscopy and Fourier transform infrared spectroscopy all fall into this category. These techniques carry an advantage in that they can be applied in a non-destructive manner yet obtain rich, detailed information.
For both analytical chemistry approaches as well as the aforementioned optical methods, the analysis is performed on a small piece or a specific region of the sample that is selected for analysis and compared to another reference sample or samples. Essentially, these analysis methods take a measurement at a point or averages over a small region, which is considered to be representative of the sample. Comparisons of different samples is done by taking the measured output from each by the analysis instrument and comparing them. The output for these comparisons is typically a detailed graph of the measured signal as a function of some technical variable, like mass, atomic weight or wavelength. These signals form a complicated line pattern or graph. These patterns or graphs can be rich in detailed features and clearly interpreted by scientific experts. However, the principles of such methods and the resulting graphs can be difficult for other non-experts to interpret or place confidence in. Thus, when presenting this evidence in courtrooms, such techniques may not be sufficiently understood to provide convincing or compelling evidence.
In most legal cases, the ability of a jury or judge to understand the forensic evidence, and the ability of the scientist to convey its value determines the utility of the forensic method. As a result, methods which allow the objects to be visually compared or which show simple representations of the item under scrutiny are the most widely accepted and understood by non-specialists. Despite the existence of many advanced scientific techniques and analysis methods that are very sophisticated, many such techniques may not be understood by non-specialists, and may thereby raise some doubts as to its validity. Visual forensic analysis and visual comparisons are amongst the most widely accepted forensic methods used to date.
Because many forensic analyses generally focuses on visual inspections, advances in this field have focused on providing optimized illumination by using high intensity sources, as in U.S. Pat. No. 5,072,338 (Hug, et al., entitled “Inspection/Detection System With A Laser Module For Use In Forensic Applications”), or variable wavelength, as in U.S. Pat. No. 6,239,904 (Serfling, et al., entitled “Forensic Microscope, In Particular For Examination Of Writing”) as well as enhancing the response from the forensic sample by applying special dyes, as in U.S. Pat. No. 6,485,981 (Fernandez, entitled “Method And Apparatus For Imaging And Documenting Fingerprints”). In the latter case, these dyes allow the forensic material to be enhanced when viewed by certain incident illumination. All of these methods focus on the type and nature of the incident radiation, and, in many cases, to tuning the incident radiation wavelength to optimize the signal for visual inspection. Other forensic examination devices have also employed a particular non-variable wavelength filter to analyze the reflected or emitted light to enhance the contrast of the forensic image. The choice of the particular filter used in such analysis is determined by the particular sample being studied or the particular chemical treatments used by the forensic scientists to enhance features in the forensic sample, such a latent fingerprints.
The prior art systems are designed to produce a single snapshot, video picture or digital image 12, of the forensic sample that documents what the image of the forensic sample looks like at the incident wavelength. This is then visually compared to other reference samples taken under the same instrument conditions.
One difficulty with systems of the prior art is their relative lack of dynamic range and resolution, making it difficult to clearly differentiate small, subtle or minute variations over the forensic sample. Prior art systems produce a single image at a given wavelength or set of wavelengths of emitted radiation, making it impossible to view or obtain data from minute portions or different regions of the overall sample if the emitted radiation varies slightly within the sample or compared to the background substrate or sample matrix.
The apparatus and method of forensic analysis of the present invention focuses on creating multiple views of the sample using the emitted, scattered, reflected or absorbed radiation over a wide range of wavelengths in one continuous measurement. Additionally, for each pixel at any given resolution, data representing the intensity of light collected by an image sensor is stored for each wavelength at which a view is collected. These views, at different wavelengths coming off of the sample, form the basis for differentiating the features of a sample that is not possible with a single image snapshot, such as is provided by prior art systems. In some cases, this also involves selecting a particular wavelength or range of wavelengths of incident radiation so that the samples are most likely to respond, for example, the near infrared, ultraviolet, or visible regions. Certain types of samples, for example, fibers or fingerprints, are known by those of ordinary skill in the art to show enhanced reflection, emission or luminescence at particular incident wavelengths, which forms the basis for the selection of a particular incident wavelength for illumination.
In the multi-view approach of the present invention, the reflection, emission or scattering of this incident illumination at a plurality of wavelengths over the entire image of the forensic specimen is examined to create multiple views of the specimen. No tuning of the incident radiation is required to perform this analysis. The multiple views are captured digitally and computer processed to show how the forensic material signals vary at any point (pixel) in the sample over the entire filed of view. These chemical spatial variations can then be processed with a computer to be identified and mapped onto the original image, thereby providing additional clarity over the single snapshot image.
The method of the present invention uses a particular process of wavelength selection and advanced digital image processing to further differentiate and enhance the various features in the forensic sample. These differences represent variations that can exist in the forensic samples themselves, and thereby often require no additional additives or treatment of the samples, unlike conventional methods, which, in many cases, require special processing or treatment to be defined or seen. Further, by differentiating the multi-view image variations and relating these variations to possible references or source samples, we need not identify the specific elements or specific chemicals involved. This simplifies and distinguishes this approach from those that employ chemical analytic techniques, which identify elements, chemicals or compositions.
Images 23, 24 and 25 in
In general, the sample size determines the choice of light gathering optics 14. For example, a microscope lens will be employed for the analysis of sub-micron to millimeter dimension specimens. For larger objects in the range of millimeters to meter dimensions, macro lens optics are appropriate.
Electronic view selector 19 can be an electro-optical tunable filter such as a liquid crystal tunable filter (LCTF) or an acousto-optical tunable filter (AOTF). These filters allow specific wavelengths or ranges of wavelengths of light to pass thru as an image, depending on the electrical control voltages placed on the device by computer 22. The bandwidth or range of the wavelengths passed by this device can be as small as 0.1 nm n or as large as 20 nm or greater. The choice of which device to use depends on the optical region used and/or the nature of the sample being analyzed. The wavelengths that can be passed through electronic view selector 19 range from 200 nm (i.e., the ultraviolet) to 2000 nm (i.e., the far infrared). In some instances, multiple electronic tunable filters may be used to cover the entire range of desired wavelengths.
Image sensor 20 is a digital device, typically a two-dimensional, imaging focal plane array (FPA). The optical region employed to characterize the sample of interest governs the choice of FPA detector. For example, silicon charge coupled device (CCD) detectors, a type of FPA, are employed with visible wavelength fluorescence and Raman spectroscopies, while gallium arsenide (GaAs) FPA detectors are typically employed for image analysis at near infrared wavelengths. The choice of these detectors depends on the type of forensic analysis desired. The imaging sensor produces digital images of the entire view of the forensic sample as processed by electronic view selector 19.
Both electronic view selector 19 and image sensor 20 are controlled and read by a computer 21, preferably a personal computer (PC), and displayed on display 22. A few schematic examples of the multi-view images obtained at different viewing wavelengths are shown as 23, 24 and 25. In most cases, the changes are smaller than those portrayed in this example, which is intended only as a schematic exemplar. Computer 22 and display 21 allows the user to interface, control, process and view the multi-view information from the forensic specimen 1 under investigation.
The computer processing of the multi-view information consists of converting the multi-view images into graphical representations of the intensity versus collected wavelength from any part, region or individual pixel element of the forensic sample, so as to determine the multi-view characteristics of these elements of the forensic sample. Typically all pixel elements in a picture are acquired and analyzed at one time, because, in many cases, it is not known which region or pixels in the field of view will turn out to be the most important or useful. As an example,
As shown in
These intensity graphs of each pixel of the multi-view image are analyzed to define the variations in the emitted, reflected, transmitted or scattered light at every single pixel. All three pixels A, B, and C on specimen 1 have similar characteristic variations up to multi-view 24, which is a view at a particular wavelength (not specified), and at higher wavelengths only pixels A and B show similar characteristics. All are clearly distinguished in this example from the background sample E or reference sample D, which need not generally be the case. The computer processing of all pixels in this set of multi-view images would tag these pixels as well as identify those to known objects.
As an alternative to a graphical representation of each pixel, a more desirable mode of presenting these multi-view results is to color code similar pixels and overlay them onto the original image to visually distinguish these differences. In some cases, such as in two component systems, the multi-view image can be in black and white and will appear as a sharper more distinct, clearly defined image of the original sample, because more information has been detected and processed with the multi-view approach.
In more complicated cases schematically shown in
This invention collects and utilizes high definition digital images processed by an electronically controlled view selector 19 over a wide range of wavelengths of scattered, emitted, or reflected light from a forensic specimen 1 so as to provide multiple views of the specimen that are computer processed to differentiate minute features. Prior art forensic scopes do not allow nor facilitate such a capability. Other commercially available analytical instrumentation used to analyze the continuum of scattered or reflected light in detail as done with this device are typically performed in a point or line scanning mode, which is more time consuming and has limited spatial resolution due to the size of the spot probes used. These spot focused methods also concentrate the incident radiation and are thereby more likely to damage the sample. These instruments are typically analytical chemistry instruments that are not optimized for forensic applications.
The way the intensity of the forensic specimen or portions of the specimen vary from view to view creates a signature of the type or origin of the sample. Such multi-view signatures are very distinct and depend in many cases on subtle intrinsic properties of the sample, including its history or method of manufacture, which is not generally discernable using the single view snapshot method of forensic analysis widely used today. Such multi-view capability allows this invention to work even with difficult backgrounds, for example, fluorescent substrates, dark substrates, rough substrates and multicolored substrates.
Note that in all of the example applications which follow, the electronic view selector 19 is a liquid crystal electro-optical tunable filter, while image sensor 20 is a charge coupled device having a resolution of 1024×1024 pixels. For those examples requiring white light illumination, a CrimeScope, manufactured by Spex Forensics, was used. For the samples requiring laser excitation, a 532 nm laser was used, however, the laser excitation may vary depending on the sample of interest.
These examples describe the general setup and analysis for visible reflectance multi-view imaging of fingerprints on a macroscopic platform. In the first example, shown in
The second fingerprint example, shown in
The examples shown in
This example describes the general setup and analysis for macroscopic imaging of surfaces having suspected gunshot residue deposition. This specific sample consists of a piece of black cotton fabric which has been hit by a bullet fired from a distance of 12 inches away. Upon optical examination, one can see particulates if the fabric is white, but for darker fabrics, the particulates become very difficult to distinguish from the background cloth. In general, other particulates from the environment also may be present (for example diesel soot or organic debris in the environment).
With respect to the particles shown in the
These examples describe the general setup and analysis for visible absorption and fluorescence multi-view imaging of different types of fibers on a macroscopic platform. The first example describes microscopic visible absorbance multi-view imaging of natural and synthetic fibers. A microscope with a tungsten-quartz-halogen light source in the transmission mode constitutes the base of the instrument setup.
In the second example, microscopic fluorescence multi-view results of natural and synthetic fibers is shown. A microscope with a mercury light source in the reflectance mode constituted the base of the instrument setup.
These examples demonstrate that fluorescence multi-view imaging is an efficient characterization method for similar fibers and removes the subjectivity inherent to the current methods of fluorescent fiber characterization and comparison. We also find that such fluorescence multi-view imaging also works well to identify and characterize different transparent adhesive tapes as shown in
Commercially available condoms are primarily manufactured of latex and, to a lesser degree, polyurethane and sheep ceacum. All three types can contain fine powders, lubricants, and/or spermicides in various combinations.
Lubricants are generally divided into two categories. Wet lubricants are water based, commonly polyethylene glycol (PEG) or propylene glycol (PG). Dry lubricants are typically silicone oils, the most common being polydimethylsiloxane (PDMS). Nonoxynol-9 (N9) is by far the most widely used spermicide. It can be found in conjunction with both wet and dry lubricants and can compose 5-15% of the lubricant mixture. Condoms may also contain fine particulate components that are used to prevent the sheath from sticking to it when unrolled. These may include talc, cornstarch (or other starches), CaCO3, powdered silica, MgCO3, or lycopodium.
These examples describe the general setup and analysis for Raman scattering multi-view imaging of condom lubricant material on a microscopic platform. For the cases of identifying condom lubricants, a laser with high intensity at a single wavelength is preferred. In this case a blocking filter is used to attenuate the diffuse reflected laser light at its original wavelength.
A FALCON™ Raman Chemical Imaging System, manufactured by ChemImage Corporation, of Pittsburgh, Pa., equipped with 532 nm laser excitation and a 100 W quartz tungsten halogen (QTH) broadband source was used to collect brightfield microscopic images, Raman multi-view images and dispersive Raman spectra. Such dispersive Raman spectra provide a useful comparison to conventional Raman as performed for routine analytical chemical analysis. Specially developed software was used for data acquisition, analysis and visualization of the multi-view data. The multi-views are acquired for a condom lubricant sample using a range of wavelengths from 540 nm to 635 nm in 8 cm−1 increments. Data for the calculated images was collected using ChemAcquire 6.0 software, with subsequent analysis, processing and visualization using ChemAnalyze 6.0 software, both manufactured by ChemImage Corporation of Pittsburgh, Pa.
Intrinsic particulate matter of the condom lubricant can also be detected, and images such as CaCO3, can be obtained as shown in
Thin layer chromatography (TLC) is a well-accepted method in forensic science. The analysis of thin layer chromatography plates is routinely conducted for forensic samples such as ink, dyes, explosives and drugs to mention a few. The value of thin layer chromatography lies in its ability to separate the various components of a complex matrix into a discernible pattern of bands (called band profiles) which are indicative of the material. Developed TLC plates can be compared against the band profile of known materials to assist in the association of an unknown material with a known exemplar. Information gained from a typical TLC plate is the RF value (i.e. the distance a specific band component travels relative to distance the distance traveled by the solvent system) and the color of the specific bands. Some typical results obtained from our multi-view analysis are shown in
Multi-view analysis of the bands removes much of the subjectivity inherent to conventional TLC plate visualization. Software can be utilized to exactly determine the migration of bands, unlike simple measurements with a ruler. In addition, the calorimetric and fluorescent multi-view profiles of the bands are simultaneously determined for each band in the field of view, eliminating time consuming point spectroscopy inherent to conventional methods. In essence, the RF value of band, the colorimetric profile and/or the fluorescence profile can be analyzed simultaneously, increasing efficiency of the analysis and removing subjectivity. Lastly, because all the relevant information for all bands within a TLC plate are collected simultaneously, database structures can be developed to search on multiple levels of each band which increases search capability while removing time consuming manual search methodologies.
These examples describe the general setup and analysis for visible reflectance multi-view imaging of thin layer chromatography plates on a macroscopic platform. In the first example, the specimen is illuminated using white light. The multi-views are acquired for a thin layer chromatography plate ink specimen #1 with a range of wavelengths from 420 nm to 720 nm in 10 nm increments. Data for the calculated images was collected using acquisition software and digitally stored for viewing and processing.
In a second example, the specimen is illuminated using white light. The multi-views are acquired for a thin layer chromatography plate ink sample in a range of wavelengths from 420 nm to 720 nm in 10 nm increments.
In the third example, the specimen is illuminated using 300-400 nm excitation light. The multi-views are acquired for a thin layer chromatography plate specimen #1 in a wavelength range from 420 nm to 720 nm in 10 nm increments. Data for the calculated images was collected using acquisition software and digitally stored for viewing and processing.
This example describes the general setup and analysis for microscopic fluorescence imaging of inks. A microscope with a mercury light source in the reflectance mode constitute the base platform of this multi-view set-up. An interchangeable fluorescence cube composed of a 420 nm excitation filter, 420 nm dichroic mirror and a 430 nm band pass filter was placed between the optic lens and the multi-view selector to ensure that wavelengths of light greater than 430 nm were transmitted, thus minimizing stray light from the illumination source during collection by the multi-view selector. Multi-view images were acquired by tuning the electro-optic imaging spectrometer through a range of wavelengths from 440 nm to 720 nm in 5 nm increments. The fluorescence intensity from the pixels of the two different inks show distinct characteristics as shown in
This example describes the general setup and analysis for fluorescence multi-view imaging of multi-layered paint fragments on a microscopic platform. A microscope with a tungsten-quartz-halogen light source in the reflectance mode constitutes the base of the instrument setup. The brightfield reflectance digital image of the paint sample is shown in
Many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
This application claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/422,604, filed Oct. 31, 2002.
Number | Date | Country | |
---|---|---|---|
60422604 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10698243 | Oct 2003 | US |
Child | 12243683 | US |