The invention relates to a method for improving the utilization of the production potential of genetically modified plants.
In recent years, there has been a marked increase in the proportion of genetically modified plants in agriculture, even if regional differences are still currently noticeable. Thus, for example, the proportion of genetically modified maize in the USA has doubled from 26% to 52% since 2001, while genetically modified maize has previously been of hardly any practical importance in Germany. However, in other European countries, for example in Spain, the proportion of genetically modified maize is already about 12%.
Genetically modified plants are employed mainly to utilize the production potential of respective plant varieties in the most favourable manner, at the lowest possible input of production means. The aim of the genetic modification of the plants is in particular the generation of resistance in the plants to certain pests or harmful organisms or else herbicides and also to abiotic stress (for example drought, heat or elevated salt levels). It is also possible to genetically modify a plant to increase certain quality or product features, such as, for example, the content of selected vitamins or oils, or to improve certain fibre properties.
Herbicide resistance or tolerance can be achieved, for example, by incorporating genes into the useful plant for expressing enzymes to detoxify certain herbicides, so that a relatively unimpeded growth of these plants is possible even in the presence of these herbicides for controlling broad-leaved weeds and weed grasses. Examples which may be mentioned are cotton varieties or maize varieties which tolerate the herbicidally active compound glyphosate (Roundup®), (Roundup Ready®, Monsanto) or the herbicides glufosinate or oxynil.
More recently, there has also been the development of useful plants comprising two or more genetic modifications (“stacked transgenic plants” or multiply genetically modified crops). Thus, for example, Monsanto has developed multiply genetically modified maize varieties which are resistant to the European corn borer (Ostrinia nubilalis) and the Western corn rootworm (Diabrotica virgifera). Also known are maize and cotton crops which are resistant both to the Western corn rootworm and the cotton bollworm and tolerant to the herbicide Roundup®.
It has now been found that the utilization of the production potential of genetically modified useful plants can be improved even more by treating the plants with one or more sulphoximines of the formula (I) defined below. Here, the term “treatment” includes all measures resulting in contact between these active compounds and at least one plant part. Plant parts are to be understood as meaning all above-ground and below-ground parts and organs of plants, such as shoot, leaf, flower and root, examples which may be mentioned being leaves, needles, stems, trunks, flowers, fruit-bodies, fruits and seeds and also roots, tubers and rhizomes. The plant parts also include harvested material and also vegetative and generative propagation material, for example cuttings, tubers, rhizomes, slips and seed.
Compounds of the formula (I)
in which
X represents NO2, CN or COOR4,
L represents a single bond,
R1 represents C1-C4-alkyl, or
in which
Z represents halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy or C1-C4-haloalkoxy and
R4 represents C1-C3-alkyl,
are known, for example, as agents for controlling animal pests, in particular insects (for example US patent application 2005/228027 A1, WO 2006/060029 A2, WO 2007/095229 A2, WO 2007/149134 A1, WO 2008/027539 A1, WO 2008/027073 A1, WO 2008/057129 A1, WO 2008/097235 A1, WO 2008/106006 A1). Furthermore, the increase of the insecticidal activity for a subgroup of sulphoximines by addition of suitable salts and, if appropriate, additives has been described (WO 2007/068355).
From these documents, the person skilled in the art is familiar with processes for preparing and for using compounds of the formula (I) and with their activity.
Depending, inter alia, on the nature of the substituents, the compounds of the formula (I) can be present as optical isomers or mixtures of isomers in varying compositions, which can be separated, if desired, in a customary manner. The present invention provides both the pure isomers and the isomer mixtures, their use and compositions comprising them. However, the following text will, for the sake of simplicity, always mention compounds of the formula (I), even though this is understood as meaning not only the pure compounds, but also, if appropriate, mixtures with various amounts of isomeric compounds.
Preferred subgroups of the compounds of the formula (I) are listed below:
In a particular group (Ia) of compounds of the formula (I), X represents the nitro group:
In a further particular group (Ib) of compounds of the formula (I), X represents the cyano group:
In a further particular group (Ic) of compounds of the formula (I), X represents NO2 or CN, Y represents the 6-chloropyrid-3-yl radical:
In a further particular group (Id) of compounds of the formula (I), X represents NO2 or CN, Y represents the 6-trifluoromethylpyrid-3-yl radical:
In a further particular group (le) of compounds of the formula (I), X represents NO2 or CN, Y represents the 2-chloro-1,3-thiazol-5-yl radical:
In a further particular group (If) of compounds of the formula (I), X represents NO2 or CN, Y represents the 2-trifluoromethyl-1,3-thiazol-5-yl radical:
In a further particular group (Ig) of compounds of the formula (I), R1, sulphur and L together form a 5-membered ring, X represents NO2 or CN, Y represents 6-halopyrid-3-yl or 6-(C1-C4-haloalkyl)pyrid-3-yl, particularly preferably 6-chloropyrid-3-yl or 6-trifluoromethylpyrid-3-yl, n preferably represents 0:
In a further particular group (Ih) of compounds of the formula (I), R1, sulphur and L together form a 5-membered ring, X represents NO2 or CN, Y represents 6-halopyrid-3-yl or 6-(C1-C4-haloalkyl)pyrid-3-yl, particularly preferably 6-chloropyrid-3-yl or 6-trifluoromethylpyrid-3-yl, n preferably represents 0:
In a further particular group (Ii) of compounds of the formula (I), R1 represents methyl, X represents NO2 or CN, L represents a single bond and n preferably represents 1:
In a further particular group (Ij) of compounds of the formula (I), R1 represents methyl, R2 and R3 independently of one another represent hydrogen or methyl, X represents NO2 or CN, n preferably represents 1:
In a further particular group (Ik) of compounds of the formula (I), R1 represents methyl, R2 and R3 together represent —(CH2)2— and form together with the carbon atom to which they are attached a 3-membered ring, X represents NO2 or CN, n preferably represents 1:
The compounds of the general formula (I) may, where appropriate, depending on the nature of the substituents, be in the form of geometric and/or optically active isomers or corresponding isomer mixtures of varying composition. The invention relates both to the pure isomers and to the isomer mixtures.
Specific mention may be made of the following compounds of the formula (I):
Preference is given to the following sulphoximines of the formula (I):
Particular preference is given to the following sulphoximines of the formula (I):
If, in the context of the present invention, reference is now made to sulphoximines, these are generally sulphoximines of the general formula (I), where the general formula (I) includes in particular the compounds of groups (Ia) to (Ik), specifically the compounds of the general formulae (I-1) to (I-23).
According to the invention, “alkyl” represents straight-chain or branched aliphatic hydrocarbons having 1 to 6, preferably 1 to 4, carbon atoms. Suitable alkyl groups are, for example, methyl, ethyl, n-propyl, i-propyl, n-, iso-, sec- or tert-butyl, pentyl or hexyl. The alkyl group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
According to the invention, “alkenyl” represents straight-chain or branched hydrocarbons having at least one double bond. The double bond of the alkenyl group may be unconjugated or is conjugated to an unsaturated bond or group. Alkenyl groups having 2 to 6 or 3 to 6 carbon atoms are preferred. Suitable alkenyl groups are, for example, vinyl or allyl. The alkenyl group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
According to the invention, “alkynyl” represents straight-chain or branched hydrocarbons having at least one triple bond. The triple bond of the alkynyl group may be unconjugated or is conjugated to an unsaturated bond or group. Alkynyl groups having 2 to 6 or 3 to 6 carbon atoms are preferred. Suitable alkynyl groups are, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, 4-methyl-1-butynyl, 4-propyl-2-pentynyl and 4-butyl-2-hexynyl. The alkynyl group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
According to the invention, “cycloalkyl” represents cyclic hydrocarbons having 3 to 6 carbon atoms. Suitable cycloalkyl groups are, for example, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. The cycloalkyl group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
According to the invention, “alkoxy” represents alkoxy groups having 1 to 6 carbon atoms, preferably having 1 to 4 carbon atoms. Suitable alkoxy groups are, for example, methyloxy, ethyloxy, n-propyloxy, i-propyloxy, n-, iso-, sec- or tert-butyloxy, pentyloxy or hexyloxy. The alkoxy group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
According to the invention, “alkylamino” represents alkylamino groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Suitable alkylamino groups are, for example, methylamino, ethylamino, n-propylamino, i-propylamino, n-, iso-, sec- or tert-butylamino, pentylamino or hexylamino. The alkylamino group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
According to the invention, “heterocyclic compounds” represents cyclic hydrocarbons having preferably 3 to 14, particularly preferably 3 to 10 and very particularly preferably 5 to 6 carbon atoms which contain at least one heteroatom, such as, for example, nitrogen, oxygen or sulphur and which can be prepared by customary methods. The heterocyclic compounds may contain saturated and unsaturated bonds or groups which are additionally in conjugation with further unsaturated bonds or groups. Suitable heterocyclic compounds are, for example, oxirane, aziridine, azetidine, tetrahydrofuran, dioxane, tetrahydrofuran-2-one, caprolactam; unsaturated heterocyclic compounds, such as, for example, 2H-pyrrole, 4H-pyran, 1,4-dihydropyridine; and heteroaryls, such as, for example, pyrrole, pyrazole, imidazole, oxazole, isoxazole, thiazole, oxathiazole, triazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, purine, pteridine, quinoline, isoquinoline, acridine and phenazine. The heterocyclic compounds may be unsubstituted or are substituted by at least one of the substituents mentioned here.
According to the invention, “halogen” represents fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine.
According to the invention, “haloalkyl” represents alkyl groups having 1 to 6, preferably 1 to 4, carbon atoms in which at least one hydrogen atom has been replaced by a halogen. Suitable haloalkyl groups are, for example, CH2F, CHF2, CF3, CF2Cl, CFCl2, CCl3, CF2Br, CF2CF3, CFHCF3, CH2CF3, CH2CH2F, CH2CHF2, CFCICF3, CCl2CF3, CF2CH3, CF2CH2F, CF2CHF2, CF2CF2Cl, CF2CF2Br, CFHCH3, CFHCHF2, CHFCF3, CHFCF2Cl, CHFCF2Br, CFCICF3, CCl2CF3, CF2CF2CF3, CH2CH2CH2F, CH2CHFCH3, CH2CF2CF3, CF2CH2CF3, CF2CF2CH3, CHFCF2CF3, CF2CHFCF3, CF2CF2CHF2, CF2CF2CH2F, CF2CF2CF2Cl, CF2CF2CF2Br, 1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl, 2,2,2-trifluoro-1-(trifluoromethyl)ethyl, pentafluoroethyl, 1-(difluoromethyl)-1,2,2,2-tetrafluoroethyl, 2-bromo-1,2,2-trifluoro-1-(trifluoromethyl)ethyl, 1-(difluoromethyl)-2,2,2-trifluoroethyl. The haloalkyl group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
According to the invention, “aryl” represents aryl groups having 6 to 10, preferably 6, carbon atoms. Suitable aryl groups are, for example, phenyl or naphthyl. The aryl group may be unsubstituted or is substituted by at least one of the substituents mentioned here.
Preference is given to mixtures of two or more, preferably two or three, particularly preferably two, of the insecticidally active compounds.
According to the process according to the invention, genetically modified plants, in particular useful plants, are treated with compounds of the formula (I) to increase agricultural productivity. For the purposes of the invention, genetically modified plants are plants containing at least one gene or gene fragment not transferred by fertilization. This gene or gene fragment may originate or be derived from another plant of the same species, from plants of a different species, but also from organisms from the animal kingdom or microorganisms (including viruses) (“foreign gene”) and/or, if appropriate, already have mutations compared to the natural sequence. According to the invention, it is also possible to use synthetic genes, which is also included in the term “foreign gene” here. It is also possible for a genetically modified plant to code for two or more foreign genes of different origin.
For the purposes of the invention, the “foreign gene” is further characterized in that it comprises a nucleic acid sequence which has a certain biological or chemical function or activity in the genetically modified plant. In general, these genes code for biocatalysts, such as, for example, enzymes or ribozymes, or else they comprise regulatory sequences, such as, for example, promoters or terminators, for influencing the expression of endogenous proteins (for example using antisense-technology, cosuppression technology or RNAi technology [RNA interference]). However, to this end, they may also code for regulatory proteins, such as, for example, repressors or inductors. Furthermore, the foreign gene may also serve for the targeted localization of a gene product of the genetically modified plant, coding, for example, for a signal sequence. The foreign gene may also code for inhibitors, such as, for example, antisense RNA.
The person skilled in the art is readily familiar with numerous different methods for producing genetically modified plants and methods for targeted mutagenesis, for gene transformation and cloning, for example from: Willmitzer, 1993, Transgenic plants, In: Biotechnology, A Multivolume Comprehensive Treatise, Rehm et al. (eds.), Vol. 2, 627-659, VCH Weinheim, Germany.
An example of a complex genetic manipulation of a useful plant is the so-called GURT technology (“Genetic Use Restriction Technologies”) which allows technical control of the propagation of the genetically modified plant variety in question. To this end, in general two or three foreign genes are cloned into the useful plant which, in a complex interaction after administration of an external stimulus, trigger a cascade resulting in the death of the embryo which would otherwise develop. To this end, the external stimulus (for example an active compound or another chemical or abiotic stimulus) may interact, for example, with a repressor which then no longer suppresses the expression of a recombinase, so that the recombinase is able to cleave an inhibitor, thus allowing expression of a toxin causing the embryo to die. Examples of this type of genetically modified plants are disclosed in U.S. Pat. No. 5,723,765 or U.S. Pat. No. 5,808,034.
Accordingly, the person skilled in the art is familiar with processes for generating genetically modified plants which, by virtue of the integration of regulatory foreign genes and the overexpression, suppression or inhibition of endogenous genes or gene sequences mediated in this manner, if appropriate, or by virtue of the existence or expression of foreign genes or fragments thereof, have modified properties.
As already discussed above, the method according to the invention allows improved utilization of the production potential of genetically modified plants. On the one hand, this may, if appropriate, be based on the fact that the application rate of the active compound which can be employed according to the invention can be reduced, for example by lowering the dose employed or else by reducing the number of applications. On the other hand, if appropriate, the yield of the useful plants may be increased quantitatively and/or qualitatively. This is true in particular in the case of a transgenically generated resistance to biotic or abiotic stress. If, for example, compounds of the formula (I) are used, the dosage of the insecticide may in certain cases be limited to a sublethal dose, without this resulting in a significant weakening of the desired effect of the active compound on the pests.
Depending on the plant species or plant varieties, their location and the growth conditions (soils, climate, vegetation period, nutrients), these synergistic actions may vary and may be multifarious. Thus possible are, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase of the activity of the compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering, easier harvesting, accelerated maturation, higher harvest yields, higher quality and/or higher nutrient value of the harvested products, increased storability and/or processability of the harvested products, which exceed the effects normally to be expected.
These advantages are the result of a synergistic action, achieved according to the invention, between the compounds of the formula (I) which can be employed and the respective principle of action of the genetic modification of the genetically modified plant. This reduction of production means as a result of the synergism, with simultaneous yield or quality increase, is associated with considerable economical and ecological advantages.
A list of examples known to the person skilled in the art of genetically modified plants, with the respective affected structure in the plant or the protein expressed by the genetic modification in the plant being mentioned, is compiled in Table 1. Here, the structure in question or the principle expressed is in each case grouped with a certain feature in the sense of a tolerance to a certain stress factor. A similar list (Table 3) compiles—in a slightly different arrangement—likewise examples of principles of action, tolerances induced thereby and possible useful plants. Further examples of genetically modified plants suitable for the treatment according to the invention are compiled in Tables 4 to 6.
In an advantageous embodiment, the compounds of the formula (I) are used for treating genetically modified plants comprising at least one gene or gene fragment coding for a Bt toxin. A Bt toxin is a protein originating from or derived from the soil bacterium Bacillus thuringiensis which either belongs to the group of the crystal toxins (Cry) or the cytolytic toxins (Cyt). In the bacterium, they are originally formed as protoxins and only metabolized in alkaline medium—for example in the digestive tract of certain feed insects—to their active form. There, the active toxin then binds to certain hydrocarbon structures at cell surfaces causing pores to be formed which destroy the osmotic potential of the cell, which may effect cell lysis. The result is the death of the insects. Bt toxins are active in particular against certain harmful species from the orders of the Lepidoptera (butterflies), Homoptera, Diptera and Coleoptera (beetles) in all their development stages; i.e. from the egg larva via their juvenile forms to their adult forms.
It has been known for a long time that gene sequences coding for Bt toxins, parts thereof or else peptides or proteins derived from Bt toxins can be cloned with the aid of genetical engineering into agriculturally useful plants to generate genetically modified plants having endogenous resistance to pests sensitive to Bt toxins. For the purposes of the invention, the genetically modified plants coding for at least one Bt toxin or proteins derived therefrom are defined as “Bt plants”.
The “first generation” of such Bt plants generally only comprise the genes enabling the formation of a certain toxin, thus only providing resistance to one group of pathogens. An example of a commercially available maize variety comprising the gene for forming the Cry1Ab toxin is “YieldGard®” from Monsanto which is resistant to the European corn borer. A known line of the “YieldGard®” maize from Monsanto is line MON 810. In contrast, in the Bt cotton variety (“Bollgard I®”), resistance to other pathogens from the family of the Lepidoptera is generated by introduction by cloning of the genes for forming the Cry1Ac toxin. “Bollgard II®” is a cotton variety which expresses the toxins Cry1Ac and Cry2Ab. Other genetically modified crop plants, in turn, express genes for forming Bt toxins with activity against pathogens from the order of the Coleoptera. Examples that may be mentioned are the Bt potato variety “NewLeaf” (Monsanto) capable of forming the Cry3A toxin, which is thus resistant to the Colorado potato beetle, and the genetically modified maize variety “YieldGard Rootworm®” (Monsanto) which forms the Cry3Bb1 toxin and is thus protected against various species of the Western corn rootworm. Further Bt toxins are the VIP proteins, for example VIP-3 with activity against pathogens from the orders of the Lepidoptera, Coleoptera and Diptera. An example of a cotton variety which expresses a VIP protein (Vip3A) together with Cry1Ab is “VIPCOT®” (Syngenta). Both proteins are highly active against two very common cotton pests, Helicoverpa armigera or zea (cotton bollworm) and Heliothis virescens (tobacco budworm).
In a “second generation”, the multiply genetically modified plants, already described above, comprising or expressing at least two foreign genes were generated. An example of this is the genetically modified maize variety “YieldGard Plus®” (Monsanto), which forms the Cry1Ab and the Cry3Bb1 toxins.
Preference according to the invention is given to genetically modified plants with Bt toxins from the group of the Cry family (see, for example, Crickmore et al., 1998, Microbiol. Mol. Biol. Rev. 62: 807-812), which are particularly effective against Lepidoptera, Coleoptera and Diptera.
Examples of genes coding for the proteins are:
cry1Aa1, cry1Aa2, cry1Aa3, cry1Aa4, cry1Aa5, cry1Aa6, cry1Aa7, cry1Aa8, cry1Aa9, cry1Aa10, cry1Aa11 cry1Ab1, cry1Ab2, cry1Ab3, cry1Ab4, cry1Ab5, cry1Ab6, cry1Ab7, cry1Ab8, cry1Ab9, cry1Ab10, cry1Ab11, cry1Ab12, cry1Ab13, cry1Ab14, cry1Ac1, cry1Ac2, cry1Ac3, cry1Ac4, cry1Ac5, cry1Ac6, cry1Ac7, cry1Ac8, cry1Ac9, cry1Ac10, cry1Ac11, cry1Ac12, cry1Ac13, cry1Ad1, cry1Ad2, cry1Ae1, cry1Af1, cry1Ag1, cry1Ba1, cry1Ba2, cry1Bb1, cry1Bc1, cry1Bd1, cry1Be1, cry1Ca1, cry1Ca2, cry1Ca3, cry1Ca4, cry1Ca5, cry1Ca6, cry1Ca7, cry1Cb1, cry1Cb2, cry1Da1, cry1Da2, cry1Db1, cry1Ea1, cry1Ea2, cry1Ea3, cry1Ea4, cry1Ea5, cry1Ea6, cry1Eb1, cry1Fa1, cry1Fa2, cry1Fb1, cry1Fb2, cry1Fb3, cry1Fb4, cry1Ga1, cry1Ga2, cry1Gb1, cry1Gb2, cry1Ha1, cry1Hb1, cry1Ia1, cry1Ia2, cry1Ia3, cry1Ia4, cry1Ia5, cry1Ia6, cry1Ib1, cry1Ic1, cry1Id1, cry1Ie1, cry1I-like, cry1Ja1, cry1Jb1, cry1Jc1, cry1Ka1, cry1-like, cry2Aa1, cry2Aa2, cry2Aa3, cry2Aa4, cry2Aa5, cry2Aa6, cry2Aa7, cry2Aa8, cry2Aa9, cry2Ab1, cry2Ab2, cry2Ab3, cry2Ac1, cry2Ac2, cry2Ad1, cry3Aa1, cry3Aa2, cry3Aa3, cry3Aa4, cry3Aa5, cry3Aa6, cry3Aa7, cry3Ba1, cry3Ba2, cry3Bb1, cry3Bb2, cry3Bb3, cry3Ca1, cry4Aa1, cry4Aa2, cry4Ba1, cry4Ba2, cry4Ba3, cry4Ba4, cry5Aa1, cry5Ab1, cry5Ac1, cry5Ba1, cry6Aa1, cry6Ba1, cry7Aa1, cry7Ab1, cry7Ab2, cry8Aa1, cry8Ba1, cry8Ca1, cry9Aa1, cry9Aa2, cry9Ba1, cry9Ca1, cry9Da1, cry9Da2, cry9Ea1, cry9 like, cry10Aa1, cry10Aa2, cry11Aa1, cry11Aa2, cry11Ba1, cry11Bb1, cry12Aa1, cry13Aa1, cry14Aa1, cry15Aa1, cry16Aa1, cry17Aa1, cry18Aa1, cry18Ba1, cry18Ca1, cry19Aa1, cry19Ba1, cry20Aa1, cry21Aa1, cry21Aa2, cry22Aa1, cry23Aa1, cry24Aa1, cry25Aa1, cry26Aa1, cry27Aa1, cry28Aa1, cry28Aa2, cry29Aa1, cry30Aa1, cry31Aa1, cytlAa1, cytlAa2, cytlAa3, cytlAa4, cytlAb1, cytlBa1, cyt2Aa1, cyt2Ba1, cyt2Ba2, cyt2Ba3, cyt2Ba4, cyt2Ba5, cyt2Ba6, cyt2Ba7, cyt2Ba8, cyt2Bb1.
Particular preference is given to the genes or gene sections of the subfamilies cry1, cry2, cry3, cry5 and cry9; especially preferred are cry1Ab, cry1Ac, cry3A, cry3B and cry9C.
Furthermore, it is preferred to use plants which, in addition to the genes for one or more Bt toxins, contain or express, if appropriate, also genes for expressing, for example, a protease or peptidase inhibitor (such as in WO-A 95/35031), of herbicide resistances (for example to glufosinate or glyphosate by expression of the pat gene or bar gene) or for becoming resistant to nematodes, fungi or viruses (for example by expressing a glucanase, chitinase). However, they may also be modified in their metabolic properties, so that they show a qualitative and/or quantitative change of ingredients (for example by modification of the energy, carbohydrate, fatty acid or nitrogen metabolism or of metabolite currents influencing these) (see above). An example of a maize cultivar which expresses the Cry1Fa2 toxin and the enzyme phosphinothricin N-acetyltransferase (PAT, provision of herbicide resistance to glufosinate ammonium) is “Herculex I®” (Pioneer/Dow AgroSciences). A maize cultivar which expresses a truncated Cry1Ab toxin and the enzyme PAT is Bt11 maize from Syngenta. Bt176 maize from Syngenta expresses a Cry1Ab toxin and the enzyme PAT.
Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
In the present context, the term “insect-resistant transgenic plant” includes any plant containing at least one transgene comprising a coding sequence encoding:
Of course, insect-resistant transgenic plants, as used herein, also include any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 8. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 8, to expand the range of target insect species affected or to delay the development of insect resistance to the plants, by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
A list of examples of principles of action which can be introduced by genetic modification into a useful plant and which are suitable for the treatment according to the invention on their own or in combination is compiled in Table 2. Under the header “AP” (active principle), this table contains the respective principle of action and associated therewith the pest to be controlled.
In a particularly preferred variant, the process according to the invention is used for treating genetically modified vegetable, maize, soya bean, cotton, tobacco, rice, potato and sugar beet varieties. These are preferably Bt plants.
The vegetable plants or varieties are, for example, the following useful plants:
Bt vegetables including exemplary methods for preparing them are described in detail, for example, in Barton et al., 1987, Plant Physiol. 85: 1103-1109; Vaeck et al., 1987, Nature 328: 33-37; Fischhoff et al., 1987, Bio/Technology 5: 807-813. In addition, Bt vegetable plants are already known as commercially available varieties, for example the potato cultivar NewLeaf (Monsanto). The preparation of Bt vegetables is also described in U.S. Pat. No. 6,072,105.
Likewise, Bt cotton is already known in principle, for example from U.S. Pat. No. 5,322,938. In the context of the present invention, particular preference is given to the Bt cotton with the trade names NuCOTN33® and NuCOTN33B® (expression of the Cry1Ac toxin).
The use and preparation of Bt maize has likewise already been known for a long time, for example from Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996). High efficiency transformation of maize (Zea mayz L.) mediated by Agrobacterium tumefaciens, Nature Biotechnology 4: 745-750. EP-B-0485506, too, describes the preparation of Bt maize plants. Furthermore, different varieties of Bt maize are commercially available, for example under the following trade names (company/companies is/are in each case given in brackets): KnockOut® (Novartis Seeds, expression of the Cry1Ab toxin), NaturGard® (Mycogen Seeds, expression of the Cry1Ab toxin), Yieldgard® (Novartis Seeds, Monsanto, Cargill, Golden Harvest, Pioneer, DeKalb, inter alia, expression of the Cry1Ab toxin), Bt-Xtra® (DeKalb, expression of the Cry1Ac toxin), StarLink® (Aventis CropScience, Garst inter alia, expression of the Cry9c toxin), Herculex 1 (Mycogen, Pioneer, expression of the Cry1F toxin). For the purposes of the present invention, particular preference is given especially to the following maize cultivars: KnockOut®, NaturGard®, Yieldgard®, Bt-Xtra® and StarLink®.
Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
Herbicide-tolerant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., Curr. Topics Plant Physiol. (92), 7, 139-145), the genes encoding a petunia EPSPS (Shah et al., Science (1986), 233, 478-481), a tomato EPSPS (Gasser et al., J. Biol. Chem. (1988), 263, 4280-4289) or an Eleusine EPSPS (WO 2001/66704). It can also be a mutated EPSPS, as described, for example, in EP-A 0837944, WO 2000/066746, WO 2000/066747 or WO 2002/026995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxidoreductase enzyme as described in U.S. Pat. No. 5,776,760 and U.S. Pat. No. 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described, for example, in WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally occurring mutations of the above-mentioned genes as described, for example, in WO 2001/024615 or WO 2003/013226.
Other herbicide-resistant plants are for example plants have been made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition. One such efficient detoxifying enzyme is, for example, an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase have been described, for example, in U.S. Pat. No. 5,561,236; U.S. Pat. No. 5,648,477; U.S. Pat. No. 5,646,024; U.S. Pat. No. 5,273,894; U.S. Pat. No. 5,637,489; U.S. Pat. No. 5,276,268; U.S. Pat. No. 5,739,082; U.S. Pat. No. 5,908,810 and U.S. Pat. No. 7,112,665.
Further herbicide-tolerant plants are also plants that have been made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). Hydroxyphenylpyruvatedioxygenases are enzymes that catalyse the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme, or a gene encoding a mutated HPPD enzyme according to WO 96/038567, WO 99/024585 and WO 99/024586. Tolerance to HPPD inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants and genes are described in WO 99/034008 and WO 2002/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an prephenate dehydrogenase enzyme in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928.
Further herbicide-resistant plants are plants that have been made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS inhibitors include, for example, sulphonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates, and/or sulphonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxy acid synthase, AHAS) are known to impart tolerance to different herbicides and groups of herbicides, as described, for example, in Tranel and Wright, Weed Science (2002), 50, 700-712, and also in U.S. Pat. No. 5,605,011, U.S. Pat. No. 5,378,824, U.S. Pat. No. 5,141,870 and U.S. Pat. No. 5,013,659. The production of sulphonylurea-tolerant plants and imidazolinone-tolerant plants has been described in U.S. Pat. No. 5,605,011; U.S. Pat. No. 5,013,659; U.S. Pat. No. 5,141,870; U.S. Pat. No. 5,767,361; U.S. Pat. No. 5,731,180; U.S. Pat. No. 5,304,732; U.S. Pat. No. 4,761,373; U.S. Pat. No. 5,331,107; U.S. Pat. No. 5,928,937; and U.S. Pat. No. 5,378,824; and also in the international publication WO 96/033270. Further imidazolinone-tolerant plants have also been described, for example in WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351 and WO 2006/060634. Further sulphonylurea- and imidazolinone-tolerant plants have also been described, for example in WO 2007/024782.
Other plants tolerant to imidazolinone and/or sulphonylurea can be obtained by induced mutagenesis, by selection in cell cultures in the presence of the herbicide or by mutation breeding, as described, for example, for soya beans in U.S. Pat. No. 5,084,082, for rice in WO 97/41218, for sugar beet in U.S. Pat. No. 5,773,702 and WO 99/057965, for lettuce in U.S. Pat. No. 5,198,599 or for sunflower in WO 2001/065922.
For soya beans, too, Roundup®Ready varieties or varieties having resistance to the herbicide Liberty Link® can be obtained and treated according to the invention. In the case of rice, a large number of “Golden Rice” lines are available which are likewise characterized in that, by virtue of a genetic modification, they have an increased content of provitamin A. These too are examples of plants which can be treated by the process according to the invention, with the advantages indicated.
Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stress factors. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress-tolerant plants include the following:
Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as, for example:
Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fibre characteristics. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such altered fibre characteristics and include:
Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation imparting such altered oil characteristics and include:
Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or a combination of transformation events, that are listed for example in the databases of various national or regional regulatory agencies (see for example, gmoinfo.jrc.it/gmp_browse.aspx and www.agbios.com/dbase.php)
The method according to the invention is suitable for controlling a large number of harmful organisms which occur in particular in vegetables, maize and cotton, in particular insects and arachnids, very particularly preferably insects. The pests mentioned include:
The method according to the invention is particularly suitable for treating Bt vegetables, Bt maize, Bt cotton, Bt soya beans, Bt tobacco and also Bt rice, Bt sugar beet or Bt potatoes for controlling aphids (Aphidina), whiteflies (Trialeurodes), thrips (Thysanoptera), spider mites (Arachnida), scale insects and mealy-bugs (Coccoidae and Pseudococcoidae).
The active compounds which can be used according to the invention can be employed in customary formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, granules for broadcasting, suspoemulsion concentrates, natural compounds impregnated with active compound, synthetic substances impregnated with active compound, fertilizers and also microencapsulations in polymeric substances.
These formulations are produced in a known manner, for example by mixing the active compounds with extenders, that is, liquid solvents, and/or solid carriers, optionally with the use of surfactants, that is to say emulsifiers and/or dispersants, and/or foam-formers. The formulations are prepared either in suitable plants or else before or during application.
Wettable powders are preparations which can be dispersed homogeneously in water and which, in addition to the active compound and beside a diluent or inert substance, also comprise wetting agents, for example polyethoxylated alkylphenols, polyethoxylated fatty alcohols, alkylsulphonates or alkylphenylsulphonates and dispersants, for example sodium lignosulphonate, sodium 2,2′-dinaphthylmethane-6,6′-disulphonate.
Dusts are obtained by grinding the active compound with finely distributed solid substances, for example talc, natural clays, such as kaolin, bentonite, pyrophillite or diatomaceous earth. Granules can be prepared either by spraying the active compound onto granular inert material capable of adsorption or by applying active compound concentrates to the surface of carrier substances, such as sand, kaolinites or granular inert material, by means of adhesives, for example polyvinyl alcohol, sodium polyacrylate or mineral oils. Suitable active compounds can also be granulated in the manner customary for the preparation of fertilizer granules—if desired as a mixture with fertilizers.
Suitable for use as auxiliaries are substances which are suitable for imparting to the composition itself and/or to preparations derived therefrom (for example spray liquors, seed dressings) particular properties such as certain technical properties and/or also particular biological properties. Typical auxiliaries are: extenders, solvents and carriers.
Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).
If the extender used is water, it is also possible to employ, for example, organic solvents as auxiliary solvents. Essentially, suitable liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and also their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl sulphoxide, and also water.
Suitable solid carriers are:
for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic materials such as highly-disperse silica, alumina and silicates; suitable solid carriers for granules are: for example, crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, and also synthetic granules of inorganic and organic meals, and granules of organic material such as paper, sawdust, coconut shells, maize cobs and tobacco stalks; suitable emulsifiers and/or foam-formers are: for example, nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates and also protein hydrolysates; suitable dispersants are nonionic and/or ionic substances, for example from the classes of the alcohol-POE and/or -POP ethers, acid and/or POP POE esters, alkylaryl and/or POP POE ethers, fat and/or POP POE adducts, POE- and/or POP-polyol derivatives, POE- and/or POP-sorbitan or -sugar adducts, alkyl or aryl sulphates, alkyl- or arylsulphonates and alkyl or aryl phosphates or the corresponding PO-ether adducts.
Furthermore, suitable oligo- or polymers, for example those derived from vinylic monomers, from acrylic acid, from EO and/or PO alone or in combination with, for example, (poly)alcohols or (poly)amines. It is also possible to employ lignin and its sulphonic acid derivatives, unmodified and modified celluloses, aromatic and/or aliphatic sulphonic acids and their adducts with formaldehyde.
Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins, and synthetic phospholipids, can be used in the formulations.
It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic colorants such as alizarin colorants, azo colorants and metal phthalocyanine colorants, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
Other possible additives are perfumes, mineral or vegetable, optionally modified oils, waxes and nutrients (including trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
Stabilizers, such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability may also be present.
These individual types of formulation are known in principle and are described, for example, in: “Pesticides Formulations”, 2nd Ed., Marcel Dekker N.Y.; Martens, 1979, “Spray Drying Handbook”, 3rd Ed., G. Goodwin Ltd. London.
Based on his general expert knowledge, the person skilled in the art is able to choose suitable formulation auxiliaries (in this context, see, for example, Watkins, “Handbook of Insecticide Dust Diluents and Carriers”, 2nd Ed., Darland Books, Caldwell N.J.).
In a preferred embodiment, the plants or plant parts are treated according to the invention with an oil-based suspension concentrate. An advantageous suspension concentrate is known from WO 2005/084435 (EP 1 725 104 A2). It consists of at least one room-temperature-solid active agrochemical substance, at least one “closed” penetrant, at least one vegetable oil or mineral oil, at least one nonionic surfactant and/or at least one anionic surfactant, and optionally one or more additives from the groups of the emulsifiers, foam inhibitors, preservatives, antioxidants, colorants and/or inert filler materials. Preferred embodiments of the suspension concentrate are described in the abovementioned WO 2005/084435. For the purpose of disclosure, both documents are incorporated herein in their entirety.
In a further preferred embodiment, the genetically modified plants or plant parts are treated according to the invention with compositions comprising ammonium or phosphonium salts and, if appropriate, penetrants. Advantageous compositions are known from WO 2007/068355. They consist of at least one compound of the formula (I) and at least one ammonium or phosphonium salt and, if appropriate, penetrants. Preferred embodiments are described in WO 2007/068355. For the purpose of disclosure, this document is incorporated herein in its entirety.
In general, the formulations comprise from 0.01 to 98% by weight of active compound, preferably from 0.5 to 90%. In wettable powders, the active compound concentration is, for example, from about 10 to 90% by weight, the remainder to 100% by weight consisting of customary formulation components. In the case of emulsifiable concentrates, the active compound concentration can be from about 5 to 80% by weight. In most cases, formulations in the form of dusts comprise from 5 to 20% by weight of active compound, sprayable solutions comprise about 2 to 20% by weight. In the case of granules, the active compound content depends partially on whether the active compound is present in liquid or solid form and on which granulation auxiliaries, fillers, etc., are used.
The required application rate may also vary with external conditions such as, inter alia, temperature and humidity. It may vary within wide limits, for example between 0.1 g/ha and 5.0 kg/ha or more of active substance. However, it is preferably between 0.1 g/ha and 1.0 kg/ha. Owing to the synergistic effects between Bt vegetable and insecticide, particular preference is given to application rates of from 0.1 to 500 g/ha.
For compounds of the formula (I), preference is given to application rates of from 10 to 500 g/ha, particular preference is given to 10 to 200 g/ha.
In a particular embodiment of the method according to the invention, the compound of the formula (I) is employed in an application rate of from 0.1 g/ha to 5.0 kg/ha, preferably from 0.1 to 500 g/ha and particularly preferably from 50 to 500 g/ha and especially preferably from 50 to 200 g/ha.
In their commercial formulations and in the use forms prepared from these formulations, the active compounds according to the invention may be present as mixtures with other active compounds, such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth-regulating substances or herbicides.
Particularly favourable examples of co-components in mixtures are the following compounds:
Fungicides:
Inhibitors of Nucleic Acid Synthesis
benalaxyl, benalaxyl-M, bupirimate, chiralaxyl, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, metalaxyl, metalaxyl-M, ofurace, oxadixyl, oxolinic acid
Inhibitors of Mitosis and Cell Division
benomyl, carbendazim, diethofencarb, fuberidazole, pencycuron, thiabendazole, thiophanat-methyl, zoxamide
Inhibitors of Respiratory Chain Complex I/II
diflumetorim
bixafen, boscalid, carboxin, fenfuram, fluopyram, flutolanil, furametpyr, mepronil, oxycarboxin, penthiopyrad, thifluzamide, N-[2-(1,3-dimethylbutyl)phenyl]-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide
Inhibitors of Respiratory Chain Complex III
amisulbrom, azoxystrobin, cyazofamid, dimoxystrobin, enestrobin, famoxadone, fenamidone, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, pyraclostrobin, pyribencarb, picoxystrobin, trifloxystrobin
Decouplers
dinocap, fluazinam
Inhibitors of ATP Production
fentin acetate, fentin chloride, fentin hydroxide, silthiofam
Inhibitors of Amino Acid Biosynthesis and Protein Biosynthesis
andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim, pyrimethanil
Inhibitors of Signal Transduction
fenpiclonil, fludioxonil, quinoxyfen
Inhibitors of Lipid and Membrane Synthesis
chlozolinate, iprodione, procymidone, vinclozolin
ampropylfos, potassium-ampropylfos, edifenphos, iprobenfos (IBP), isoprothiolane, pyrazophos
tolclofos-methyl, biphenyl
iodocarb, propamocarb, propamocarb hydrochloride
Inhibitors of Ergosterol Biosynthesis
fenhexamid,
azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, etaconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, spiroxamine, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole, voriconazole, imazalil, imazalil sulphate, oxpoconazole, fenarimol, flurprimidole, nuarimol, pyrifenox, triforine, pefurazoate, prochloraz, triflumizole, viniconazole,
aldimorph, dodemorph, dodemorph acetate, fenpropimorph, tridemorph, fenpropidin, spiroxamine,
naftifine, pyributicarb, terbinafine
Inhibitors of Cell Wall Synthesis
benthiavalicarb, bialaphos, dimethomorph, flumorph, iprovalicarb, polyoxins, polyoxorim, validamycin A
Inhibitors of Melanin Biosynthesis
capropamid, diclocymet, fenoxanil, phthalid, pyroquilon, tricyclazole
Resistance Induction
acibenzolar-S-methyl, probenazole, tiadinil
Multisite
captafol, captan, chlorothalonil, copper salts such as: copper hydroxide, copper naphthenate, copper oxychloride, copper sulphate, copper oxide, oxine-copper and Bordeaux mixture, dichlofluanid, dithianon, dodine, dodine free base, ferbam, folpet, fluorofolpet, guazatine, guazatine acetate, iminoctadine, iminoctadine albesilate, iminoctadine triacetate, mancopper, mancozeb, maneb, metiram, metiram zinc, propineb, sulphur and sulphur preparations containing calcium polysulphide, thiram, tolylfluanid, zineb, ziram
Unknown Mechanism
amibromdol, benthiazole, bethoxazin, capsimycin, carvone, chinomethionat, chloropicrin, cufraneb, cyflufenamid, cymoxanil, dazomet, debacarb, diclomezine, dichlorophen, dicloran, difenzoquat, difenzoquat methyl sulphate, diphenylamine, ethaboxam, ferimzone, flumetover, flusulfamide, fluopicolid, fluoroimid, fosetyl-Al, hexachlorobenzene, 8-hydroxyquinoline sulphate, iprodione, irumamycin, isotianil, methasulfocarb, metrafenone, methyl isothiocyanate, mildiomycin, natamycin, nickel dimethyl dithiocarbamate, nitrothal-isopropyl, octhilinone, oxamocarb, oxyfenthiin, pentachlorophenol and salts, 2-phenylphenol and salts, piperalin, propanosine-sodium, proquinazid, pyrrolnitrin, quintozene, tecloftalam, tecnazene, triazoxide, trichlamide, zarilamid and 2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine, N-(4-chloro-2-nitrophenyl)-N-ethyl-4-methylbenzenesulphonamide, 2-amino-4-methyl-N-phenyl-5-thiazolecarboxamide, 2-chloro-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridinecarboxamide, 3-[5-(4-chlorophenyl)-2,3-dimethylisoxazolidin-3-yl]pyridine, cis-1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)cycloheptanol, 2,4-dihydro-5-methoxy-2-methyl-4-[[[[1-[3(trifluoromethyl)phenyl]ethylidene]amino]oxy]methyl]phenyl]-3H-1,2,3-triazol-3-one (185336-79-2), methyl 1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazole-5-carboxylate, 3,4,5-trichloro-2,6-pyridinedicarbonitrile, methyl 2-[[[cyclopropyl[(4-methoxyphenyl)imino]methyl]thio]methyl]-.alpha.-(methoxymethylene)benzacetate, 4-chloro-alpha-propynyloxy-N-[2-[3-methoxy-4-(2-propynyloxy)phenyl]ethyl]benzacetamide, (2S)—N-[2-[4-[[3-(4-chlorophenyl)-2-propynyl]oxy]-3-methoxyphenyl]ethyl]-3-methyl-2-[(methylsulphonyl)amino]butanamide, 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine, 5-chloro-6-(2,4,6-trifluorophenyl)-N-[(1R)-1,2,2-trimethylpropyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine, 5-chloro-N-[(1R)-1,2-dimethylpropyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine, N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-dichloronicotinamide, N-(5-bromo-3-chloropyridin-2-yl)methyl-2,4-dichloronicotinamide, 2-butoxy-6-iodo-3-propylbenzopyranon-4-one, N—{(Z)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluorophenyl]methyl}-2-benzacetamide, N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-formylamino-2-hydroxybenzamide, 2-[[[[1-[3-(1-fluoro-2-phenyl-ethyl)oxy]phenyl]ethylidene]amino]oxy]methyl]-alpha-(methoxyimino)-N-methyl-alphaE-benzacetamide, N-{2-[3-chloro-5-(trifluoromethyl)pyridin-2-yl]ethyl}-2-(trifluoromethyl)benzamide, N-(3′,4′-dichloro-5-fluorobiphenyl-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide, N-(6-methoxy-3-pyridinyl)cyclopropanecarboxamide, 1-[(4-methoxyphenoxy)methyl]-2,2-dimethylpropyl-1H-imidazole-1-carboxylic acid, O-[1-[(4-methoxyphenoxy)methyl]-2,2-dimethylpropyl]-1H-imidazole-1-carbothioic acid, 2-(2-{[6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl]oxy}phenyl)-2-(methoxyimino)-N-methylacetamide
Bactericides:
bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.
Insecticides/Acaricides/Nematicides:
Acetylcholine Esterase (AChE) Inhibitors
carbamates,
for example alanycarb, aldicarb, aldoxycarb, allyxycarb, aminocarb, bendiocarb, benfuracarb, bufencarb, butacarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulphan, cloethocarb, dimetilan, ethiofencarb, fenobucarb, fenothiocarb, fenoxycarb, formetanate, furathiocarb, isoprocarb, metam-sodium, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, promecarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb, triazamate
organophosphates,
for example acephate, azamethiphos, azinphos (-methyl, -ethyl), bromophos-ethyl, bromfenvinfos (-methyl), butathiofos, cadusafos, carbophenothion, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos (-methyl/-ethyl), coumaphos, cyanofenphos, cyanophos, chlorfenvinphos, demeton-S-methyl, demeton-S-methylsulphone, dialifos, diazinon, dichlofenthion, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, dioxabenzofos, disulphoton, EPN, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitrothion, fensulphothion, fenthion, flupyrazofos, fonofos, formothion, fosmethilan, fosthiazate, heptenophos, iodofenphos, iprobenfos, isazofos, isofenphos, isopropyl O-salicylate, isoxathion, malathion, mecarbam, methacrifos, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion (-methyl/-ethyl), phenthoate, phorate, phosalone, phosmet, phosphamidon, phosphocarb, phoxim, pirimiphos (-methyl/-ethyl), profenofos, propaphos, propetamphos, prothiofos, prothoate, pyraclofos, pyridaphenthion, pyridathion, quinalphos, sebufos, sulphotep, sulprofos, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon, vamidothion
Sodium Channel Modulators/Voltage-Dependent Sodium Channel Blockers
pyrethroids,
for example acrinathrin, allethrin (d-cis-trans, d-trans), beta-cyfluthrin, bifenthrin, bioallethrin, bioallethrin-S-cyclopentyl isomer, bioethanomethrin, biopermethrin, bioresmethrin, chlovaporthrin, cis-cypermethrin, cis-resmethrin, cis-permethrin, clocythrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin (alpha-, beta-, theta-, zeta-), cyphenothrin, deltamethrin, eflusilanate, empenthrin (1R isomer), esfenvalerate, etofenprox, fenfluthrin, fenpropathrin, fenpyrithrin, fenvalerate, flubrocythrinate, flucythrinate, flufenprox, flumethrin, fluvalinate, fubfenprox, gamma-cyhalothrin, imiprothrin, kadethrin, lambda-cyhalothrin, metofluthrin, permethrin (cis-, trans-), phenothrin (1R-trans-isomer), prallethrin, profluthrin, protrifenbute, pyresmethrin, pyrethrin, resmethrin, RU 15525, silafluofen, tau-fluvalinate, tefluthrin, terallethrin, tetramethrin (1R isomer), tralomethrin, transfluthrin, ZXI 8901, pyrethrins (pyrethrum)
DDT
oxadiazines,
for example indoxacarb
semicarbazones,
for example metaflumizone (BAS3201)
Acetylcholine Receptor Agonists/Antagonists
chloronicotinyls,
for example acetamiprid, AKD 1022, clothianidin, dinotefuran, imidacloprid, imidaclothiz, nitenpyram, nithiazine, thiacloprid, thiamethoxam
nicotine, bensultap, cartap
Acetylcholine Receptor Modulators
spinosyns,
for example spinosad, spinetoram
GABA-Controlled Chloride Channel Antagonists
organochlorines,
for example camphechlor, chlordane, endosulphan, gamma-HCH, HCH, heptachlor, lindane, methoxychlor
fiprols,
for example acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole, vaniliprole
Chloride Channel Activators
mectins,
for example abarmectin, emamectin, emamectin-benzoate, ivermectin, lepimectin, milbemycin
Juvenile hormone mimetics,
for example diofenolan, epofenonane, fenoxycarb, hydroprene, kinoprene, methoprene, pyriproxifen, triprene
Ecdysone Agonists/Disruptors
diacylhydrazines,
for example chromafenozide, halofenozide, methoxyfenozide, tebufenozide
Chitin Biosynthesis Inhibitors
benzoylureas, for example bistrifluron, chlofluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, penfluron, teflubenzuron, triflumuron
A mixture with other known active compounds, such as herbicides, fertilizers, growth regulators, safeners, semiochemicals, or else with agents for improving the plant properties, is also possible.
The active compound content of the use forms prepared from the commercially available formulations can be from 0.00000001 to 95% by weight, preferably between 0.00001 and 1% by weight, of active compound.
Helminthosporium turcicum,
Rhopalosiphum maydis, Diplodia
maydis, Ostrinia nubilalis, Lepidoptera sp.
Alternaria, Sclerotina, Rhizoctonia,
Chaetomium, Phycomycen
Cochliobulus
Photorabdus and
Heliothis zea, armyworms e.g.
Xenorhabdus toxins
Spodoptera frugiperda, Western corn
zea, armyworms e.g. Spodoptera frugiperda,
zea, armyworms e.g. Spodoptera frugiperda,
Heliothis zea, armyworms e.g. Spodoptera
frugiperda, Western corn rootworm,
Sesamia sp., Aprotis ipsilon, Asian corn
zea, armyworms e.g. Spodoptera frugiperda,
zea, armyworms e.g. Spodoptera frugiperda,
zea, armyworms e.g. Spodoptera frugiperda,
zea, armyworms e.g. Spodoptera frugiperda,
Photorabdus and
Xenorhabdus toxins
Heliothis zea, armyworms e.g. Spodoptera
frugiperda, Western corn rootworm,
Sesamia sp., Aprotis ipsilon, Asian corn
Photorabdus and
Xenorhabdus toxins
Photorabdus and
oryzophilus, Diptera, rice planthoppers, e.g.
Xenorhabdus toxins
oryzophilus, Diptera, rice planthoppers, e.g.
oryzophilus, Diptera, rice planthoppers, e.g.
oryzophilus, Diptera, rice planthoppers, e.g.
oryzophilus, Diptera, rice planthoppers, e.g.
oryzophilus, Diptera, rice planthoppers e.g.
oryzophilus, Diptera, rice planthoppers, e.g.
oryzophilus, Diptera, rice planthoppers e.g.
Photorabdus and
Xenorhabdus toxins
Phytophtora, Verticillium, Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Corynebacterium
sepedonicum, Erwinia
carotovora
Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Rhizoctonia
Photorabdus and
Xenorhabdus toxins
Phytophtora, Verticillium, Rhizoctonia
Fusarium
Photorabdus and
Xenorhabdus toxins
Fusarium
Photorabdus and
Xenorhabdus toxins
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Botrytis and powdery mildew
Photorabdus and
Xenorhabdus toxins
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Cylindrosporium, Phoma, Sclerotinia
Photorabdus and
Xenorhabdus toxins
Photorabdus and
Xenorhabdus toxins
Photorabdus and
Xenorhabdus toxins
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Phytophtora
Photorabdus and
Xenorhabdus toxins
Photorabdus and
Xenorhabdus toxins
Photorabdus and
Xenorhabdus toxins
Clavibacter
Photorabdus and
Xenorhabdus toxins
Sclerotinia
Photorabdus and
Xenorhabdus toxins
Sclerotinia
Cercospora beticola
Photorabdus and
Xenorhabdus toxins
Adoxophyes spp.
Agrotis spp.
Alabama argiliaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Heliula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididea spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipaipus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp
Agrotis spp
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Ciysia ambiguella
Crocidolomia binotaiis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutelia xyiostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Ciysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossypielia.
Phyllocnistis citrella
Pieris spp.
Plutella xyiostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica baiteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinelia spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocoliethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psyila spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Acutus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argiiiaceae
Anticarsia gemmataiis
Chilo spp.
Ciysia ambiguelia
Crocodolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argiilaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotaiis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera sectelia
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriornyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Acutus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argiilaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotaiis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitelia
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidielia spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Acutus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia
lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Piutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Niiaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Acutus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotaiis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyliocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylia spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyliocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meioidogyne spp.
Adoxophyesspp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undaiis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips auranii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argiliaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Helluia undaiis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argiliaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia
binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Heliuia undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrelia
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Acutus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylia spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama
argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia
binotalis
Cydia spp.
Diparopsis
castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia
lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora
gossyp.
Phyllocnistis citrella
Pieris spp.
Plutiia xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argiliaceae
Anticarsia gemmatalis
Chilo spp.
Ciysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidielia spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Acutus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia
gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus
grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynohus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossyp.
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichopiusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidielia spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Aculus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Adoxophyes spp.
Agrotis spp.
Alabama argillaceae
Anticarsia gemmatalis
Chilo spp.
Clysia ambiguella
Crocidolomia binotalis
Cydia spp.
Diparopsis castanea
Earias spp.
Ephestia spp.
Heliothis spp.
Hellula undalis
Keiferia lycopersicella
Leucoptera scitella
Lithocollethis spp.
Lobesia botrana
Ostrinia nubilalis
Pandemis spp.
Pectinophora gossypiella
Phyllocnistis citrella
Pieris spp.
Plutella xylostella
Scirpophaga spp.
Sesamia spp.
Sparganothis spp.
Spodoptera spp.
Tortrix spp.
Trichoplusia ni
Agriotes spp.
Anthonomus grandis
Curculio spp.
Diabrotica balteata
Leptinotarsa spp.
Lissorhoptrus spp.
Otiorhynchus spp.
Aleurothrixus spp.
Aleyrodes spp.
Aonidiella spp.
Aphididae spp.
Aphis spp.
Bemisia tabaci
Empoasca spp.
Mycus spp.
Nephotettix spp.
Nilaparvata spp.
Pseudococcus spp.
Psylla spp.
Quadraspidiotus spp.
Schizaphis spp.
Trialeurodes spp.
Lyriomyza spp.
Oscinella spp.
Phorbia spp.
Frankliniella spp.
Thrips spp.
Scirtothrips aurantii
Aceria spp.
Acutus spp.
Brevipalpus spp.
Panonychus spp.
Phyllocoptruta spp.
Tetranychus spp.
Heterodera spp.
Meloidogyne spp.
Photorhabdus luminescens: PL
Xenorhabdus nematophilus: XN
Brassica
Brassica
Brassica
Brassica
Brassica
Brassica
Brassica
Brassica
Brassica
Dianthus caryophyllus (carnation)
Dianthus caryophyllus (carnation)
Dianthus caryophyllus (carnation)
Brassica napus (Argentine oilseed
Zea mays L. (maize)
Zea mays L. (maize)
Cucumis melo (melon)
Carica papaya (papaya)
Solanum tuberosum L. (potato)
Solanum tuberosum L. (potato)
Glycine max L. (soya bean)
Glycine max L. (soya bean)
Cucurbita pepo (pumpkin)
Cucurbita pepo (pumpkin)
Nicotiana tabacum L. (tobacco)
Lycopersicon esculentum (tomato)
Lycopersicon esculentum (tomato)
Lycopersicon esculentum (tomato)
Lycopersicon esculentum (tomato)
Lycopersicon esculentum (tomato)
Agrostis
stolonifera
Beta vulgaris
Beta vulgaris
Beta vulgaris
Brassica
napus (Argentine
californica).
Brassica
napus (Argentine
Brassica
napus (Argentine
Brassica
napus (Argentine
tumefaciens and glyphosate oxidase
Brassica
napus (Argentine
tumefaciens and glyphosate oxidase
Brassica
napus (Argentine
Brassica
napus (Argentine
Brassica
napus (Argentine
Bacillus amyloliquefaciens, RF lines
Streptomyces hygroscopicus.
Brassica
napus (Argentine
Bacillus amyloliquefaciens, RF lines
Streptomyces hygroscopicus.
Brassica
napus (Argentine
Bacillus amyloliquefaciens, RF lines
Streptomyces hygroscopicus.
Brassica
napus (Argentine
Brassica
napus (Argentine
pneumoniae.
Brassica
napus
Brassica
napus (Argentine
amyloliquefaciens; fertility restoration
Streptomyces hygroscopicus.
Brassica
napus (Argentine
amyloliquefaciens; fertility restoration
Streptomyces hygroscopicus.
Brassica
napus (Argentine
Brassica
napus (Argentine
Brassica
napus
Brassica
napus (Argentine
Brassica
napus (Argentine
Brassica
rapa (Polish
Brassica
rapa (Polish
Carica
Papaya ringspot virus (PRSV) resistant
papaya (Papaya)
papaya produced by inserting the coat
Cichorium
intybus (Chicory)
amyloliquefaciens; PPT resistance was
Cucumis
melo (Melon)
Cucurbita
pepo (Squash)
Cucurbita
pepo (Squash)
Dianthus
caryophyllus
Dianthus
caryophyllus
Dianthus
caryophyllus
Dianthus
caryophyllus
Dianthus
caryophyllus
Dianthus
caryophyllus
Dianthus
caryophyllus
Glycine max
viridochromogenes.
Glycine max
viridochromogenes.
Glycine max
Glycine max
Glycine max
viridochromogenes.
Glycine max
tumefaciens CP4.
Glycine max
Glycine max
hygroscopicus.
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
thuringiensis var. aizawai. The PAT
viridochromogenes was introduced as a
Gossypium
hirsutum
thuringiensis subsp. kurstaki. The PAT
viridochromogenes was introduced as a
Gossypium
hirsutum
thuringiensis and a nitrilase encoding
Gossypium
hirsutum
Gossypium
hirsutum
Bacillus thuringiensis AB88. The APH4
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
hygroscopicus.
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Agrobacterium tumefaciens. Insect
Gossypium
hirsutum
Gossypium
hirsutum
thuringiensis subsp. kurstaki HD-73
Gossypium
hirsutum
Agrobacterium tumefaciens.
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Bacillus thuringiensis that confers the
Gossypium
hirsutum
Helianthus
annuus (Sunflower)
Lens
culinaris (Lentil)
Linum
usitatissimum
Lycopersicon
esculentum (Tomato)
Bacillus thuringiensis subsp. Kurstaki.
Lycopersicon
esculentum (Tomato)
Lycopersicon
esculentum (Tomato)
Lycopersicon
esculentum (Tomato)
Lycopersicon
esculentum (Tomato)
Lycopersicon
esculentum (Tomato)
Medicago
sativa (Alfalfa)
Agrobacterium tumefaciens.
Nicotiana
tabacum
pneumoniae.
Nicotiana
tabacum
Oryza
sativa (Rice)
Oryza
sativa (Rice)
Oryza
sativa (Rice)
hygroscopicus).
Oryza
sativa (Rice)
hygroscopicus).
Oryza
sativa (Rice)
Solanum
tuberosum
Tenebrionis).
Solanum
tuberosum
Tenebrionis).
Solanum
tuberosum
thuringiensis (subsp. Tenebrionis) and
Solanum
tuberosum
Tenebrionis) and the replicase encoding
Solanum
tuberosum
Agrobacterium tumefaciens nopaline
Arabidopsis thaliana flanked by the nos
Agrobacterium tumefaciens serves as
Agrobacterium tumefaciens nopaline
tumefaciens nopaline synthase promoter
Agrobacterium tumefaciens has been
Solanum tuberosum, the coding region
tumefaciens have been inserted into
tumefaciens nopaline synthase promoter
Agrobacterium tumefaciens has been
Solanum
tuberosum
tumefaciens nopaline synthase gene
tumefaciens nopaline synthase promoter
Triticum
aestivum (Wheat)
Triticum
aestivum (Wheat)
Triticum
aestivum (Wheat)
Triticum
aestivum (Wheat)
tumefaciens, strain CP4.
Triticum
aestivum (Wheat)
Triticum
aestivum (Wheat)
Triticum
aestivum (Wheat)
Triticum
aestivum (Wheat)
Zea mays
thuringiensis subsp. kurstaki. The genetic
Zea mays
Zea mays
Escherichia coli and Streptomyces
viridochromogenes, respectively.
Zea mays
Zea mays
Streptomyces hygroscopicus.
Zea mays
kurstaki, and the phosphinothricin N-
Zea mays
thuringiensis subsp tolworthi and
Zea mays
thuringiensis var aizawai and the
Zea mays
thuringiensis strain PS149B1. The PAT
viridochromogenes was introduced as a
Zea mays
Bacillus thuringiensis strain PS149B1.
Zea mays
Zea mays
Zea mays
thuringiensis subsp kurstaki and
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
glutamicum, encoding the enzyme
Zea mays
Zea mays
thuringiensis subsp. kurstaki. The
Zea mays
Zea mays
Zea mays
kurstaki HD-1. The genetic modification
Zea mays
thuringiensis subsp. kurstaki HD-1
Agrobacterium tumefaciens strain CP4
Zea mays
Zea mays
Bacillus thuringiensis subsp.
kumamotoensis.
Zea mays
kumamotoensis strain EG4691.
Agrobacterium tumefaciens strain CP4.
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Bacillus amyloliquefaciens; PPT
Zea mays
Bacillus amyloliquefaciens; PPT
Zea mays
Zea mays
Zea mays
viridochromogenes.
Zea mays
Streptomyces viridochromogenes.
Zea mays
aizawai. Corn rootworm-resistance is
Streptomyces viridochromogenes.
Zea mays
Zea mays
Zea mays
Zea mays
Bacillus thuringiensis Cry1A.105 protein
thuringiensis. This coding sequence uses
tumefaciens which terminates
Zea mays
Zea mays
Zea mays
licheniformis, and confers tolerance to
Zea mays
L. (Maize)
thuringiensis. The function of the
Agrobacterium tumefaciens. The
Agrobacterium tumefaciens. The
Gossypium
hirsutum
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Beta vulgaris
Brassica
napus (Argentine
Brassica
napus (Argentine
Brassica
napus (Canola)
Glycine max
Glycine max
Glycine max
Glycine max
Glycine max
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Gossypium
hirsutum
Medicago
sativa (Alfalfa)
Oryza sativa
Solanum
tuberosum
decemlineata (CPB)
Solanum
tuberosum
decemlineata (CPB)
Solanum
tuberosum
Triticum
aestivum (Wheat)
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
Zea mays
The invention is illustrated in more detail by the examples below, without being limited thereby.
A synergistic effect in insecticides and acaricides is always present when the action of the active compound combinations exceeds the total of the actions of the active compounds when applied individually.
The expected action for a given combination of two active compounds can be calculated as follows, using the formula of S. R. Colby, Weeds 15 (1967), 20-22:
If
If the actual insecticidal kill rate exceeds the calculated value, the action of the combination is superadditive, i.e. a synergistic effect is present. In this case, the actually observed kill rate must exceed the value calculated using the above formula for the expected kill rate (E).
Individual potted genetically modified cotton plants with Lepidoptera resistance and Glyphosate resistance are treated with the desired product against the cotton aphid (Aphis gossypii).
After the desired period of time, the kill in % is determined. 100% means that all the aphids have been killed; 0% means that none of the aphids have been killed.
A considerable improvement in the control of pests compared to the control plants not treated according to the invention is noticeable.
Aphis gossypii test (foliar application)
Aphis gossypii test (drench application)
Pots with in each case 5 genetically modified maize plants with Lepidoptera, Coleoptera and/or herbicide resistances are treated in 2 replications against the armyworm (Spodoptera frugiperda).
After the desired period of time, the kill in % is determined. 100% means that all caterpillars have been killed; 0% means that none of the caterpillars have been killed.
A considerable improvement in the control of pests compared to the control plants not treated according to the invention is noticeable.
Spodoptera frugiperda test (foliar application)
Number | Date | Country | Kind |
---|---|---|---|
08173031 | Dec 2008 | EP | regional |
09153440 | Feb 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/009009 | 12/16/2009 | WO | 00 | 10/27/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/075966 | 7/8/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4761373 | Anderson et al. | Aug 1988 | A |
5013659 | Bedbrook et al. | May 1991 | A |
5084082 | Sebastian | Jan 1992 | A |
5141870 | Bedbrook et al. | Aug 1992 | A |
5198599 | Thill | Mar 1993 | A |
5273894 | Strauch et al. | Dec 1993 | A |
5276268 | Strauch et al. | Jan 1994 | A |
5304732 | Anderson et al. | Apr 1994 | A |
5322938 | McPherson et al. | Jun 1994 | A |
5331107 | Anderson et al. | Jul 1994 | A |
5378824 | Bedbrook et al. | Jan 1995 | A |
5463175 | Barry et al. | Oct 1995 | A |
5561236 | Leemans et al. | Oct 1996 | A |
5605011 | Bedbrook et al. | Feb 1997 | A |
5637489 | Strauch et al. | Jun 1997 | A |
5646024 | Leemans et al. | Jul 1997 | A |
5648477 | Leemans et al. | Jul 1997 | A |
5712107 | Nichols | Jan 1998 | A |
5723765 | Oliver et al. | Mar 1998 | A |
5731180 | Dietrich | Mar 1998 | A |
5739082 | Donn | Apr 1998 | A |
5767361 | Dietrich | Jun 1998 | A |
5773702 | Penner et al. | Jun 1998 | A |
5776760 | Barry et al. | Jul 1998 | A |
5808034 | Bridges et al. | Sep 1998 | A |
5824790 | Keeling et al. | Oct 1998 | A |
5840946 | Wong et al. | Nov 1998 | A |
5908810 | Donn | Jun 1999 | A |
5908975 | Caimi et al. | Jun 1999 | A |
5928937 | Kakefuda et al. | Jul 1999 | A |
5965755 | Sernyk et al. | Oct 1999 | A |
5969169 | Fan | Oct 1999 | A |
6001628 | Kossmann et al. | Dec 1999 | A |
6013861 | Bird et al. | Jan 2000 | A |
6063947 | DeBonte et al. | May 2000 | A |
6162966 | Kossmann et al. | Dec 2000 | A |
6169190 | Lanuza et al. | Jan 2001 | B1 |
6245968 | Boudec et al. | Jun 2001 | B1 |
6268549 | Sailland et al. | Jul 2001 | B1 |
6270828 | DeBonte et al. | Aug 2001 | B1 |
6284479 | Nichols | Sep 2001 | B1 |
6323392 | Charne | Nov 2001 | B1 |
6331531 | Kern | Dec 2001 | B1 |
6566585 | Quanz | May 2003 | B1 |
6566587 | Lebrun et al. | May 2003 | B1 |
6590141 | Frohberg | Jul 2003 | B1 |
6734341 | Singletary et al. | May 2004 | B2 |
6791010 | Frohberg | Sep 2004 | B1 |
6812010 | Derose et al. | Nov 2004 | B1 |
6890732 | Loerz et al. | May 2005 | B1 |
6891088 | Neuhaus et al. | May 2005 | B1 |
6951969 | Loerz et al. | Oct 2005 | B1 |
7112665 | Leemans et al. | Sep 2006 | B1 |
7186898 | Kossmann et al. | Mar 2007 | B1 |
7456003 | Kossmann et al. | Nov 2008 | B2 |
8796175 | Jeschke et al. | Aug 2014 | B2 |
20010007155 | Kossmann et al. | Jul 2001 | A1 |
20010011378 | Kossmann et al. | Aug 2001 | A1 |
20020031826 | Nichols | Mar 2002 | A1 |
20020088023 | Kossmann et al. | Jul 2002 | A1 |
20020133849 | Kossmann et al. | Sep 2002 | A1 |
20020138876 | Block et al. | Sep 2002 | A1 |
20020162138 | Kossmann et al. | Oct 2002 | A1 |
20030106100 | Kossmann et al. | Jun 2003 | A1 |
20030138927 | Heyer et al. | Jul 2003 | A1 |
20030167527 | Emmermann et al. | Sep 2003 | A1 |
20030167529 | Landschutze | Sep 2003 | A1 |
20030175931 | Kossmann et al. | Sep 2003 | A1 |
20030229923 | Kossmann et al. | Dec 2003 | A1 |
20040014092 | Heyer et al. | Jan 2004 | A1 |
20040078843 | Kern | Apr 2004 | A1 |
20040154052 | Smeekens et al. | Aug 2004 | A1 |
20040250313 | Vincent et al. | Dec 2004 | A1 |
20050228027 | Zhu et al. | Oct 2005 | A1 |
20050257283 | Matringe et al. | Nov 2005 | A1 |
20060015966 | Landschutze | Jan 2006 | A1 |
20060168690 | Shibatani et al. | Jul 2006 | A1 |
20070149134 | Sebire et al. | Jun 2007 | A1 |
20070203191 | Loso et al. | Aug 2007 | A1 |
20070281860 | Baur et al. | Dec 2007 | A1 |
20080108667 | Zhu et al. | May 2008 | A1 |
20080207910 | Podhorez et al. | Aug 2008 | A1 |
20080250533 | Frohberg | Oct 2008 | A1 |
20090105235 | Jeschke et al. | Apr 2009 | A1 |
20090317535 | Frohberg et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
198 25 333 | Dec 1999 | DE |
0 485 506 | May 1992 | EP |
0 571 427 | Dec 1993 | EP |
0 663 956 | Jul 1995 | EP |
0 719 338 | Jul 1996 | EP |
0 728 213 | Aug 1996 | EP |
2006-304779 | Nov 2006 | JP |
WO 9404693 | Mar 1994 | WO |
WO 9409144 | Apr 1994 | WO |
WO 9411520 | May 1994 | WO |
WO 9421795 | Sep 1994 | WO |
WO 9526407 | Oct 1995 | WO |
WO 9535026 | Dec 1995 | WO |
WO 9535031 | Dec 1995 | WO |
WO 9621023 | Jul 1996 | WO |
WO 9633270 | Oct 1996 | WO |
WO 9634968 | Nov 1996 | WO |
WO 9720936 | Jun 1997 | WO |
WO 9741218 | Nov 1997 | WO |
WO 9747806 | Dec 1997 | WO |
WO 9747807 | Dec 1997 | WO |
WO 9747808 | Dec 1997 | WO |
WO 9800549 | Jan 1998 | WO |
WO 9820145 | May 1998 | WO |
WO 9822604 | May 1998 | WO |
WO 9832326 | Jul 1998 | WO |
WO 9912950 | Mar 1999 | WO |
WO 9953072 | Oct 1999 | WO |
WO 9957965 | Nov 1999 | WO |
WO 9966050 | Dec 1999 | WO |
WO 0004173 | Jan 2000 | WO |
WO 0011192 | Mar 2000 | WO |
WO 0014249 | Mar 2000 | WO |
WO 0028052 | May 2000 | WO |
WO 0066746 | Nov 2000 | WO |
WO 0066747 | Nov 2000 | WO |
WO 0073422 | Dec 2000 | WO |
WO 0077229 | Dec 2000 | WO |
WO 0114569 | Mar 2001 | WO |
WO 0117333 | Mar 2001 | WO |
WO 0119975 | Mar 2001 | WO |
WO 0124615 | Apr 2001 | WO |
WO 0165922 | Sep 2001 | WO |
WO 0166704 | Sep 2001 | WO |
WO 0198509 | Dec 2001 | WO |
WO 0226995 | Apr 2002 | WO |
WO 0234923 | May 2002 | WO |
WO 0236782 | May 2002 | WO |
WO 0245485 | Jun 2002 | WO |
WO 02101059 | Dec 2002 | WO |
WO 03013226 | Feb 2003 | WO |
WO 03033540 | Apr 2003 | WO |
WO 03071860 | Sep 2003 | WO |
WO 03092360 | Nov 2003 | WO |
WO 2004040012 | May 2004 | WO |
WO 2004053219 | Jun 2004 | WO |
WO 2004056999 | Jul 2004 | WO |
WO 2004078983 | Sep 2004 | WO |
WO 2004090140 | Oct 2004 | WO |
WO 2004106529 | Dec 2004 | WO |
WO 2005002359 | Jan 2005 | WO |
WO 2005012515 | Feb 2005 | WO |
WO 2005017157 | Feb 2005 | WO |
WO 2005020673 | Mar 2005 | WO |
WO 2005030941 | Apr 2005 | WO |
WO 2005030942 | Apr 2005 | WO |
WO 2005093093 | Oct 2005 | WO |
WO 2005095617 | Oct 2005 | WO |
WO 2005095618 | Oct 2005 | WO |
WO 2005095619 | Oct 2005 | WO |
WO 2005095632 | Oct 2005 | WO |
WO 2005123927 | Dec 2005 | WO |
WO 2006007373 | Jan 2006 | WO |
WO 2006015376 | Feb 2006 | WO |
WO 2006018319 | Feb 2006 | WO |
WO 2006024351 | Mar 2006 | WO |
WO 2006032469 | Mar 2006 | WO |
WO 2006032538 | Mar 2006 | WO |
WO 2006045633 | May 2006 | WO |
WO 2006060029 | Jun 2006 | WO |
WO 2006060634 | Jun 2006 | WO |
WO 2006063862 | Jun 2006 | WO |
WO 2006072603 | Jul 2006 | WO |
WO 2006103107 | Oct 2006 | WO |
WO 2006108702 | Oct 2006 | WO |
WO 2006133827 | Dec 2006 | WO |
WO 2006136351 | Dec 2006 | WO |
WO 2007009823 | Jan 2007 | WO |
WO 2007024782 | Mar 2007 | WO |
WO 2007027777 | Mar 2007 | WO |
WO 2007039314 | Apr 2007 | WO |
WO 2007039316 | Apr 2007 | WO |
WO 2007095229 | Aug 2007 | WO |
WO 2007107326 | Sep 2007 | WO |
WO 2007131699 | Nov 2007 | WO |
WO 2007149134 | Dec 2007 | WO |
WO 2008017518 | Feb 2008 | WO |
WO 2008027073 | Mar 2008 | WO |
WO 2008027539 | Mar 2008 | WO |
WO 2008057129 | May 2008 | WO |
WO 2008080630 | Jul 2008 | WO |
WO 2008080631 | Jul 2008 | WO |
WO 2008097235 | Aug 2008 | WO |
WO 2008106006 | Sep 2008 | WO |
WO 2008129060 | Oct 2008 | WO |
WO 2009118297 | Oct 2009 | WO |
Entry |
---|
Dow. Product Safety Assessment (PSA): Herculex® I Insect Protection. May 2, 2006. p. 1-3. |
Barry, G., et al, “Inhibitors of Amino Acid Biosynthesis: Strategies for Imparting Glyphosate Tolerance to Crop Plants,” Curr. Topics Plant Physiol. 7:139-145, American Society of Plant Physiologists, United States (1992). |
Barton, K.A., et al., “Bacillus thuringiensis δ-Endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects,” Plant Physiol. 85:1103-1109, American Society of Plant Physiologists, United States (1987) |
Colby, S.R., “Calculating Synergistic and Antagonistic Responses of Herbicide Combinations,” Weeds 15:20-22, Weed Science Society of America, United States (1967). |
Comai, L., et al., “An Altered aroA Gene Product Confers Resistance to the Herbicide Glyphosate,” Science 221:370-371, American Association for the Advancement of Science, United States (1983). |
Crickmore, N., “The VIP Nomenclature,” as referenced in Bacillus thuringiensis Toxin Nomenclature, main page accessed on Feb. 3, 2012 at <lifesci.sussex.ac.uk/home/Neil—Crickmore/Bt/intro.html>, and the link to the nomenclature accessed at <lifesci.sussex.ac.uk/home/Neil—Crickmore/Bt/vip.html>. |
Crickmore, N., et al., “Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins,” Microbiol. Mol. Biol. Rev. 62(3):807-813, American Society for Microbiology, United States (1998). |
Fischhoff, D.A., et al., “Insect Tolerant Transgenic Tomato Plants,” Bio/technology 5:807-813, Nature Publishing Company, United States (1987). |
Gasser, C.S., et al., “Structure, Expression, and Evolution of the 5-Enolpyruvylshikimate-3-phosphate Synthase Genes of Petunia and Tomato,” J. Biol. Chem. 263(9):4280-4289, The American Society for Biochemistry and Molecular Biology, Inc., United States (1988). |
Ishida, Y., et al., “High Efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens,” Nature Biotechnology 14:745-750, Nature Publishing Group, England (1996). |
Moellenbeck, D.J., et al., “Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms,” Nature Biotechnology 19:668-672, Nature Publishing Group, England (2001). |
Schnepf, H.E., et al., “Characterization of Cry34/Cry35 Binary Insecticidal Proteins from Diverse Bacillus thuringiensis Strain Collections,” Appl. Environ. Microbiol. 71(4):1765-1774, American Society for Microbiology, United States (2005). |
Shah, D.M., et al., “Engineering Herbicide Tolerance in Transgenic Plants,” Science 233:478-481, American Society for the Advancement of Science, United States (1986). |
Tranel, P.J. and Wright, T.R., “Resistance of weeds to ALS-inhibiting herbicides: what have we learned?” Weed Science 50:700-712, Weed Science Society of America, United States (2002). |
Vaeck, M., et al., “Transgenic plants protected from insect attack,” Nature 328:33-37, Nature Publishing Group, England (1987). |
Willmitzer, L., “16 Transgenic plants,” in Biotechnology, A Multivolume Comprehensive Treatise, vol. 2, pp. 627-659, Rehm, H.J., et al., eds., VCH Weinheim, Germany (1993). |
English language Abstract of WIPO Patent Publication No. WO 99/57965 A1, European Patent Office, espacenet database—Worldwide (1999). |
English language Abstract of WIPO Patent Publication No. WO 01/14569 A2, European Patent Office, espacenet database—Worldwide (2001). |
English language Abstract of Japanese Patent Publication No. JP 2006-304779 A, Japanese Patent Office,Patent & Utility Model Gazette DB, Patent Abstracts of Japan, (2006). |
International Search Report for International Application No. PCT/EP2009/009009, European Patent Office, Netherlands, mailed on Mar. 23, 2010. |
Bauer, T.A., et al., “Response of Selected Weed Species to Postmergence Imazethapyr and Bentazon,” Weed Tech. 9:236-242, The Weed Science Society of America, United States (1995). |
Blackshaw, R.E., “HOE-39866 Use in Chemical Fallow Systems,” Weed Tech. 3:420-428, The Weed Science Society of America, United States (1989). |
Blackshaw, R.E., “Synergistic Mixes of DPX-A7881 and Clopyralid in Canola (Brassica napus),” Weed Tech. 3:690-695, The Weed Science Society of America, United States (1989). |
Blackshaw, R.E., et al., “Herbicide Combinations for Postemergent Weed Control in Safflower (Carthamus tinctorius),” Weed Tech. 4:97-104, The Weed Science Society of America, United States (1990). |
Blouin, D.C., et al., “Analysis of Synergistic and Antagonistic Effects of Herbicides Using Nonlinear Mixed-Model Methodology,” Weed Tech. 18:464-472, The Weed Science Society of America, United States (2004). |
Bradley, P.R., et al., “Response of Sorghum (Sorghum bicolor) to Atrazine, Ammonium Sulfate, and Glyphosate,” Weed Tech. 14:15-18, The Weed Science Society of America, United States (2000). |
Buker, III, R.S., et al., “Confirmation and Control of a Paraquat-Tolerant Goosegrass (Eleusine indica) Biotype,” Weed Tech. 16:309-313, The Weed Science Society of America, United States (2002). |
Burke, I.C., et al., “CGA-362622 Antagonizes Annual Grass Control with Clethodim,” Weed Tech. 16:749-754, The Weed Science Society of America, United States (2002). |
Flint, J.L., et al., “Analyzing Herbicide Interactions: A Statistical Treatment of Colby's Method,” Weed Tech. 2:304-309, The Weed Science Society of America, United States (1988). |
Gillespie, G.R. and Nalewaja, J.D., “Wheat (Triticum aestivum) Response to Triallate Plus Chlorsulfuron,” Weed Tech. 3:20-23, The Weed Science Society of America, United States (1989). |
Green, J.M., et al., “Metribuzin and Chlorimuron Mixtures for Preemergence Broadleaf Weed Control in Soybeans, Glycine max,” Weed Tech. 2:355-363, The Weed Science Society of America, United States (1988). |
Harker, K.N. and O'Sullivan, A., “Synergistic Mixtures of Sethoxydim and Fluazifop on Animal Grass Weeds,” Weed Tech. 5:310-316, The Weed Science Society of America, United States (1991). |
Kent, L.M., et al., “Effect of Ammonium Sulfate, Imazapyr, and Environment on the Phytotoxicity of Imazethapyr,” Weed Tech. 5:202-205, The Weed Science Society of America, United States (1991). |
Kotoula-Syka, E., et al., “Interactions between SAN 582H and Selected Safeners on Grain Sorghum (Sorghum bicolor) and Corn (Zea mays),” Weed Tech. 10:299-304, The Weed Science Society of America, United States (1996). |
Lanclos, D.Y., et al., “Glufosinate Tank-Mix Combinations in Glufosinate-Resistant Rice (Oryza sativa),” Weed Tech. 16:659-663, The Weed Science Society of America, United States (2002). |
Norris, J.L., et al., “Weed Control from Herbicide Combinations with Three Formulations of Glyphosate,” Weed Tech. 15:552-558, The Weed Science Society of America, United States (2001). |
Novosel, K.M., et al., “Metolachlor Efficacy as Influenced by Three Acetolactate Synthase-Inhibiting Herbicides,” Weed Tech. 12:248-253, The Weed Science Society of America, United States (1998). |
Palmer, E.W., et al., “Broadleaf Weed Control in Soybean (Glycine max) with CGA-277476 and Four Postemergence Herbicides,” Weed Tech. 14:617-623, The Weed Science Society of America, United States (2000). |
Rummens, F.H.A., “An Improved Definition of Synergistic and Antagonistic Effects,” Weed Science 23:4-6, The Weed Science Society of America, United States (1975). |
Salzman, F.P. and Renner, K.A.,“Response of Soybean to Combinations of Clomazone, Metribuzin, Linuron, Alachlor, and Atrazine,” Weed Tech. 6:922-929, The Weed Science Society of America, United States (1992). |
Scott, R.C., et al., “Spray Adjuvant, Formulation, and Environmental Effects on Synergism from Post-Applied Tank Mixtures of SAN 582H with Fluazifop-P, Imazethapyr, and Sethoxydim,” Weed Tech. 12:463-469, The Weed Science Society of America, United States (1998). |
Shaw,D.R. and Arnold, J.C., “Weed Control from herbicide Combinations with Glyphosate,” Weed Tech. 16:1-6, The Weed Science Society of America, United States (2002). |
Snipes, C.E and Allen, R.L., “Interaction of Graminicides Applied in Combination with Pyrithiobac,” Weed Tech. 10:889-892, The Weed Science Society of America, United States (1996). |
Sun, Y.-P., et al., “Analysis of Joint Action of Insecticides Against House Flies,” J. Econ. Entomol. 53:887-892, Entomological Society of America, United States (1960). |
Tammes, P.M.L., “Isoboles, A Graphic Representation of Synergism in Pesticides,” Neth. J. Plant Path. 70:73-80, Springer, Germany (1964). |
Wehtje, G., and Walker, R.H., “Interaction of Glyphosate and 2,4-DB for the Control of Selected Morningglory (Ipomoea spp.) Species,” Weed Tech. 11:152-156, The Weed Science Society of America, United States (1997). |
Zhang, W., et al., “Fenoxaprop Interactions for Barnyardgrass (Echinochloa crus-galli) Control in Rice,” Weed Tech. 19:293-297, The Weed Science Society of America, United States (2005). |
Number | Date | Country | |
---|---|---|---|
20120040835 A1 | Feb 2012 | US |