This invention relates to a method for improved gravity drainage in a hydrocarbon formation. Particularly, but not exclusively, the invention relates to a method for more effectively utilising gravity drainage techniques, for example, Steam-Assisted Gravity Drainage (SAGD), in formations with layered reservoirs (i.e. having intervening layers of rock such as shale).
Steam-Assisted Gravity Drainage (SAGD) is one technique used in enhanced oil recovery to extract bitumen, heavy or extra-heavy crude oil from a sub-surface formation. It usually comprises the drilling of two parallel horizontal wells with one positioned about 4 to 6 metres above the other. The upper well constitutes an injection well configured to inject high pressure steam into the formation to heat the oil and reduce its viscosity. The heated oil then flows more easily to the lower well, under the action of gravity. The lower well constitutes a production well which collects the heated oil and any water resulting from condensation of the injected steam, and transports this to the surface. Commonly, an artificial lift device, such as an electrical submersible pump (ESP), will be employed to help flow the fluids to the surface.
However, traditional SAGD depends on relatively thick and homogeneous reservoirs for economical drainage. A reservoir which is split into two or more layers separated with horizontal (or near horizontal) rock (e.g. shale) barriers is not likely to be economically producible with traditional SAGD since it would require drilling two wells into each reservoir layer, one for each of the injection and production wells.
It is therefore an aim of the present invention to provide a method for improved gravity drainage, which addresses the afore-mentioned problems.
According to a first aspect of the present invention there is provided a method for improved gravity drainage in a hydrocarbon formation, the method comprising: drilling a production well along a substantially horizontal production layer of a reservoir; drilling a perforation well above the production well, either in the production layer or in a layer separated from the production layer by a fluid barrier; perforating the formation adjacent the perforation well to provide a fluid flow path to or within the production layer; inducing gravity drainage through the fluid flow path; and producing fluids collected in the production well.
Embodiments of the present invention therefore provide an improved gravity drainage method which can be applied to stacked reservoirs to drain them more economically since the fluids are allowed to flow between (normally near horizontal) layers, through the fluid flow paths provided by the perforations, thus reducing the number of individual wells that are required to be drilled. The fact that fewer wells are required to be drilled also reduces the time between commencing the project and starting production thereby saving costs and making lower quality reservoirs more economically attractive. In the case where the perforations are created within a single layer, the step of perforating the formation adjacent the perforation well may help to speed up the step of inducing gravity drainage by, for example, speeding up the transport of steam into the reservoir to therefore heat the fluids in the reservoir more quickly.
The formation may comprise a stacked (i.e. stratified) reservoir having multiple layers with intermediate fluid barriers. The formation may be constituted, for example, by an oil sand formation or a carbonate rock formation. The fluid barriers may comprise substantially impermeable rock, breccia, shale, mud (i.e. Inclined Heterolithic Strata HIS), or mudstones. For example, the fluid barriers may comprise a combination of relatively thin mud layers that cumulatively form a barrier that is between 0.5 m and 2 m thick. Although, in some cases, the fluid barriers may extend along the full horizontal extent of the reservoir, in other cases, the fluid barriers may only be present in a particular area of the reservoir and may include one or more gaps therein.
The perforation well may be disposed adjacent (e.g. as close as practically possible to) a fluid barrier such that the step of perforating the formation adjacent the perforation well provides fluid flow paths through the fluid barrier. In practice, the perforation well may be positioned within approximately 1 m from the fluid barrier. The perforation well may be positioned within, above and/or below the fluid barrier and the perforations may be directed (downwardly or upwardly) through the perforation well to penetrate the fluid barrier.
Some embodiments may further comprise the step of perforating the formation adjacent the production well, prior to producing fluids collected in the production well. This step may be performed prior to lining the production well when it has been drilled, either intentionally or unintentionally, through or below a fluid barrier near the bottom of a production zone in order to provide fluid flow paths down into the producer.
The step of perforating the formation may comprise creating perforations having a spatial frequency along the perforation well of about 0.1 to 2 or 1 to 5 perforations per foot (0.3048 m). The perforations may be created along one or more common radii. For example, where the perforation well is disposed between an upper and a lower fluid barrier, perforations may be created both upwardly and downwardly at each position along the perforation well.
The applicants believe that it will be possible to penetrate fluid barriers (e.g. shale layers) of up to approximately 2 m in thickness.
A plurality of production wells may be provided within the production layer (e.g. horizontally spaced apart). A plurality of perforation wells may also be provided (e.g. horizontally spaced apart).
The production wells may be vertically below the perforation wells or may be laterally offset (e.g. at a position midway between adjacent perforation wells) but at a greater depth than the perforation wells.
In embodiments of the invention, the gravity drainage technique employed may comprise one or more of SAGD, use of a solvent, use of electricity and use of heat. Thus, the step of inducing gravity drainage may comprise injecting steam, solvent, electricity or heat into the formation. The step of inducing gravity drainage may be performed by one or more injectors.
The perforation wells or other selected wells may be employed as injectors for the distribution of steam/solvent/electricity/heat to the reservoir. Perforation wells not employed as injectors will not be used for the distribution of steam etc but the perforations extending from these wells will remain as fluid flow paths for steam etc and bitumen to flow through the fluid barrier (in the vertical direction). Further injectors may be provided in one or more reservoir layers. The injectors in one layer may be vertically aligned or laterally offset with the injectors in another layer and/or the perforation wells and/or the production wells. A plurality of injectors may be provided in one or each layer (e.g. horizontally spaced apart).
In some embodiments, the production well may house a combined injector and producer (which is often referred to as single well SAGD) to further reduce the number of separate wells required.
In a particular embodiment, the formation comprises a first upper reservoir layer, a second lower reservoir layer and an intermediate fluid barrier. The perforation well (which may be configured as an injection well) is provided in the upper layer and the production well is provided in the lower (production) layer. An injection well may be provided in the lower layer, above the production well to form a standard SAGD arrangement in the lower layer. Alternatively, an injector may be combined with the production well to form a single well SAGD construction. Perforations are formed through the intermediate fluid barrier adjacent the perforation well. Steam/solvent/electricity or heat may then be injected through the injector in the perforation well and into the upper layer. Such injection induces the hydrocarbons (e.g. bitumen/heavy oil) in the upper layer to loose viscosity and flow downwardly under the action of gravity such that it will flow through the perforations in the fluid barrier and into the lower well below whereupon it is collected and transported to the surface via the production well. It is believed that gravity will be sufficient to allow the fluids to flow into the lower well. However, if necessary, the pressures in the layers of the reservoir may be altered so as to assist in the gravity drainage. It will be understood that steam/solvent/electricity or heat may also be injected through the injection well or single well SAGD construction to melt the hydrocarbons in the lower layer also.
It will be understood that an assessment may be necessary to determine optimal geometrical well arrangements and optimal starting times for each injector in the upper layers of a formation relative to the lower layers. More specifically, optimizing the well configuration will need to consider pre-heating of the well, e.g., heating of the oil sand formation between the injector and producer via steam circulation. If the fluid barrier is between the injector and producer such that they are significantly more than 5 m apart, then a further production and/or injection well may be required. Also, injection pressure in each injector and possible start and stop sequences may be determined to optimize production efficiency (e.g. if in practice it is difficult to achieve continuous counter flow of steam (up) and production fluid (down) through the fluid flow paths created by the perforations) and secure efficient transport of fluids from upper layers down to the producers at the base of the reservoir.
The step of perforating the formation adjacent the perforation well may be performed in open hole (i.e. after the perforation well has been drilled but before the perforation well has been lined). Alternatively, the step of perforating the formation adjacent to the perforation well may be performed after the perforation well has been lined such that the perforations are created through the liner and into the formation. In certain embodiments, the liner may comprise a sand screen or slotted liner.
The step of perforating the formation may be performed using a perforating tool (e.g. gun or downhole drilling tool). Each perforation may be created by an explosive charge.
It should be noted that common perforating practices involve setting a perforating gun inside a metal casing or liner string and creating perforations over an interval of interest so as to connect the wellbore to a reservoir. Perforations can be created by “jet perforating” or “bullet perforating”. Conventional jet perforating comprises igniting a charge, which creates a high pressure, high velocity jet that moves radially outward producing a hole in the casing/liner, cement, and formation. The energy released from the explosive charge is dissipated in a number of ways, including: material removal and deformation of the casing/liner, cement, and formation. Energy release may also occur in the form of sound, pressure waves, and elastic deformation of the gun holder and casing/liner wall. Bullet perforating comprises the use of a hardened steel bullet or projectile which is propelled by an explosive charge to create a tunnel through the casing/liner, cement, and formation. The bullet and associated debris are embedded at the end of the tunnel and for this reason jet perforating is often preferred although either method may be employed in embodiments of the present invention.
In embodiments of the invention, perforations may be created in the open hole of the perforation wells, prior to installing a liner pipe in a horizontal section of the well. When the perforations are created in open hole, many benefits are achieved. Firstly, energy released from the perforation charge is not lost to perforating the liner (since the liner is not present during perforating). This allows a maximum amount of explosive energy to be used for extending the penetration depth, and/or allocating the maximum available energy to impact and penetrate mudstones, shales, or other fluid barriers that will impede steam and hydrocarbon flow and ultimately reduce the gravity drainage recovery efficiency. Therefore, this method provides incremental penetration depth compared to perforating first through a liner before perforating the formation. Secondly, perforations can be created without affecting the sand control ability of the liner (since perforations are created prior to installing the liner). This enables perforations to be created in any radial direction, which could be particularly useful for perforating oil sands zones with shale fluid barriers located vertically above or below the injection well. Thirdly, perforations can be created without affecting the structural load capacity of the liner. Adding perforations to the liner reduces the load capacity of the liner, so this is avoided by perforating prior to the liner being installed.
In order for open hole perforating to be successful, the fall back of bitumen and sand into the open hole should be minimal after the perforation is created. Bitumen will tend to hold sand grains together since bitumen exists at a very viscous state (e.g., 100000 cP) at virgin reservoir conditions (e.g., 10° C., 2500 kPa) and encompasses 75-85% (by volume) of the pore space. Furthermore, industry success in drilling through soft oil sand formations and installing liners of 1000 m in length indicates good open hole stability and suggests the open hole could remain intact after perforating. In case some amount of fall back does occur, an open hole clean out procedure could be implemented.
The method may therefore further comprise cleaning the perforation well after or during the step of perforating the formation. For example, the perforating tool may be fitted with a cleaning device arranged to clean the well as the perforating tool is operated from the toe of the well to the heel of the well. Alternatively, a cleaning procedure (e.g. wiper trip) may be performed after the perforating is complete and the perforating tool has been extracted from the well.
In certain embodiments, the perforating tool may remain in the perforation well after the perforations have been created. In which case, the perforation well may not be used for horizontal distribution of steam or production fluids but the perforations may remain as fluid flow paths for steam and production fluids to flow vertically through the fluid barrier from one layer to the next (i.e. steam or another form of injection may be via an injector that is not provided in the perforation well).
The injector may be constituted by the open hole of the perforation well. Alternatively, the perforation well may be lined with a perforated or slotted liner or similar (e.g. a liner comprising valves allowing steam to be injected into the formation) to form the injector. It will be noted that the provision of a such a liner may help to ensure and/or maintain hole stability as well as allowing for steam etc to be injected into the formation.
Specific embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
With reference to
The method comprises drilling a production well 22 into the deeper reservoir layer L2 and drilling a perforation well 20 into the shallower reservoir layer L1. An injection well 24 is also drilled into the deeper reservoir layer L2, above the production well 22.
The perforation well 20 extends through the shallower reservoir layer L1 less than 1 m above the shale layer 14. After the perforation well 20 is lined with a liner (not shown), a perforating tool (not shown) is inserted into the perforation well 20 and a series of perforations 26 are created extending downwardly through the liner, the formation 10 and the shale layer 14. Each perforation 26 therefore provides a fluid flow path from the shallower reservoir layer L1 to the deeper reservoir layer L2.
As shown in
After the perforations 26 are created in each of the perforation wells 20, the perforation tool is extracted and the well is configured as an injector. Steam 30 is then injected into the formation 10 through the perforation wells 20 and the injection wells 24. The steam 30 may be injected simultaneously through each well or the injection may be phased for maximum effect and efficiency. The steam 30 will rise and expand outwardly from each injector within each reservoir layer L1, L2. In the process, the steam 30 will cause hydrocarbons (e.g. bitumen) in the oil sand formation 10 to loose viscosity and flow generally downwardly under the action of gravity. Consequently, the hydrocarbons in the shallower reservoir layer L1 will flow through the perforations 26 in the shale layer 14 and into the deeper reservoir layer L2 whereupon they will be collected and transported to the surface via the production well 22.
As more energy can be transmitted to form deeper perforations 26 when they are created in open hole, embodiments of the invention can be economically employed even where relatively thick shale layers are encountered and/or where there are several relatively thin reservoir layers stacked together.
When the perforation tools can be retrieved from the wells, the wells can be lined and used as injectors. However, when the perforation tools cannot easily be retrieved from the wells, they may remain in the wells and the perforations may remain as vertical flow channels for the injected substances (e.g. steam) and the production fluids but the well itself will not be used for injection or for distributing the production fluids.
Some embodiments of the invention comprise establishing standard SAGD in a lower reservoir layer in a stacked reservoir, either with use of a standard producer/injector configuration or by using a single well SAGD arrangement. One or more overlying layers in the formation are then drained by fluidly connecting them to the lower reservoir layer by drilling a perforation well closely above (or below) a fluid barrier and perforating through the fluid barrier. If the perforations are directed downwardly, the perforated wells may also be used as injectors.
It will be appreciated by persons skilled in the art that various modifications may be made to the above embodiments without departing from the scope of the present invention, as defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2790475 | Sep 2012 | CA | national |