The appearance of cellulite on a person's body can create a perception that the person is unfit and/or overweight. Individuals, generally women who have cellulite, often view it as unflattering and as a source of embarrassment. It is desirable to improve and/or eliminate the appearance of cellulite such that the appearance of cellulite is improved and/or eliminated in one or more locations of a subject's body for a relatively long period of time. It is most desirable to achieve a long term and/or durable improvement and/or to eliminate the appearance of cellulite in treated regions.
In accordance with the methods and devices disclosed herein the invention relates to the treatment of connective tissue in a subject's body to improve the appearance of cellulite on a subject's body. In some embodiments, the methods and devices treat connective tissue with substantially lasting, durable and/or irreversible results. Long lasting, durable and/or irreversible treatment of connective tissue can improve the appearance of cellulite for a relatively long period of time and/or substantially permanently.
In one aspect, the invention relates to a method of improving the appearance of cellulite and the method includes applying a stretching force to at least one of a septa tissue and a fascia tissue that is adjacent to fat tissue and is located beneath a region of a subject's skin having the appearance of cellulite. At least one of the septa tissue and the fascia tissue are heated for a period of time and at a temperature less than is required to fully coagulate any of the septa tissue, the fascia tissue and the fat tissue. In some embodiments, there is heating with no coagulation. After heating the length of at least one of the septa tissue and the fascia tissue is increased relative to the length of at least one of the septa tissue and the fascia tissue prior to applying the stretching force and/or the heating. The method can also include the step of removal of the stretching force. Improvement of the appearance of cellulite can be determined by visual inspection of the region of the subject's skin that is treated.
In another aspect, the invention relates to a method of improving the appearance of cellulite. The method includes applying a stretching force to at least one of a septa tissue and a fascia tissue that is adjacent to fat tissue and is beneath a region of a subject's skin having the appearance of cellulite. The method also includes heating at least one of the septa tissue and the fascia tissue for a period of time and at a temperature sufficient to achieve lasting elongation of at least one of the septa tissue and the fascia tissue upon release of the stretching force. In some embodiments, applying the stretching force and heating at least one of the septa tissue and the fascia tissue occur simultaneously. In other embodiments, heating of at least one of the septa tissue and the fascia tissue occurs in the presence of the previously applied stretching force.
In one embodiment, vacuum pressure applies the stretching force. Applying the stretching force can include inserting fluid into the subject's tissue. The fluid can be, for example, tumescent fluid or gas. Optionally, the fluid can be pre-heated such that the fluid itself provides heat at least one of the septa tissue and the fascia tissue. In another embodiment, one or more of radiofrequency energy, ultrasound energy, light energy, and microwave energy are employed to heat at least one of the septa tissue and the fascia tissue.
The method of improving the appearance of cellulite can further include employing a cannula to apply an energy source to heat at least one of the septa tissue and the fascia tissue. A suitable cannula can apply one or more of radiofrequency energy, ultrasound energy, light energy, and microwave energy to at least one of the septa tissue and the fascia tissue.
In one embodiment, heating includes bringing the temperature of at least one of the septa and the fascia to the temperature range from about 37° C. to about 60° C., or from about 40° C. to about 48° C. In accordance with methods of improving the appearance of cellulite, the increase in temperature of at least of the septa and the fascia can also heat the surrounding subcutaneous tissue (e.g., fat tissue) in the region of the targeted fascia and/or septa tissue.
In one embodiment, at least one of the septa tissue and the fascia tissue are heated for a period of time that ranges from about 10 seconds to about 60 minutes or from about 30 seconds to about 30 minutes. The method can also include cooling the external surface of the region of the subject's skin. The method can also include the step of removal of the stretching force.
Improvement of the appearance of cellulite can be determined by visual inspection of the region of the subject's skin that has been treated.
Anatomically, the cutaneous formation of cellulite is often due to fibrosis of the connective tissues present in the dermis and/or in the subcutaneous tissue. Connective tissue of the reticular dermis is connected to the deep fascia by fibrous septum from adipose or fat tissue. Subcutaneous fat lobules are separated from each other by fibrous septum (i.e., septa), which are generally relatively thin and usually rigid strands of connective tissue. The fibrous septa cross the fatty layer and connect the dermis to the underlying fascia tissue. The septa stabilize the subcutis and divide the fat tissue. Shortening of these septa due, for example, to fibrosis, causes retraction of the septa which in turn causes the depressions in the skin that are recognized as cellulite.
Thus, cellulite appears in the subcutaneous level of skin tissue where fat cells are arranged in chambers of fat tissue that are surrounded by bands of connective tissue called septae and/or fascia. Under certain conditions, for example, as water is retained, fat cells held within the perimeters of these fat tissue chambers expand and stretch the connective tissue. In some situations, the septa tissue is physiologically short and/or the septa tissue contracts and hardens holding the skin at a non-flexible length, while the surrounding tissue continues to expand with weight, or water gain, which results in areas of the skin being held down while other sections bulge outward, resulting in the lumpy, “cottage-cheese” appearance recognized as cellulite.
Referring now to
Cellulite is generally a problem for females but is less common in males. In females the septa 1007 between the dermis 1008 and the muscle 1009 are substantially vertical relative to the plane of the dermis 1008 and/or the plane of the muscle 1009. Generally, the fibrous septa in women are orientated in a direction perpendicular to the cutaneous surface. In contrast, males have septa between the dermis and the muscle that are shifted to the side at an angle relative to the substantially vertical direction of the septa found in females. In males the septa have an angled or criss-cross pattern that does not feature the perpendicular direction relative to the cutaneous surface. Without being bound to a single theory, it is believed that the shifted angle of septa found in males provides a level of “give” that enables changes in fat quantity inside a male's body to not result in the cellulite appearance. In addition, subcutaneous fat is divided into lobules and in women the fat lobules are relatively larger and more rectangular when compared with the fat lobules found in men. The substantially vertical septa 1007 found in females does not afford the “give” provided by the criss-cross pattern in males, further, the relatively larger size of fat lobules in women contribute to the cellulite appearance problem being more common for females than for males.
Thus, the substantially vertically oriented septa 1007 in females are primarily responsible for the typical orange peel/bumpy appearance that is recognized as cellulite.
A woman's anatomy features connective tissue including one or more substantially vertical septa 3007; the substantially vertical septa 3007 are substantially vertical relative to at least one of the fascia 3011, the muscle 3009, and/or the skin (e.g., the epidermis 3010 and the dermis 3008). The septa 3007 traverse through at least a portion of fat tissue 3006 inside the subject's body 3002. Referring still to
The connective tissue including the septa 3007 and the fascia 3011 align and connect the muscle 3009 and the dermis 3008 to one another. In some subjects, generally in females, when a volume of fat tissue 3006 between connective tissue 3007 (e.g., between one septa 3007b another septa (e.g., 3007a and 3007d) and fascia 3011) is over a threshold amount it creates an uneven, dimpled, and/or bumpy appearance on the external portion of the body 3004 and these dimples 3003 and/or bumps in the tissue are recognized as cellulite appearance. Cellulite appears due to the interaction of the existing fat 3006 with the connective tissue (e.g., the septa 3007 and/or the fascia 3011). Without being bound to any single theory it is believed that in some embodiments, the fascia 3011 connects to the septa 3007 and acts as an anchor that holds the septa 3007 in a position that increases the pull of the septa 3007 against the dermis 3008 and/or the epidermis 3010 and this tension/pull contributes to the cellulite appearance provided by the dimples 3003.
As seen in
Without being bound to any single theory it is believed that similar improvement of the appearance of cellulite may be achieved by exposing at least one of the fascia and/or the septa to a relatively cold temperature (e.g., from about −5° C. to about 20° C., or from about 0° C. to about 10° C.) and a stretching force (applied simultaneous with or subsequent to exposure of the tissue to the cold temperature). This stretching force may be applied to the tissue for a time period that ranges from about 1 second to about 1 hour in order to achieve a lasting elongation of the septa and/or the fascia in order to a fracture the septa and/or the fascia, both elongation and fraction are believed to improve cellulite appearance. Cooling can be done externally by employing a cold plate with circulated water, a thermoelectric cooler, an ice pack or any other suitable external cooling means. Cooling may also be done internally by, for example, injecting cooled fluid into the treatment area (e.g., cooled tumescence or cooled water) or by inserting a cooled cannula to the treatment area.
In accordance with any method(s) or device(s) for elongating connective tissue disclosed herein, a chemical such as glycerol may be added to the connective tissue prior or during the elongation process. The chemical such as glycerol can enhance elasticity of the connective tissue to increase the amount of elongation achieved in accordance with the methods and devices disclosed herein.
Treatment of Subcutaneous Tissue by Stretching Connective Tissue
In one embodiment, referring now to
In one embodiment, the septa 1007 (i.e., the stents) are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. In some embodiments, the temperature range is selected to avoid full coagulation of tissue in the region of the septa 1007. Stretching can be applied to the substantially vertical septa 1007 to increase the length of each septum by a percentage increase that ranges from about 2% to about 70%, or from about 5% to about 50% from the length of the septum prior to stretching. Stretching can be applied simultaneously or after heating within a prescribed temperature range.
In one embodiment, the septa 1007 are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. and simultaneously and/or subsequent to heating a stretching action is applied to the septa for a period of time necessary to maintain a substantially lasting, durable and/or irreversible extension of the septa 1007. The period of time over which the stretching action can be applied can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes.
Over time in a subject's life time the elasticity of their connective tissue (including septa and fascia) can decline for example due to contraction and hardening of connective tissue. The decline in connective tissue can be due, for example, to sclerosis which makes the connective tissue become less flexible or elastic. This loss of elasticity contributes to the cellulite appearance. In other embodiments, referring to
The septa 3007 and/or the fascia 3011 may be stretched in a manner that is substantially lasting, durable and/or irreversible. In some embodiments, septa 3007 and/or fascia 3011 is determined to be stretched in a lasting or durable manner when the connective tissue (e.g., the septa 3007 and/or the fascia 3011) retains its elongated length for a period that ranges from about 1 hour to about 20 years, from about 2 hours to about 5 years, or from about thirty minutes to about 1 year. The connective tissue (e.g., the septa 3007 and/or the fascia 3011) may be heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. Temperature ranges may be selected to avoid melting and/or to avoid full coagulation of tissue in the region of the septa 3007 and/or the fascia 3011. Stretching can be applied to the connective tissue (i.e., the substantially vertical septa 3007 and the connective tissue 3011) to increase the length of each septum by a percentage increase that ranges from about 2% to about 70%, or from about 5% to about 50% from the length of the connective tissue prior to stretching. Stretching can be applied simultaneously or after heating within a prescribed temperature range.
In one embodiment, the connective tissue (e.g., septa 3007 and/or fascia 3011) are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. and simultaneously and/or subsequent to heating a stretching action is applied to the septa for a period of time necessary to maintain a substantially lasting, durable and/or irreversible extension of the septa. The period of time over which the stretching action can be applied can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes.
The temperature rise in septa and/or the fascia can be implemented in an internal manner and/or an external manner.
Internal Temperature Change Implementation
An internal temperature rise in septa and/or fascia can be implemented internally via an incision in the tissue of a subject and by delivering a probe into the subject's tissue through the incision. The probe can include a tip, for example a tip of a handpiece that emits energy. The tip can be inserted into a subject's tissue in the region of connective tissue to be treated, e.g., septa 1007 and fascia. The clinical endpoint of such treatment is when the connective tissue to be treated (e.g., the septa and/or the fascia) has reached a temperature of from about 45° C. to about 60° C., or from about 44° C. to about 50° C. or more generally a temperature that is less than the temperature at which the connective tissue being treated becomes fully coagulated.
The handpiece tip can emit, for example, a laser or other light emission, ultrasound energy, ohmic resistance that generates energy by simple current, microwave energy, and/or radio frequency energy (e.g., RF energy). These energy sources can have a power level of from about 1 watt to about 100 watts, or from about 10 watts to about 60 watts. The size of the tip can be from about 1 mm to about 6 mm, or from about 1 mm to about 2 mm. Where the energy source is a laser the wavelength can range from about 600 nm to 2300 nm or from about 900 nm to about 1850 nm.
In another embodiment, the handpiece tip can be heated by circulating a fluid such as, for example, hot water inside the tip. The tip temperature can range from about 50° C. to about 100° C.
In another embodiment, a preheated fluid (i.e., a preheated tumescent fluid) or a preheated gas can be injected into an internal region of a subject's body to preheat a volume of the tissue. The preheated fluid is heated up to about 60° C. or from about 40° C. to about 60° C. The temperature of the connective tissue being treated by internal treatment or external treatment can be measured by any of a number of means including, for example, inserting a thermal measurement probe that measures the connective tissue being treated. Thermal probes can be employed to measure and/or enable control of the temperature rise in the connective tissue (e.g., septa and/or fascia) being treated via feedback control such that desired clinical endpoint of connective tissue treatment is when the connective tissue to be treated (e.g., the septa and/or the fascia) has reached a temperature below the temperature of full coagulation for example, from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. Thus in some embodiments the temperature change of the connective tissue form normal body temperature 37° C. ranges from about 7° C. to about 23° C. In one embodiment, internal heating heats a selected volume and/or region of a subcutaneous tissue. In another embodiment, internal heating selectively heats the fascia and/or the septa 1007 themselves. In another embodiment, internal heating heats a portion of tissue in contact with the septa.
External Temperature Change Implementation
In some embodiments, the temperature rise in connective tissue (e.g., fascia and/or septa) is implemented in an external manner. External heating can heat the whole subcutaneous region, a portion of the subcutaneous region, and/or selectively heat the fascia and/or the septa within the region. In another embodiment, external heating heats a portion of tissue in contact with the fascia and/or the septa. The external temperature rise can be accomplished externally using optical energy with wavelengths of from about 600 nm to 2300 nm or from about 900 nm to about 1850 nm. In another embodiment, microwave energy can be externally applied to the body of a subject; the microwave energy can have a power level suited to raise the temperature of a subcutaneous region and/or the connective tissue (e.g., the fascia and/or the septa) to from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. or more generally to a temperature that is less than the temperature at which the connective tissue being treated becomes fully coagulated. A suitable power level can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts. In another embodiment, radio frequency energy (RF energy) can be externally applied to the body of a subject, the RF energy having a power level suited to raise the temperature of a subcutaneous region and/or the targeted connective tissue (e.g., the fascia and/or the septa) to from about 37° C. to about 100° C., or from about 38° C. to about 50° C., or from 45° C. to about 60° C., or from about 44° C. to about 50° C. A suitable power level can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts. In another embodiment, ultrasound energy (US energy) can be externally applied to the body of a subject, the US energy having a power level suited to raising the temperature of a subcutaneous region and/or the targeted connective tissue (e.g., the fascia and/or the septa) to from about 37° C. to about 100° C., or from about 38° C. to about 50° C., or from 45° C. to about 60° C., or from about 44° C. to about 50° C., for example. A suitable power level can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts.
In another embodiment, a subcutaneous region and/or the targeted connective tissue (e.g., the fascia and/or the septa) are heated via thermal conduction from the surface of the subject's body (i.e., from the patient's skin) using a hot plate. In some embodiments, one or more of optical energy, microwave energy, RF energy, ultrasound energy, and thermal conduction can be combined with surface cooling to protect the skin (e.g., the epidermis and the dermis) from overheating. Surface cooling methodologies can include contacting the skin surface with a cold gel plate, spray cooling, cold liquid or gas flow cooling, for example. Generally, the cooling medium that contacts the surface of the skin should have a temperature of from about −10° C. to about 20° C., more specifically, a sapphire cooling plate may have a temperature that falls within the range of from about −5° C. to about 10° C.
Methods that can be employed to selectively heat fascia, and/or septa include optical energy employed for selective absorption of subcutaneous tissue (e.g., fat tissue) in preference to skin tissue at suitable wavelength(s). Suitable wavelengths include wavelengths of about 915 nm, about 1208 nm, and about 1715 nm, because these wavelengths provide peak absorption of lipid(s), which is desirable when treating the fat contained (e.g., the lipids) in subcutaneous tissue in preference to skin tissue. Other methods that can be employed include employing microwave energy, US energy, and/or RF energy by selective current through septa due to the relatively low electrical impedance of connective tissue (e.g., fascia and/or septa) compared to surrounding lipid rich tissue.
Stretching of the Septa
The septa and/or the region of tissue including the septa are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 50° C., or from about 44° C. to about 60° C., or and from about 45° C. to about 50° C. and simultaneously with and/or subsequent to heating a stretching action is applied to the septa for a period of time necessary to maintain a substantially lasting, durable and/or irreversible extension of the septa. The period of time over which the stretching action can be applied can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes.
The temperature to which the connective tissue is heated and the time that the connective tissue is exposed to the temperature should be selected to avoid full or complete coagulation of the connective tissue. In one embodiment, the septa and/or region of tissue including the septa are heated to a temperature of about 45° C. or greater and the septa and/or the region of tissue including septa are stretched for a period of time of about 1 minute or greater.
Adipose tissue (i.e., fat tissue) in the region of cellulite has a relatively high heat capacity and a relatively low thermal conductivity compared to skin tissue and has a relatively large volume compared to other types of tissue, for example, skin tissue. Because adipose tissue has a relatively high heat capacity and a relatively large volume after exposure to a temperature increase, adipose tissue in the region of cellulite holds the increased temperature for a period of time that enables stretching to occur over a period of time after the heat source has been applied for example for up to about 1 hour. It is conceivable that heat applied internally (i.e., via heated tumescent solution having a temperature of up to 60° C. and ranging from about 40° C. to about 60° C. can raise the temperature of the septa and/or the fascia to from about 44° C. to about 60° C.) can hold the heat for a period of time that enables internal and/or external stretching to be applied for a period of up to about one hour after injecting the tumescent into the subject's body.
Stretching can be applied to the septa by any of a number of methods or means. For example, in one embodiment, suction is applied to the external surface of a portion of the skin via a vacuum applicator that suctions a portion of the skin thereby placing the skin under negative pressure. In another embodiment, stretching is applied by pushing fluid (e.g., liquid and/or gas) into the tissue in the region to be treated. Optionally, the fluid extends the tissue in the region to be treated by increasing the volume of the region of tissue to be treated by a factor of from about 10% to about 500%, or from about 20% to about 200%, or from about 50% to about 100%. In some embodiments, the fluid is pushed directly into the tissue in the region to be treated. Optionally, in some embodiments, a balloon or bladder in inserted in the region to be treated and is placed, for example, under the skin and/or above the muscle to accept the fluid and to hold the expanded shape for the desired period of time. Fluid can be inserted into the balloon and/or the bladder via injection. Once stretching is completed, the balloon and/or bladder can be deflated by, for example, removing the fluid using the device previously used to inject the fluid into the bladder. In some embodiments, once the balloon and/or the bladder are deflated the balloon and/or the bladder can be removed from the region to be treated. In one embodiment, the balloon and/or the bladder are inserted through an incision made in the subject's body, likewise, the balloon and/or the bladder may be removed via the same incision (e.g., the incision through which the balloon and/or the bladder were placed inside the subject's body).
Referring again to
In one embodiment,
The quantity of tumescent fluid increases the volume of the region of cellulite in the subject's body by from about 10% to about 500%, or from about 20% to about 200%, or from about 50% to about 100%, or from about 25% to about 75%, or from about 35% to about 50%, or by about 100%. Thus, the tumescent fluid substantially increases the size of the subcutaneous region. Referring to the fat tissue 1006 shown in
In order to maintain the elongated length of the septa 1007a and 1007b for a substantially lasting, durable and/or irreversible period of time, the temperature of the septa 1007a and 1007b must be increased so that it ranges from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C., Such a temperature increase in the septa can be accomplished by external means such as the devices disclosed in association with
In some embodiments, the tumescent solution is preheated such that upon injection into the subject's body 1000 the preheated tumescent solution heats the tissue in the region of the septa 1007 to have a temperature of from about 44° C. to about 60° C., or from about 37° C. to about 50° C., or from about 38° C. to about 42° C. The pre-heated tumescent solution has a temperature of up to 60° C. and ranging from about 40° C. to about 60° C. in order to raise the temperature of the septa and/or the fascia to from about 44° C. to about 60° C.).
In other embodiments, the tissue region is stretched (e.g., by external means and/or by unheated tumescent solution) and the septa 1007 are heated by external means such as, for example, by applying ultrasound energy and/or laser or light energy to the region of tissue including the fascia and/or the septa themselves. The temperature of the septa 1007 and the period of time of stretching of the septa 1007 in the presence of the temperature increase are selected to achieve substantially lasting, durable and/or irreversible elongation of the septa 1007 to the length depicted in
Referring now to
Still referring to
Introduction of the tumescent fluid extends and/or stretches the skin (epidermis 3010 and dermis 3008) due to the increase in volume provided by the introduction of tumescent fluid to the tissue. In addition, the introduction of the tumescent fluid increases the length of the septa 3007a, 3007b, 3007d, and 3007e, which increases the length of the septa 3007 and increases the length of the fascia 3011 while decreasing the septa 3007 thickness and decreasing the fascia 3011 thickness. Stretching the tissue region having cellulite by external means would result in a similar increase in the extracellular space 3005 between the lipid droplets 3016a of the fat tissue 3006, a similar lengthening of the septa 3007a, 3007b. 3007d, and 3007e and in a similar lengthening of the fascia 3011 as described when stretching was accomplished by introduction of the tumescent fluid in the subject's body.
Referring still to
In other embodiments, the tissue region is stretched (e.g., by external means and/or by unheated tumescent solution) and the connective tissue (e.g., the septa 3007 and/or the fascia 3011) are heated by an energy source provided by external means such as, for example, by applying ultrasound energy and/or laser or light energy to the region of tissue including the septa, the septa themselves, the region of tissue including the fascia and/or the fascia itself. The temperature of the septa 3007 and/or the fascia 3011 and the period of time of stretching of the septa 3007 and/or the fascia 3011 are selected to achieve substantially lasting, durable and/or irreversible elongation of the connective tissue (e.g., the septa 3007 and/or the fascia 3011) to the length depicted in
Once the connective tissue temperature is increased in the presence of a stretching force the temperature increase is held for a period of time that can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour, or from about 10 minutes to about 30 minutes. The external energy sources employed to increase the connective tissue temperature can have a power level of from about 1 watt to about 100 watts, or from about 10 watts to about 60 watts.
In some embodiments, in order to avoid the muscle (e.g., the muscle underlying the fascia and/or the septa to be treated) from moving and/or pulling as a result of exposure to a stretching mechanism the practitioner can instruct the subject to flex their muscle in the treatment region. Flexing the muscle can aid in fixing the muscle and help prevent the muscle from being suctioned as well. In one embodiment, a flexing action can be accomplished in a desired muscle by using electrical conduction to fixate the muscle during application of an external stretching technique (e.g., by applying electrical muscle stimulation to the muscle beneath the area being treated to contract the muscle). The muscle can be stretched prior to, simultaneous with and/or subsequent with use of a stretching mechanism (e.g., an external stretching mechanism such as an external vacuum).
In one embodiment, during stretching, ultrasound energy is delivered to the septa. Ultrasound energy can support the substantially permanent expansion (i.e., stretching) of the septa by creating cavitation bubbles in the fiber of the septa. Cavitation bubbles in the fiber of the septa can weaken the septa to promote stretching. Ultrasound energy can be applied to generate one or more acoustic shock wave(s) that propagate through the dermis and the subcutaneous region to reach the septa. Ultrasound energy can be applied to generate oscillation of septa and oscillation of septa can support lasting (e.g., irreversible) elongation of the septa. In some embodiments the ultrasound frequency is selected to match or to substantially match the resonance frequency of oscillation of the septa and/or of the septa and any subcomponents that the septa contain. The resonance frequency of oscillation can range from about 10 MHz to about 1 GHz. In other embodiments, the ultrasound frequency is selected to match or to substantially match harmonics of the resonance frequency of the septa and any subcomponents that the septa contain. The harmonics of the resonance frequency can range from about 20 MHz to about 2 GHz.
In one embodiment, stretching is combined with vibration (e.g., vacuum is externally applied to the subject's skin together with a vibration action). In another embodiment, stretching is combined with torquing (e.g., twisting) of tissue, for example, vacuum is externally applied to the subject's skin together with a twisting action. The twisting action can have a torque that ranges from about 0.3 N-m to about 3 N-m. The vibration action can have a frequency that ranges from about 5 Hz to about 200 Hz.
Referring again to
In one embodiment, the treatment is combined with other visualization techniques that enable visualization of the connective tissue structure (e.g., the septa and/or fascia tissue structure) to control the location of the applicator and/or the results of the treatment. Suitable visualization techniques can include, for example, use of diagnostic ultrasound as a visualization technique.
In one embodiment, a cannula having a diameter that ranges from about 0.5 mm to about 8 mm, or about 2 mm is inserted into the body of a subject through an incision. The cannula includes an energy source (e.g., a light source) that heats the region of tissue into which the cannula has been inserted. The cannula and the energy source heat the region of tissue, which includes septa to a temperature of about 45° C. A source of vacuum is employed to stretch the connective tissue (e.g., the septa and/or the fascia tissue). The temperature of about 45° C. is employed because it avoids coagulation and it avoids melting of the adipose cells in the region of the connective tissue (e.g., the septa and/or the fascia tissue).
The desired level of connective tissue elongation may be confirmed via visual confirmation that the appearance of cellulite is reduced and/or eliminated. Where the treatment is non invasive (e.g., external treatment) the visual confirmation may be made just after treatment. Where the treatment is invasive (i.e., internal treatment with a cannula) the visual confirmation may likewise be made after the treatment is completed once the cannula is removed from the subject's body. Where the invasive treatment includes a fluid for example a liquid such as water or tumescent or a gas injected into the subject's body, the visual confirmation may be made upon release of the fluid (e.g., the tumescent or the gas). In some embodiments, the connective tissue that is elongated (e.g., the fascia and/or the septa) is increased in length by from about 5% to about 50%.
The cooling plate can be an optically transparent dielectric material. Generally, the cooling plate can have a temperature range of from about −5° C. to about 20° C. or the cooling plate can have a temperature range of from about −5° C. to about 10° C. The cooling plate may be made from sapphire. Cooling the plate to the temperature range of −5° C. to about 20° C. or from about −5° C. to about 10° C. allows deep heating by light without damaging the epidermis. Such cooling done in parallel with light delivery can allow irradiation times that can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes. In some embodiments, the treatment power density for wavelengths in the near-infrared wavelength range is on the order of from about 1 W/cm2 to about 100 W/cm2, or from about 1 W/cm2 to about 10 W/cm2. Heating and cooling may be cycled, cycling of heating and cooling can promote a substantially uniform temperature change in the area of tissue treatment. Thermocycling of heating and cooling can contribute to lasting elongation of connective tissue being treated (e.g., septa tissue and/or fascia tissue). Cycling of heating and cooling can be employed so that heating via the energy source and cooling have intensities that are matched to one another (e.g., as the energy for heating is increased the cooling temperature is decreased and as the energy for heating is decreased the cooling temperature is increased).
The energy source 5012 increases the temperature of the tissue region including the septa 5007.
The device shown in
The power level of the energy source can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts. Where the energy source is a light based (e.g., laser) the wavelength can range from about 600 nm to 2300 nm or from about 900 nm to about 1850 nm.
The energy source 5012 can feature different optical schemes (i.e. with or without optical fibers) that can be used to irradiate the skin fold. In one embodiment, diode laser bars together with suitable optics are mounted in the device and create one or more irradiation areas (each having an irradiation area on the order of from about 5×20 mm2, or from about 25×200 mm2, or from about 15×70 mm2) that are adjacent to the skin fold. In one embodiment, two diode laser bars (each having an irradiation area on the order of 15×70 mm2) are located in the device each on one side of a skin fold. In another embodiment, diode light is delivered via beam-shaping optics through two cooled sapphire windows with one window located on each side of the skin fold (the cooled sapphire windows are on the order of 15×70 mm2).
Referring still to
More specifically, the device applies vacuum 5099 to a region of tissue to be treated (e.g., to a pinch of tissue) at least a portion of a side of the pinch of tissue is exposed to ultrasound energy (e.g., acoustic energy). Ultrasound energy (e.g., acoustic energy) may be employed as the only energy source 5012 and/or acoustic energy may be employed in combination with other sources of energy, such as, for example, light energy. Acoustic energy can provide mechanical vibration when the acoustic energy has a frequency range of from about 10 Hz to about 10 kHz. Acoustic energy can produce cavitation in the subcutaneous tissue when it has a frequency range of from about 5 kHz up to 1 MHz. Acoustic energy can achieve a heating effect when it has a frequency range from about 0.5 MHz to about 1 GHz. In one embodiment, a cooling element (e.g., a cooling plate 5014, 5016) contacts the skin surface while the acoustic and/or light energy is being applied to the skin surface. In one embodiment, the cooling element cools the skin surface down to, for example, 0° C. Suitable cooling elements may be made from, for example, cooled sapphire. Any suitable cooling mechanism may be employed such as, for example, a peltier cooler.
In one embodiment, referring to
Optionally, the device includes vibration and/or massage. In one embodiment, massage is used in a twisting motion and/or a shearing motion provided in a direction parallel to the skin fold. In one embodiment, contact sensors are disposed on within the portion of the device in contact with the skin tissue and the contact sensors can be employed to ensure the skin being treated (e.g., a skin fold) stays in contact with the sapphire cooling windows. In one embodiment, a skin color sensor is employed to automatically adjust the power of the energy source (e.g., the diode laser) based on a measurement of the skin melanin optical density. In some embodiments, a temperature sensor is embedded in the device (e.g., in the sapphire window) and the temperature sensor can be employed to ensure that the skin does not overheat during treatment. The device may employ photon recycling to enhance heating of the skin fold by redirecting photons scattered out of the skin fold back into the skin fold. In other embodiments, one or more septa may be stretched by any of the means described herein and all or a portion of one or more septa may be cut and/or may fraction thereby to diminish and/or eliminate the tension in the septa that can cause the cellulite appearance. The one or more septa may be cut by any of the internal or external means described herein. Alternatively, the one or more septa may be cut by employing surgical tools known for cutting such as, for example, knives, scalpels, and/or cauterization devices.
The techniques described herein for improvement of cellulite appearance may be employed to treat the cellulite of subjects ranging in age from relatively young subjects that have just begun to exhibit the cellulite appearance (e.g., teenagers) or relatively older subject's including post menopausal and/or elderly female subjects.
The present application claims priority to a provisional application entitled “Method for Improvement of Cellulite Appearance” and having U.S. Ser. No. 61/271,593. This provisional application is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
853033 | Roberts | May 1907 | A |
1590283 | Catlin | Jun 1926 | A |
1706161 | Hollnagen | Mar 1929 | A |
2472385 | Rollman | Jun 1949 | A |
2669771 | Burge et al. | Feb 1954 | A |
3261978 | Brenman | Jul 1966 | A |
3327712 | Kaufmann | Jun 1967 | A |
3486070 | Engel | Dec 1969 | A |
3527932 | Thomas | Sep 1970 | A |
3538919 | Meyer | Nov 1970 | A |
3597652 | Gates, Jr. | Aug 1971 | A |
3622743 | Muncheryan | Nov 1971 | A |
3653778 | Freiling | Apr 1972 | A |
3667454 | Prince | Jun 1972 | A |
3693623 | Harte et al. | Sep 1972 | A |
3793723 | Kuris et al. | Feb 1974 | A |
3818914 | Bender | Jun 1974 | A |
3834391 | Block | Sep 1974 | A |
3846811 | Nakamura et al. | Nov 1974 | A |
3857015 | Clark et al. | Dec 1974 | A |
3890537 | Park et al. | Jun 1975 | A |
3900034 | Katz et al. | Aug 1975 | A |
3909649 | Arsena | Sep 1975 | A |
3939560 | Lyall | Feb 1976 | A |
3977083 | Leslie et al. | Aug 1976 | A |
4047106 | Robinson | Sep 1977 | A |
4213462 | Sato | Jul 1980 | A |
4233493 | Nath et al. | Nov 1980 | A |
4254333 | Bergstrom | Mar 1981 | A |
4269067 | Tynan et al. | May 1981 | A |
4273109 | Enderby | Jun 1981 | A |
4275335 | Ishida et al. | Jun 1981 | A |
4298005 | Mutzhas | Nov 1981 | A |
4316467 | Muckerheide | Feb 1982 | A |
4333197 | Kuris | Jun 1982 | A |
4335726 | Kolstedt | Jun 1982 | A |
4388924 | Weissman et al. | Jun 1983 | A |
4409479 | Sprague et al. | Oct 1983 | A |
4452081 | Seppi | Jun 1984 | A |
4456872 | Froeschle | Jun 1984 | A |
4461294 | Baron | Jul 1984 | A |
4504727 | Melcher et al. | Mar 1985 | A |
4512197 | von Gutfeld et al. | Apr 1985 | A |
4524289 | Hammond et al. | Jun 1985 | A |
4539987 | Nath et al. | Sep 1985 | A |
4553546 | Javelle | Nov 1985 | A |
4561440 | Kubo et al. | Dec 1985 | A |
4566271 | French et al. | Jan 1986 | A |
4591762 | Nakamura | May 1986 | A |
4601753 | Soileau et al. | Jul 1986 | A |
4608978 | Rohr | Sep 1986 | A |
4608979 | Breidenthal et al. | Sep 1986 | A |
4617926 | Sutton | Oct 1986 | A |
4623929 | Johnson et al. | Nov 1986 | A |
4629884 | Bergstrom | Dec 1986 | A |
4653495 | Nanaumi | Mar 1987 | A |
4677347 | Nakamura et al. | Jun 1987 | A |
4686986 | Fenyo et al. | Aug 1987 | A |
4695697 | Kosa | Sep 1987 | A |
4710677 | Halberstadt et al. | Dec 1987 | A |
4718416 | Nanaumi | Jan 1988 | A |
4733660 | Itzkan | Mar 1988 | A |
4736745 | Gluckman | Apr 1988 | A |
4745909 | Pelton et al. | May 1988 | A |
4747660 | Nishioka et al. | May 1988 | A |
4749913 | Stuermer et al. | Jun 1988 | A |
4775361 | Jacques et al. | Oct 1988 | A |
4779173 | Carr et al. | Oct 1988 | A |
4784135 | Blum et al. | Nov 1988 | A |
4799479 | Spears | Jan 1989 | A |
4819669 | Politzer | Apr 1989 | A |
4826431 | Fujimura et al. | May 1989 | A |
4832024 | Boussignac et al. | May 1989 | A |
4840174 | Gluckman | Jun 1989 | A |
4840563 | Altendorf | Jun 1989 | A |
4845608 | Gdula | Jul 1989 | A |
4852549 | Mori et al. | Aug 1989 | A |
4860172 | Schlager et al. | Aug 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4862903 | Campbell | Sep 1989 | A |
4871479 | Bachelard et al. | Oct 1989 | A |
4884560 | Kuracina | Dec 1989 | A |
4898438 | Mori | Feb 1990 | A |
4905690 | Ohshiro et al. | Mar 1990 | A |
4914298 | Quad et al. | Apr 1990 | A |
4917084 | Sinofsky | Apr 1990 | A |
4926227 | Jensen | May 1990 | A |
4928038 | Nerone | May 1990 | A |
4930504 | Diamantopoulos et al. | Jun 1990 | A |
4932954 | Wondrazek et al. | Jun 1990 | A |
4945239 | Wist et al. | Jul 1990 | A |
4973848 | Kolobanov et al. | Nov 1990 | A |
4976308 | Faghri | Dec 1990 | A |
4979180 | Muncheryan | Dec 1990 | A |
4992256 | Skaggs et al. | Feb 1991 | A |
5000752 | Hoskin et al. | Mar 1991 | A |
5030090 | Maeda et al. | Jul 1991 | A |
5032178 | Cornell | Jul 1991 | A |
5046494 | Searfoss et al. | Sep 1991 | A |
5050597 | Daikuzono | Sep 1991 | A |
5057104 | Chess | Oct 1991 | A |
5059192 | Zaias | Oct 1991 | A |
5065515 | Iderosa | Nov 1991 | A |
5066293 | Furumoto | Nov 1991 | A |
5071417 | Sinofsky | Dec 1991 | A |
5108388 | Trokel | Apr 1992 | A |
5127395 | Bontemps | Jul 1992 | A |
5133102 | Sakuma et al. | Jul 1992 | A |
5137530 | Sand | Aug 1992 | A |
5140984 | Dew et al. | Aug 1992 | A |
5159601 | Huber | Oct 1992 | A |
5160194 | Feldman | Nov 1992 | A |
5171564 | Nathoo et al. | Dec 1992 | A |
5178617 | Kuizenga et al. | Jan 1993 | A |
5182557 | Lang | Jan 1993 | A |
5182857 | Simon | Feb 1993 | A |
5192278 | Hayes et al. | Mar 1993 | A |
5196004 | Sinofsky | Mar 1993 | A |
5207671 | Franken et al. | May 1993 | A |
5222907 | Katabuchi et al. | Jun 1993 | A |
5225926 | Cuomo et al. | Jul 1993 | A |
5226907 | Tankovich | Jul 1993 | A |
5267399 | Johnston | Dec 1993 | A |
5281211 | Parel et al. | Jan 1994 | A |
5282797 | Chess | Feb 1994 | A |
5287372 | Ortiz | Feb 1994 | A |
5287380 | Hsia | Feb 1994 | A |
5293880 | Levitt | Mar 1994 | A |
5300097 | Lerner et al. | Apr 1994 | A |
5303585 | Lichte | Apr 1994 | A |
5304170 | Green | Apr 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5306143 | Levy | Apr 1994 | A |
5306274 | Long | Apr 1994 | A |
5320618 | Gustafsson | Jun 1994 | A |
5334191 | Poppas et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336217 | Buys et al. | Aug 1994 | A |
5342358 | Daikuzono et al. | Aug 1994 | A |
5344418 | Ghaffari | Sep 1994 | A |
5344434 | Talmore | Sep 1994 | A |
5348551 | Spears et al. | Sep 1994 | A |
5350376 | Brown | Sep 1994 | A |
5353020 | Schurmann | Oct 1994 | A |
5353790 | Jacques et al. | Oct 1994 | A |
5356081 | Sellar | Oct 1994 | A |
5358503 | Bertwell et al. | Oct 1994 | A |
5360426 | Muller et al. | Nov 1994 | A |
5369831 | Bock | Dec 1994 | A |
5380317 | Everett et al. | Jan 1995 | A |
5386427 | Zayhowski | Jan 1995 | A |
5403306 | Edwards et al. | Apr 1995 | A |
5405368 | Eckhouse | Apr 1995 | A |
5409446 | Rattner | Apr 1995 | A |
5415654 | Daikuzono | May 1995 | A |
5422112 | Williams | Jun 1995 | A |
5425728 | Tankovich | Jun 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5425754 | Braun et al. | Jun 1995 | A |
5445608 | Chen et al. | Aug 1995 | A |
5445611 | Eppstein et al. | Aug 1995 | A |
5454807 | Lennox et al. | Oct 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5474549 | Ortiz et al. | Dec 1995 | A |
5486170 | Winston et al. | Jan 1996 | A |
5486172 | Chess | Jan 1996 | A |
5501680 | Kurtz et al. | Mar 1996 | A |
5502582 | Larson et al. | Mar 1996 | A |
5505726 | Meserol | Apr 1996 | A |
5505727 | Keller | Apr 1996 | A |
5519534 | Smith et al. | May 1996 | A |
5522813 | Trelles | Jun 1996 | A |
5527368 | Supkis et al. | Jun 1996 | A |
5531739 | Trelles | Jul 1996 | A |
5531740 | Black | Jul 1996 | A |
5536168 | Bourke et al. | Jul 1996 | A |
5549660 | Mendes et al. | Aug 1996 | A |
5558667 | Yarborough et al. | Sep 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
5571098 | Domankevitz et al. | Nov 1996 | A |
5578866 | DePoorter et al. | Nov 1996 | A |
5595568 | Anderson et al. | Jan 1997 | A |
5611793 | Wilson et al. | Mar 1997 | A |
5616140 | Prescott | Apr 1997 | A |
5618284 | Sand | Apr 1997 | A |
5620478 | Eckhouse et al. | Apr 1997 | A |
5626631 | Eckhouse et al. | May 1997 | A |
5628744 | Coleman et al. | May 1997 | A |
5630811 | Miller | May 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5649972 | Hochstein | Jul 1997 | A |
5652481 | Johnson et al. | Jul 1997 | A |
5653706 | Zavislan et al. | Aug 1997 | A |
5655547 | Karni | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5658148 | Neuberger et al. | Aug 1997 | A |
5658323 | Miller | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5661744 | Murakami et al. | Aug 1997 | A |
5662643 | Kung et al. | Sep 1997 | A |
5662644 | Swor | Sep 1997 | A |
5673451 | Moore et al. | Oct 1997 | A |
5679113 | Caisey et al. | Oct 1997 | A |
5683380 | Eckhouse et al. | Nov 1997 | A |
5692509 | Voss et al. | Dec 1997 | A |
5698866 | Doiron et al. | Dec 1997 | A |
5707401 | Martin et al. | Jan 1998 | A |
5707403 | Grove et al. | Jan 1998 | A |
5713738 | Yarborough | Feb 1998 | A |
5714119 | Kawagoe et al. | Feb 1998 | A |
5720772 | Eckhouse | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5725522 | Sinofsky | Mar 1998 | A |
5728090 | Martin et al. | Mar 1998 | A |
5735844 | Anderson et al. | Apr 1998 | A |
5735884 | Thompson et al. | Apr 1998 | A |
5738678 | Patel | Apr 1998 | A |
5742392 | Anderson et al. | Apr 1998 | A |
5743901 | Grove et al. | Apr 1998 | A |
5743902 | Trost | Apr 1998 | A |
5746735 | Furumoto et al. | May 1998 | A |
5748822 | Miura et al. | May 1998 | A |
5755751 | Eckhouse | May 1998 | A |
5759200 | Azar | Jun 1998 | A |
5760362 | Eloy | Jun 1998 | A |
5769076 | Maekawa et al. | Jun 1998 | A |
5782249 | Weber et al. | Jul 1998 | A |
5802136 | Carol | Sep 1998 | A |
5810801 | Anderson et al. | Sep 1998 | A |
5812567 | Jeon et al. | Sep 1998 | A |
5813855 | Crisio, Jr. | Sep 1998 | A |
5814008 | Chen et al. | Sep 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5814041 | Anderson et al. | Sep 1998 | A |
5817089 | Tankovich et al. | Oct 1998 | A |
5820625 | Izawa et al. | Oct 1998 | A |
5820626 | Baumgardner | Oct 1998 | A |
5824023 | Anderson | Oct 1998 | A |
5827264 | Hohla | Oct 1998 | A |
5828803 | Eckhouse | Oct 1998 | A |
5830208 | Muller | Nov 1998 | A |
5835648 | Narciso, Jr. et al. | Nov 1998 | A |
5836877 | Zavislan | Nov 1998 | A |
5836999 | Eckhouse et al. | Nov 1998 | A |
5840048 | Cheng | Nov 1998 | A |
5849029 | Eckhouse et al. | Dec 1998 | A |
5851181 | Talmor | Dec 1998 | A |
5853407 | Miller | Dec 1998 | A |
5860967 | Zavislan et al. | Jan 1999 | A |
5868731 | Budnik et al. | Feb 1999 | A |
5868732 | Waldman et al. | Feb 1999 | A |
5871480 | Tankovich | Feb 1999 | A |
5879159 | Cipolla | Mar 1999 | A |
5883471 | Rodman et al. | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5885273 | Eckhouse et al. | Mar 1999 | A |
5885274 | Fullmer et al. | Mar 1999 | A |
5891063 | Vigil | Apr 1999 | A |
5893828 | Uram | Apr 1999 | A |
5895350 | Hori | Apr 1999 | A |
5897549 | Tankovich | Apr 1999 | A |
5906609 | Assa et al. | May 1999 | A |
5908418 | Dority et al. | Jun 1999 | A |
5913883 | Alexander et al. | Jun 1999 | A |
5916211 | Quon et al. | Jun 1999 | A |
5920374 | Vaphiades et al. | Jul 1999 | A |
5921926 | Rolland et al. | Jul 1999 | A |
5928222 | Kleinerman | Jul 1999 | A |
5944687 | Benett et al. | Aug 1999 | A |
5944748 | Mager et al. | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5949222 | Buono | Sep 1999 | A |
5954710 | Paolini et al. | Sep 1999 | A |
5955490 | Kennedy et al. | Sep 1999 | A |
5957915 | Trost | Sep 1999 | A |
5964749 | Eckhouse et al. | Oct 1999 | A |
5968033 | Fuller et al. | Oct 1999 | A |
5968034 | Fullmer et al. | Oct 1999 | A |
5974059 | Dawson | Oct 1999 | A |
5974616 | Dreyfus | Nov 1999 | A |
5977723 | Yoon | Nov 1999 | A |
5979454 | Anvari et al. | Nov 1999 | A |
5984915 | Loeb et al. | Nov 1999 | A |
6007219 | O'Meara | Dec 1999 | A |
6015404 | Altshuler et al. | Jan 2000 | A |
6022316 | Eppstein et al. | Feb 2000 | A |
6024095 | Stanley, III | Feb 2000 | A |
6026828 | Altshuler | Feb 2000 | A |
6027495 | Miller | Feb 2000 | A |
6029303 | Dewan | Feb 2000 | A |
6029304 | Hulke et al. | Feb 2000 | A |
6030378 | Stewart | Feb 2000 | A |
6030399 | Ignotz et al. | Feb 2000 | A |
6032071 | Binder | Feb 2000 | A |
RE36634 | Ghaffari | Mar 2000 | E |
6036684 | Tankovich et al. | Mar 2000 | A |
6044514 | Kaneda et al. | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
D424197 | Sydlowski et al. | May 2000 | S |
6056548 | Neuberger et al. | May 2000 | A |
6056738 | Marchitto et al. | May 2000 | A |
6058937 | Doiron et al. | May 2000 | A |
6059820 | Baronov | May 2000 | A |
6063108 | Salansky et al. | May 2000 | A |
6070092 | Kazama et al. | May 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6074382 | Asah et al. | Jun 2000 | A |
6080146 | Altshuler et al. | Jun 2000 | A |
6080147 | Tobinick | Jun 2000 | A |
6083217 | Tankovich | Jul 2000 | A |
6086363 | Moran et al. | Jul 2000 | A |
6086580 | Mordon et al. | Jul 2000 | A |
6094767 | Iimura | Aug 2000 | A |
6096029 | O'Donnell, Jr. | Aug 2000 | A |
6096209 | O'Brien et al. | Aug 2000 | A |
6099521 | Shadduck | Aug 2000 | A |
6104959 | Spertell | Aug 2000 | A |
6106293 | Wiesel | Aug 2000 | A |
6106294 | Daniel | Aug 2000 | A |
6110195 | Xie et al. | Aug 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6117129 | Mukai | Sep 2000 | A |
6120497 | Anderson et al. | Sep 2000 | A |
6126655 | Domankevitz et al. | Oct 2000 | A |
6129723 | Anderson et al. | Oct 2000 | A |
6135774 | Hack et al. | Oct 2000 | A |
6142650 | Brown et al. | Nov 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6149644 | Xie | Nov 2000 | A |
6149895 | Kutsch | Nov 2000 | A |
6159236 | Biel | Dec 2000 | A |
6162055 | Montgomery et al. | Dec 2000 | A |
6162211 | Tankovich et al. | Dec 2000 | A |
6162212 | Kreindel et al. | Dec 2000 | A |
6171300 | Adams | Jan 2001 | B1 |
6171301 | Nelson | Jan 2001 | B1 |
6171302 | Talpalriu et al. | Jan 2001 | B1 |
6171332 | Whitehurst | Jan 2001 | B1 |
6173202 | Eppstein | Jan 2001 | B1 |
6174325 | Eckhouse | Jan 2001 | B1 |
6176854 | Cone | Jan 2001 | B1 |
6183434 | Eppstein | Feb 2001 | B1 |
6183500 | Kohler | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6187001 | Azar et al. | Feb 2001 | B1 |
6187029 | Shapiro et al. | Feb 2001 | B1 |
6197020 | O'Donnell, Jr. | Mar 2001 | B1 |
6200134 | Kovac et al. | Mar 2001 | B1 |
6200309 | Rice et al. | Mar 2001 | B1 |
6202242 | Salmon et al. | Mar 2001 | B1 |
6203540 | Weber | Mar 2001 | B1 |
6210425 | Chen | Apr 2001 | B1 |
6214034 | Azar | Apr 2001 | B1 |
6221068 | Fried et al. | Apr 2001 | B1 |
6221095 | Van Zuylen et al. | Apr 2001 | B1 |
6228075 | Furumoto | May 2001 | B1 |
6229831 | Nightingale et al. | May 2001 | B1 |
6235015 | Mead, III et al. | May 2001 | B1 |
6235016 | Stewart | May 2001 | B1 |
6236891 | Ingle et al. | May 2001 | B1 |
6239442 | Iimura et al. | May 2001 | B1 |
6240306 | Rohrscheib et al. | May 2001 | B1 |
6245093 | Li et al. | Jun 2001 | B1 |
6251127 | Biel | Jun 2001 | B1 |
6254388 | Yarborough | Jul 2001 | B1 |
6263233 | Zavislan et al. | Jul 2001 | B1 |
6264649 | Whitcroft et al. | Jul 2001 | B1 |
6267779 | Gerdes | Jul 2001 | B1 |
6267780 | Streeter | Jul 2001 | B1 |
6273884 | Altshuler et al. | Aug 2001 | B1 |
6273885 | Koop et al. | Aug 2001 | B1 |
6280438 | Eckhouse et al. | Aug 2001 | B1 |
6283956 | McDaniel | Sep 2001 | B1 |
6287549 | Sumian et al. | Sep 2001 | B1 |
6290496 | Azar et al. | Sep 2001 | B1 |
6290713 | Russell | Sep 2001 | B1 |
6306130 | Anderson et al. | Oct 2001 | B1 |
6306160 | Nidetzky | Oct 2001 | B1 |
6315772 | Marchitto et al. | Nov 2001 | B1 |
6317624 | Kollias et al. | Nov 2001 | B1 |
6319274 | Shadduck | Nov 2001 | B1 |
6325769 | Klopotek | Dec 2001 | B1 |
6328733 | Trost | Dec 2001 | B1 |
6331111 | Cao | Dec 2001 | B1 |
6340495 | Sumian et al. | Jan 2002 | B1 |
6343400 | Massholder et al. | Feb 2002 | B1 |
6343933 | Montgomery et al. | Feb 2002 | B1 |
6350261 | Domankevitz et al. | Feb 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6354370 | Miller et al. | Mar 2002 | B1 |
6355054 | Neuberger et al. | Mar 2002 | B1 |
6358242 | Cecchetti | Mar 2002 | B1 |
6358272 | Wilden | Mar 2002 | B1 |
6383176 | Connors et al. | May 2002 | B1 |
6383177 | Balle-Petersen et al. | May 2002 | B1 |
6387089 | Kreindel et al. | May 2002 | B1 |
6387353 | Jensen et al. | May 2002 | B1 |
6395016 | Oron et al. | May 2002 | B1 |
6400011 | Miki | Jun 2002 | B1 |
6402739 | Neev | Jun 2002 | B1 |
6406474 | Neuberger et al. | Jun 2002 | B1 |
6409665 | Scott et al. | Jun 2002 | B1 |
6413267 | Dumoulin-White et al. | Jul 2002 | B1 |
6416319 | Cipolla | Jul 2002 | B1 |
6419389 | Fuchs et al. | Jul 2002 | B1 |
6424852 | Zavislan | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6435873 | Burgio | Aug 2002 | B1 |
6436094 | Reuter | Aug 2002 | B1 |
6439888 | Boutoussov et al. | Aug 2002 | B1 |
6440155 | Matsumae et al. | Aug 2002 | B1 |
6443978 | Zharov | Sep 2002 | B1 |
6451007 | Koop et al. | Sep 2002 | B1 |
6461296 | Desai | Oct 2002 | B1 |
6464694 | Massengill | Oct 2002 | B1 |
6471712 | Burres | Oct 2002 | B2 |
6471716 | Pecukonis | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6491685 | Visuri et al. | Dec 2002 | B2 |
6494900 | Salansky et al. | Dec 2002 | B1 |
6497702 | Bernaz | Dec 2002 | B1 |
6503486 | Xu et al. | Jan 2003 | B2 |
6508785 | Eppstein | Jan 2003 | B1 |
6508813 | Altshuler | Jan 2003 | B1 |
6511475 | Altshuler et al. | Jan 2003 | B1 |
6514243 | Eckhouse et al. | Feb 2003 | B1 |
6517532 | Altshuler et al. | Feb 2003 | B1 |
6519376 | Biagi et al. | Feb 2003 | B2 |
6525819 | Delawter et al. | Feb 2003 | B1 |
6527716 | Eppstein | Mar 2003 | B1 |
6527764 | Neuberger et al. | Mar 2003 | B1 |
6530915 | Eppstein et al. | Mar 2003 | B1 |
6537270 | Elbrecht et al. | Mar 2003 | B1 |
6547780 | Sinofsky | Apr 2003 | B1 |
6551346 | Crossley | Apr 2003 | B2 |
6554439 | Teicher et al. | Apr 2003 | B1 |
6556596 | Kim et al. | Apr 2003 | B1 |
6558372 | Altshuler | May 2003 | B1 |
6561808 | Neuberger et al. | May 2003 | B2 |
6569155 | Connors et al. | May 2003 | B1 |
6570892 | Lin et al. | May 2003 | B1 |
6570893 | Libatique et al. | May 2003 | B1 |
6572634 | Koo | Jun 2003 | B2 |
6572637 | Yamazaki et al. | Jun 2003 | B1 |
6595934 | Hissong et al. | Jul 2003 | B1 |
6600951 | Anderson | Jul 2003 | B1 |
6602245 | Thiberg | Aug 2003 | B1 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6605083 | Clement et al. | Aug 2003 | B2 |
6606755 | Robinson et al. | Aug 2003 | B1 |
6616447 | Rizoiu et al. | Sep 2003 | B1 |
6616451 | Rizolu et al. | Sep 2003 | B1 |
6618531 | Goto et al. | Sep 2003 | B1 |
6623272 | Clemans | Sep 2003 | B2 |
6623513 | Biel | Sep 2003 | B2 |
6629971 | McDaniel | Oct 2003 | B2 |
6629989 | Akita | Oct 2003 | B2 |
6632219 | Baranov et al. | Oct 2003 | B1 |
6635075 | Li et al. | Oct 2003 | B2 |
6641578 | Mukai | Nov 2003 | B2 |
6641600 | Kohler | Nov 2003 | B1 |
6648904 | Altshuler et al. | Nov 2003 | B2 |
6652459 | Payne et al. | Nov 2003 | B2 |
6653618 | Zenzie | Nov 2003 | B2 |
6659999 | Anderson et al. | Dec 2003 | B1 |
6660000 | Neuberger et al. | Dec 2003 | B2 |
6663620 | Altshuler et al. | Dec 2003 | B2 |
6663658 | Kollias et al. | Dec 2003 | B1 |
6663659 | McDaniel | Dec 2003 | B2 |
6675425 | Iimura et al. | Jan 2004 | B1 |
6676654 | Balle-Petersen et al. | Jan 2004 | B1 |
6679837 | Daikuzono | Jan 2004 | B2 |
6685639 | Wang et al. | Feb 2004 | B1 |
6685699 | Eppstein et al. | Feb 2004 | B1 |
6689124 | Thiberg | Feb 2004 | B1 |
6692456 | Eppstein et al. | Feb 2004 | B1 |
6699040 | Hahn et al. | Mar 2004 | B1 |
6706035 | Cense et al. | Mar 2004 | B2 |
6709269 | Altshuler | Mar 2004 | B1 |
6709446 | Lundahl et al. | Mar 2004 | B2 |
6723090 | Altshuler et al. | Apr 2004 | B2 |
6743222 | Durkin et al. | Jun 2004 | B2 |
6746444 | Key | Jun 2004 | B2 |
6749623 | Hsi et al. | Jun 2004 | B1 |
6770069 | Hobart et al. | Aug 2004 | B1 |
6790205 | Yamazaki et al. | Sep 2004 | B1 |
6801595 | Grodzins et al. | Oct 2004 | B2 |
6808331 | Hall et al. | Oct 2004 | B2 |
6808532 | Andersen et al. | Oct 2004 | B2 |
RE38670 | Asah et al. | Dec 2004 | E |
6858009 | Kawata et al. | Feb 2005 | B2 |
6860879 | Irion et al. | Mar 2005 | B2 |
6862771 | Muller | Mar 2005 | B1 |
6863781 | Nocera et al. | Mar 2005 | B2 |
6878144 | Altshuler et al. | Apr 2005 | B2 |
6881212 | Clement et al. | Apr 2005 | B1 |
6887260 | McDaniel | May 2005 | B1 |
6888319 | Inochkin et al. | May 2005 | B2 |
6893259 | Reizenson | May 2005 | B1 |
6902397 | Farrell et al. | Jun 2005 | B2 |
6902563 | Wilkens et al. | Jun 2005 | B2 |
6936046 | Hissong et al. | Aug 2005 | B2 |
6942658 | Rizoiu et al. | Sep 2005 | B1 |
6953341 | Black | Oct 2005 | B2 |
6974451 | Altshuler et al. | Dec 2005 | B2 |
6976985 | Altshuler et al. | Dec 2005 | B2 |
6989023 | Black | Jan 2006 | B2 |
6991644 | Spooner et al. | Jan 2006 | B2 |
6997923 | Anderson et al. | Feb 2006 | B2 |
7001413 | Butler | Feb 2006 | B2 |
7006223 | Mullani | Feb 2006 | B2 |
7029469 | Vasily | Apr 2006 | B2 |
7033349 | Key | Apr 2006 | B2 |
7041100 | Kreindel | May 2006 | B2 |
7044959 | Anderson et al. | May 2006 | B2 |
7060061 | Altshuler et al. | Jun 2006 | B2 |
7066733 | Logan et al. | Jun 2006 | B2 |
7070611 | Biel | Jul 2006 | B2 |
7077840 | Altshuler et al. | Jul 2006 | B2 |
7081128 | Hart et al. | Jul 2006 | B2 |
7097639 | Almeida | Aug 2006 | B1 |
7097656 | Akopov et al. | Aug 2006 | B1 |
7135033 | Altshuler et al. | Nov 2006 | B2 |
7144247 | Black | Dec 2006 | B2 |
7144248 | Irwin | Dec 2006 | B2 |
7145105 | Gaulard | Dec 2006 | B2 |
7145108 | Kanel et al. | Dec 2006 | B2 |
7160289 | Cohen | Jan 2007 | B2 |
7182760 | Kubota | Feb 2007 | B2 |
7198634 | Harth et al. | Apr 2007 | B2 |
7204832 | Altshuler et al. | Apr 2007 | B2 |
7220254 | Altshuler et al. | May 2007 | B2 |
7223270 | Altshuler et al. | May 2007 | B2 |
7223281 | Altshuler et al. | May 2007 | B2 |
7255691 | Tolkoff et al. | Aug 2007 | B2 |
7274155 | Inochkin et al. | Sep 2007 | B2 |
7276058 | Altshuler et al. | Oct 2007 | B2 |
7291140 | MacFarland et al. | Nov 2007 | B2 |
7291141 | Jay | Nov 2007 | B2 |
7309335 | Altshuler et al. | Dec 2007 | B2 |
7311722 | Larsen | Dec 2007 | B2 |
7322972 | Viator et al. | Jan 2008 | B2 |
7329273 | Altshuler et al. | Feb 2008 | B2 |
7329274 | Altshuler et al. | Feb 2008 | B2 |
7331953 | Manstein et al. | Feb 2008 | B2 |
7331964 | Maricle et al. | Feb 2008 | B2 |
7333698 | Israel | Feb 2008 | B2 |
7351252 | Altshuler et al. | Apr 2008 | B2 |
7422598 | Altshuler et al. | Sep 2008 | B2 |
7423767 | Steinsiek et al. | Sep 2008 | B2 |
7431719 | Altshuler et al. | Oct 2008 | B2 |
7531967 | Inochkin et al. | May 2009 | B2 |
7540869 | Altshuler et al. | Jun 2009 | B2 |
7624640 | Maris et al. | Dec 2009 | B2 |
7647092 | Motz et al. | Jan 2010 | B2 |
7758621 | Altshuler et al. | Jul 2010 | B2 |
7763016 | Altshuler et al. | Jul 2010 | B2 |
7935107 | Altshuler et al. | May 2011 | B2 |
7938821 | Chan et al. | May 2011 | B2 |
7942915 | Altshuler et al. | May 2011 | B2 |
7942916 | Altshuler et al. | May 2011 | B2 |
8002768 | Altshuler et al. | Aug 2011 | B1 |
20010007068 | Ota et al. | Jul 2001 | A1 |
20010008973 | Van Zuylen et al. | Jul 2001 | A1 |
20010016732 | Hobart et al. | Aug 2001 | A1 |
20010023363 | Harth et al. | Sep 2001 | A1 |
20010024777 | Azar et al. | Sep 2001 | A1 |
20010025173 | Ritchie et al. | Sep 2001 | A1 |
20010041886 | Durkin et al. | Nov 2001 | A1 |
20010046652 | Ostler et al. | Nov 2001 | A1 |
20010048077 | Afanassieva | Dec 2001 | A1 |
20020004066 | Stanley et al. | Jan 2002 | A1 |
20020005475 | Zenzie | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020016587 | Furumoto | Feb 2002 | A1 |
20020018754 | Sagel et al. | Feb 2002 | A1 |
20020019624 | Clement et al. | Feb 2002 | A1 |
20020026225 | Segal | Feb 2002 | A1 |
20020029071 | Whitehurst | Mar 2002 | A1 |
20020049483 | Knowlton | Apr 2002 | A1 |
20020058890 | Visuri et al. | May 2002 | A1 |
20020071287 | Haase | Jun 2002 | A1 |
20020071827 | Petersen et al. | Jun 2002 | A1 |
20020072676 | Afanassieva | Jun 2002 | A1 |
20020081555 | Wiesel | Jun 2002 | A1 |
20020090725 | Simpson et al. | Jul 2002 | A1 |
20020091377 | Anderson et al. | Jul 2002 | A1 |
20020108193 | Gruber | Aug 2002 | A1 |
20020111610 | Nordquist | Aug 2002 | A1 |
20020120256 | Furuno et al. | Aug 2002 | A1 |
20020123745 | Svaasand et al. | Sep 2002 | A1 |
20020127224 | Chen | Sep 2002 | A1 |
20020128635 | Altshuler et al. | Sep 2002 | A1 |
20020128695 | Harth et al. | Sep 2002 | A1 |
20020161357 | Anderson et al. | Oct 2002 | A1 |
20020161418 | Wilkens et al. | Oct 2002 | A1 |
20020173780 | Altshuler et al. | Nov 2002 | A1 |
20020182563 | Boutoussov et al. | Dec 2002 | A1 |
20020183808 | Biel | Dec 2002 | A1 |
20020198517 | Alfano et al. | Dec 2002 | A1 |
20030004499 | McDaniel | Jan 2003 | A1 |
20030009158 | Perricone | Jan 2003 | A1 |
20030009205 | Biel | Jan 2003 | A1 |
20030018373 | Eckhardt et al. | Jan 2003 | A1 |
20030023235 | Cense et al. | Jan 2003 | A1 |
20030023283 | McDaniel | Jan 2003 | A1 |
20030023284 | Gartstein et al. | Jan 2003 | A1 |
20030028227 | Neuberger et al. | Feb 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030032950 | Altshuler et al. | Feb 2003 | A1 |
20030036680 | Black | Feb 2003 | A1 |
20030040739 | Koop | Feb 2003 | A1 |
20030055414 | Altshuler et al. | Mar 2003 | A1 |
20030057875 | Inochkin et al. | Mar 2003 | A1 |
20030059738 | Neuberger | Mar 2003 | A1 |
20030065314 | Altshuler et al. | Apr 2003 | A1 |
20030083649 | Margaron et al. | May 2003 | A1 |
20030084534 | Kaizuka | May 2003 | A1 |
20030097122 | Ganz et al. | May 2003 | A1 |
20030100936 | Altshuler et al. | May 2003 | A1 |
20030104340 | Clemans | Jun 2003 | A1 |
20030109787 | Black | Jun 2003 | A1 |
20030109860 | Black | Jun 2003 | A1 |
20030113684 | Scott | Jun 2003 | A1 |
20030129154 | McDaniel | Jul 2003 | A1 |
20030130709 | D.C. et al. | Jul 2003 | A1 |
20030152528 | Singh et al. | Aug 2003 | A1 |
20030163884 | Weihrauch | Sep 2003 | A1 |
20030167080 | Hart et al. | Sep 2003 | A1 |
20030169433 | Koele et al. | Sep 2003 | A1 |
20030181896 | Zvuloni et al. | Sep 2003 | A1 |
20030187486 | Savage et al. | Oct 2003 | A1 |
20030195494 | Altshuler et al. | Oct 2003 | A1 |
20030199859 | Altshuler et al. | Oct 2003 | A1 |
20030216719 | Debenedictis et al. | Nov 2003 | A1 |
20030216795 | Harth et al. | Nov 2003 | A1 |
20030232303 | Black | Dec 2003 | A1 |
20040006332 | Black | Jan 2004 | A1 |
20040010298 | Altshuler et al. | Jan 2004 | A1 |
20040015156 | Vasily | Jan 2004 | A1 |
20040015158 | Chen et al. | Jan 2004 | A1 |
20040019120 | Vargas et al. | Jan 2004 | A1 |
20040019990 | Farrell et al. | Feb 2004 | A1 |
20040024388 | Altshuler | Feb 2004 | A1 |
20040024430 | Bader et al. | Feb 2004 | A1 |
20040030326 | Altshuler et al. | Feb 2004 | A1 |
20040034319 | Anderson et al. | Feb 2004 | A1 |
20040034341 | Altshuler et al. | Feb 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040082940 | Black et al. | Apr 2004 | A1 |
20040085026 | Inochkin et al. | May 2004 | A1 |
20040092506 | Thompson et al. | May 2004 | A1 |
20040093042 | Altshuler et al. | May 2004 | A1 |
20040093043 | Edel et al. | May 2004 | A1 |
20040111132 | Shenderova et al. | Jun 2004 | A1 |
20040116984 | Spooner et al. | Jun 2004 | A1 |
20040133251 | Altshuler et al. | Jul 2004 | A1 |
20040143920 | Nanda | Jul 2004 | A1 |
20040147984 | Altshuler et al. | Jul 2004 | A1 |
20040156626 | Thoms | Aug 2004 | A1 |
20040161213 | Lee | Aug 2004 | A1 |
20040162549 | Altshuler | Aug 2004 | A1 |
20040162596 | Altshuler et al. | Aug 2004 | A1 |
20040176764 | Island et al. | Sep 2004 | A1 |
20040191729 | Altshuler et al. | Sep 2004 | A1 |
20040193234 | Butler | Sep 2004 | A1 |
20040193235 | Altshuler et al. | Sep 2004 | A1 |
20040193236 | Altshuler et al. | Sep 2004 | A1 |
20040199227 | Altshuler et al. | Oct 2004 | A1 |
20040204745 | Altshuler et al. | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040210276 | Altshuler et al. | Oct 2004 | A1 |
20040214132 | Altshuler | Oct 2004 | A1 |
20040225339 | Yaroslaysky et al. | Nov 2004 | A1 |
20040230258 | Altshuler et al. | Nov 2004 | A1 |
20040230260 | MacFarland et al. | Nov 2004 | A1 |
20040234460 | Tarver et al. | Nov 2004 | A1 |
20040260210 | Ella et al. | Dec 2004 | A1 |
20050038418 | Altshuler et al. | Feb 2005 | A1 |
20050049467 | Stamatas et al. | Mar 2005 | A1 |
20050049582 | DeBenedictis et al. | Mar 2005 | A1 |
20050049658 | Connors et al. | Mar 2005 | A1 |
20050063931 | Paus et al. | Mar 2005 | A1 |
20050065531 | Cohen | Mar 2005 | A1 |
20050085875 | Van Zuylen | Apr 2005 | A1 |
20050102213 | Savasoglu et al. | May 2005 | A1 |
20050107849 | Altshuler et al. | May 2005 | A1 |
20050143719 | Sink | Jun 2005 | A1 |
20050168158 | Inochkin et al. | Aug 2005 | A1 |
20050171517 | Altshuler et al. | Aug 2005 | A1 |
20050171581 | Connors et al. | Aug 2005 | A1 |
20050177026 | Hoeg et al. | Aug 2005 | A1 |
20050182389 | LaPorte et al. | Aug 2005 | A1 |
20050197681 | Barolet et al. | Sep 2005 | A1 |
20050215988 | Altshuler et al. | Sep 2005 | A1 |
20050220726 | Pauly et al. | Oct 2005 | A1 |
20050251118 | Anderson et al. | Nov 2005 | A1 |
20060004306 | Altshuler et al. | Jan 2006 | A1 |
20060004347 | Altshuler et al. | Jan 2006 | A1 |
20060009750 | Altshuler et al. | Jan 2006 | A1 |
20060020309 | Altshuler et al. | Jan 2006 | A1 |
20060047281 | Kreindel | Mar 2006 | A1 |
20060058712 | Altschuler et al. | Mar 2006 | A1 |
20060079947 | Tankovich et al. | Apr 2006 | A1 |
20060089687 | Spooner et al. | Apr 2006 | A1 |
20060094988 | Tosaya et al. | May 2006 | A1 |
20060100677 | Blumenkranz et al. | May 2006 | A1 |
20060122668 | Anderson et al. | Jun 2006 | A1 |
20060149343 | Altshulter et al. | Jul 2006 | A1 |
20060161143 | Altshuler et al. | Jul 2006 | A1 |
20060194164 | Altshuler et al. | Aug 2006 | A1 |
20060206103 | Altshuler et al. | Sep 2006 | A1 |
20060253176 | Caruso et al. | Nov 2006 | A1 |
20060265032 | Hennings et al. | Nov 2006 | A1 |
20060271028 | Altshuler et al. | Nov 2006 | A1 |
20060287646 | Altshuler et al. | Dec 2006 | A1 |
20070027440 | Altshuler et al. | Feb 2007 | A1 |
20070038206 | Altshuler et al. | Mar 2007 | A1 |
20070049910 | Altshuler et al. | Mar 2007 | A1 |
20070060819 | Altshuler et al. | Mar 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070067006 | Altshuler et al. | Mar 2007 | A1 |
20070073308 | Anderson et al. | Mar 2007 | A1 |
20070073367 | Jones | Mar 2007 | A1 |
20070078501 | Altshuler et al. | Apr 2007 | A1 |
20070121069 | Andersen et al. | May 2007 | A1 |
20070159592 | Rylander et al. | Jul 2007 | A1 |
20070185552 | Masotti et al. | Aug 2007 | A1 |
20070194717 | Belikov et al. | Aug 2007 | A1 |
20070198004 | Altshuler et al. | Aug 2007 | A1 |
20070213696 | Altshuler et al. | Sep 2007 | A1 |
20070213698 | Altshuler et al. | Sep 2007 | A1 |
20070213792 | Yaroslaysky et al. | Sep 2007 | A1 |
20070219604 | Yaroslaysky et al. | Sep 2007 | A1 |
20070219605 | Yaroslaysky et al. | Sep 2007 | A1 |
20070239142 | Altshuler et al. | Oct 2007 | A1 |
20070239143 | Altshuler et al. | Oct 2007 | A1 |
20070255355 | Altshuler et al. | Nov 2007 | A1 |
20070288071 | Rogers | Dec 2007 | A1 |
20080009842 | Manstein et al. | Jan 2008 | A1 |
20080058783 | Altshuler et al. | Mar 2008 | A1 |
20080103565 | Altshuler et al. | May 2008 | A1 |
20080132886 | Cohen et al. | Jun 2008 | A1 |
20080139901 | Altshuler et al. | Jun 2008 | A1 |
20080140164 | Oberreiter et al. | Jun 2008 | A1 |
20080147054 | Altshuler et al. | Jun 2008 | A1 |
20080154157 | Altshuler et al. | Jun 2008 | A1 |
20080172047 | Altshuler et al. | Jul 2008 | A1 |
20080183162 | Altshuler et al. | Jul 2008 | A1 |
20080183250 | Tanojo et al. | Jul 2008 | A1 |
20080186591 | Altshuler et al. | Aug 2008 | A1 |
20080195183 | Botchkareva et al. | Aug 2008 | A1 |
20080214988 | Altshuler et al. | Sep 2008 | A1 |
20080248554 | Merchant et al. | Oct 2008 | A1 |
20080294150 | Altshuler et al. | Nov 2008 | A1 |
20080294152 | Altshuler et al. | Nov 2008 | A1 |
20080306471 | Altshuler et al. | Dec 2008 | A1 |
20080319430 | Zenzie et al. | Dec 2008 | A1 |
20090048557 | Yeshurun et al. | Feb 2009 | A1 |
20090069741 | Altshuler et al. | Mar 2009 | A1 |
20090137995 | Altshuler et al. | May 2009 | A1 |
20090248004 | Altshuler et al. | Oct 2009 | A1 |
20090254076 | Altshuler et al. | Oct 2009 | A1 |
20090287195 | Altshuler et al. | Nov 2009 | A1 |
20100036295 | Altshuler et al. | Feb 2010 | A1 |
20100145321 | Altshuler et al. | Jun 2010 | A1 |
20100204686 | Yaroslavksy et al. | Aug 2010 | A1 |
20100286673 | Altshuler et al. | Nov 2010 | A1 |
20100298744 | Altshuler et al. | Nov 2010 | A1 |
20110046523 | Altshuler et al. | Feb 2011 | A1 |
20110137230 | Altshuler et al. | Jun 2011 | A1 |
20110172651 | Altshuler et al. | Jul 2011 | A1 |
20110184334 | Altshuler et al. | Jul 2011 | A1 |
20110267830 | Altshuler et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
400305 | Apr 1995 | AT |
1851583 | Mar 1984 | AU |
2053926 | Mar 1990 | CN |
1073607 | Jun 1993 | CN |
1182572 | May 1998 | CN |
1351483 | May 2002 | CN |
1535126 | Oct 2004 | CN |
3304230 | Aug 1984 | DE |
3719561 | Jan 1988 | DE |
3837248 | May 1990 | DE |
9102407 | Jul 1991 | DE |
19803460 | Aug 1999 | DE |
19944401 | Mar 2001 | DE |
10140715 | Mar 2002 | DE |
10112289 | Sep 2002 | DE |
10120787 | Jan 2003 | DE |
0000593 | Feb 1979 | EP |
0142671 | May 1985 | EP |
0172490 | Feb 1986 | EP |
0320080 | Jun 1989 | EP |
0324120 | Jul 1989 | EP |
0563953 | Oct 1993 | EP |
0565331 | Oct 1993 | EP |
0593375 | Apr 1994 | EP |
0598984 | Jun 1994 | EP |
0709941 | May 1996 | EP |
0724894 | Aug 1996 | EP |
0726083 | Aug 1996 | EP |
0736308 | Oct 1996 | EP |
0743029 | Nov 1996 | EP |
0755698 | Jan 1997 | EP |
0763371 | Mar 1997 | EP |
0765673 | Apr 1997 | EP |
0765674 | Apr 1997 | EP |
0783904 | Jul 1997 | EP |
0884066 | Dec 1998 | EP |
0885629 | Dec 1998 | EP |
0920840 | Jun 1999 | EP |
0 927 544 | Jul 1999 | EP |
1038505 | Sep 2000 | EP |
1057454 | Dec 2000 | EP |
1075854 | Feb 2001 | EP |
1138349 | Oct 2001 | EP |
1147785 | Oct 2001 | EP |
1219258 | Jul 2002 | EP |
1226787 | Jul 2002 | EP |
1 238 683 | Sep 2002 | EP |
1250893 | Oct 2002 | EP |
1457234 | Sep 2004 | EP |
1495735 | Jan 2005 | EP |
1512373 | Mar 2005 | EP |
1535582 | Jun 2005 | EP |
1627662 | Feb 2006 | EP |
1839705 | Oct 2007 | EP |
1854505 | Nov 2007 | EP |
2199453 | Apr 1974 | FR |
2591902 | Jun 1987 | FR |
1546625 | May 1979 | GB |
2044908 | Oct 1980 | GB |
2059053 | Apr 1981 | GB |
2059054 | Apr 1981 | GB |
2123287 | Feb 1984 | GB |
2239675 | Jul 1991 | GB |
2270159 | Mar 1994 | GB |
2356570 | May 2001 | GB |
2360461 | Sep 2001 | GB |
2360946 | Oct 2001 | GB |
2364376 | Jan 2002 | GB |
2368020 | Apr 2002 | GB |
2390021 | Dec 2003 | GB |
2397528 | Jul 2004 | GB |
54129791 | Oct 1979 | JP |
64-027554 | Jan 1989 | JP |
10-099574 | Apr 1989 | JP |
01-181877 | Jul 1989 | JP |
02-013014 | Apr 1990 | JP |
02-174804 | Jul 1990 | JP |
03066387 | Mar 1991 | JP |
06-022871 | Feb 1994 | JP |
07-063957 | Mar 1995 | JP |
09-084803 | Mar 1997 | JP |
9141869 | Jun 1997 | JP |
10-014661 | Jan 1998 | JP |
10-503109 | Mar 1998 | JP |
10-165410 | Jun 1998 | JP |
11-047146 | Feb 1999 | JP |
2000-037400 | Feb 2000 | JP |
2000-153003 | Jun 2000 | JP |
2000-300684 | Oct 2000 | JP |
2001-029124 | Feb 2001 | JP |
2001145520 | May 2001 | JP |
2001520534 | Oct 2001 | JP |
2001-343560 | Dec 2001 | JP |
2002506362 | Feb 2002 | JP |
2002522110 | Jul 2002 | JP |
2002272861 | Sep 2002 | JP |
2005-017796 | Jan 2005 | JP |
2005027702 | Feb 2005 | JP |
2009106767 | Apr 2009 | JP |
2009136691 | Jun 2009 | JP |
2082337 | Jun 1997 | RU |
2089126 | Sep 1997 | RU |
2089127 | Sep 1997 | RU |
2096051 | Nov 1997 | RU |
2122848 | Dec 1998 | RU |
86002783 | May 1986 | WO |
88004592 | Jun 1988 | WO |
90000420 | Jan 1990 | WO |
9102562 | Mar 1991 | WO |
91013652 | Sep 1991 | WO |
92016338 | Jan 1992 | WO |
92019165 | Nov 1992 | WO |
93005920 | Apr 1993 | WO |
9510243 | Apr 1995 | WO |
95015725 | Jun 1995 | WO |
95032441 | Nov 1995 | WO |
9622741 | Aug 1996 | WO |
96023447 | Aug 1996 | WO |
9624406 | Aug 1996 | WO |
96025979 | Aug 1996 | WO |
9628212 | Sep 1996 | WO |
9636396 | Nov 1996 | WO |
9641579 | Dec 1996 | WO |
97013458 | Apr 1997 | WO |
97013552 | Apr 1997 | WO |
9722384 | Jun 1997 | WO |
9728752 | Aug 1997 | WO |
98004317 | Feb 1998 | WO |
9805286 | Feb 1998 | WO |
9805380 | Feb 1998 | WO |
9806456 | Feb 1998 | WO |
9807379 | Feb 1998 | WO |
9820937 | May 1998 | WO |
98024507 | Jun 1998 | WO |
9829134 | Jul 1998 | WO |
9841158 | Sep 1998 | WO |
98051235 | Nov 1998 | WO |
98052481 | Nov 1998 | WO |
98058595 | Dec 1998 | WO |
9910046 | Mar 1999 | WO |
9917668 | Apr 1999 | WO |
9917666 | Apr 1999 | WO |
9917667 | Apr 1999 | WO |
99027997 | Jun 1999 | WO |
99029243 | Jun 1999 | WO |
9934867 | Jul 1999 | WO |
99038569 | Aug 1999 | WO |
9943387 | Sep 1999 | WO |
9944638 | Sep 1999 | WO |
99046005 | Sep 1999 | WO |
99049937 | Oct 1999 | WO |
9962472 | Dec 1999 | WO |
9966988 | Dec 1999 | WO |
0002491 | Jan 2000 | WO |
0003257 | Jan 2000 | WO |
00007514 | Feb 2000 | WO |
0030714 | Jun 2000 | WO |
0032272 | Jun 2000 | WO |
0041278 | Jul 2000 | WO |
0040266 | Jul 2000 | WO |
0043070 | Jul 2000 | WO |
0044294 | Aug 2000 | WO |
0054685 | Sep 2000 | WO |
0054649 | Sep 2000 | WO |
0062700 | Oct 2000 | WO |
0066226 | Nov 2000 | WO |
0064537 | Nov 2000 | WO |
0071045 | Nov 2000 | WO |
0074583 | Dec 2000 | WO |
0074781 | Dec 2000 | WO |
0078242 | Dec 2000 | WO |
01003257 | Jan 2001 | WO |
01014012 | Mar 2001 | WO |
01026573 | Apr 2001 | WO |
01034048 | May 2001 | WO |
0141872 | Jun 2001 | WO |
01042671 | Jun 2001 | WO |
01054606 | Aug 2001 | WO |
01054770 | Aug 2001 | WO |
01078830 | Oct 2001 | WO |
0209813 | Feb 2002 | WO |
0226147 | Apr 2002 | WO |
02053050 | Jul 2002 | WO |
02069825 | Sep 2002 | WO |
02078559 | Oct 2002 | WO |
02094116 | Nov 2002 | WO |
03005883 | Jan 2003 | WO |
03049633 | Jun 2003 | WO |
04000150 | Dec 2003 | WO |
04011848 | Feb 2004 | WO |
04033040 | Apr 2004 | WO |
04037068 | May 2004 | WO |
04037287 | May 2004 | WO |
04080279 | Sep 2004 | WO |
04073537 | Sep 2004 | WO |
04084752 | Oct 2004 | WO |
04086947 | Oct 2004 | WO |
05007003 | Jan 2005 | WO |
05009266 | Feb 2005 | WO |
05030317 | Apr 2005 | WO |
0546793 | May 2005 | WO |
05065288 | Jul 2005 | WO |
0592438 | Oct 2005 | WO |
05096981 | Oct 2005 | WO |
05099369 | Oct 2005 | WO |
05112815 | Dec 2005 | WO |
06006123 | Jan 2006 | WO |
06036968 | Apr 2006 | WO |
06066226 | Jun 2006 | WO |
06089227 | Aug 2006 | WO |
06101735 | Sep 2006 | WO |
06116141 | Nov 2006 | WO |
0735444 | Mar 2007 | WO |
07122611 | Nov 2007 | WO |
0870747 | Jun 2008 | WO |
Entry |
---|
US 6,230,044, 05/2001, Afanassieva et al. (withdrawn) |
Grossman, M.C. et al., “Damage to hair follicles by normal-mode ruby laser pulses,” Journal of he American Academy of Dermatology, vol. 35, No. 6, pp. 889-894, Dec. 1996. |
Grossman, M.C. et al., “Laser Targeted at Hair Follicles, ” Lasers Med Surg., Suppl. 7:221 (1995). |
Hicks et al., “After Low Fluence Argon Laser and Flouride Treatment,” Compendium, vol. 18, No. 6, Jun. 1997. |
Hicks et al., “Enamel Carries Initiation and Progression Following Low Fluence (energy) and Argon Laser and Fluoride Treatment,” The Journal of Clinical Pediatric Dentistry, vol. 20, No. 1 pp. 9-13, 1995. |
Hsu et al., “Combined Effects of Laser Irradiation/Solution Flouride Ion on Enamel Demineralization,” Journal of Clinical Laser Medicine and Surgery, vol. 16, No. 2 pp. 93-105, 1998. |
Hulsbergen Henning et al. “Clinical and Histological Evaluation of Portwine Stain Treatment with a Microsecond-Pulsed Dye-Laser at 577 NM,” Lasers in Surgery and Medicine, 4:375-380 (1984). |
Hulsbergen Henning et al., “Port Wine Stain Coagulation Experiments with a 540-nm Continuous Wave Dye-Laser,” Lasers in Surgery and Medicine, 2:205-210 (1983). |
Invention description to certificate of authorship, No. 719439, “The ring resonator of optical quantum generator”. |
Invention description to certificate of authorship, No. 741747, “The modulator of optical radiation intensity”. |
Invention description to certificate of authorship, No. SU 1257475 A1, “Laser interferometric device to determine no-linearity of an index of refraction of optical medium”. |
Invention description to certificate of authorship, No. SU 1326962 A1, “The way of determination of non-linearity of an index of refraction of optical medium”. |
Invention description to certificate of autorship, No. 532304, “The way of investigation of radiation time structure of optical quantum generator”. |
[No Author] IPG Data Sheet for TFL Thulium Laser, Jun. 2001. |
Ivanov, A.P. et al., “Radiation Propagation in Tissues and Liquids with Close Particle Packing,” Zhurnal Prikladnoi Spektroskopii, vol. 47, No. 4, pp. 662-668 (Oct. 1987). |
Kalivradzhiyan et al., “The Usage of Low Intensity Laser Radiation for the Treatment of the Inflammatory processes of the Oral Cavity Mucosa after Applying Removable Plate Dentures,” SPIE vol. 1984 pp. 225-230. |
Karu, “Cell Attachment to Extracellular Matrics is Modulated by Pulsed Radiation at 820 nm and Chemicals that Modify the Activity of Enzymes in the Plasma Membrane,” Laser in Surgery and Medicine, vol. 29, pp. 274-281, 2001. |
Karu, “Photobiological Fundamentals of Low-Power Laser Therapy,” 8th Congress of International Society for Laser Surgery and Medicine, Mar. 30, 1987. |
Kazmina et al., “Laser Prophlaxis and Treatment of Primary caries,” SPIE vol. 1984, pp. 231-233. |
Klein, E. et al., “Biological effects of laser radiation 1.,” Northeast Electroncis Research and Engineering Meeting, NEREM Record, IEEE catalogue No. F-60, pp. 108-109, 1965. |
Kozlov et al., “Laser in Diagnostics and Treatment of Microcirculation Disorders Under Parodontitis,” SPIE vol. 1984, pp. 253-264. |
Kuhns, J.G. et al., “Biological effects of laser radiation II Effects of laser irradiation on the skin,” NEREM Record, pp. 152-153, 1965. |
Kuhns, J.G. et al., “Laser injury in skin,” Laboratory Investigation, vol. 17, No. 1, pp. 1-13, Jul. 1967. |
Levin, G. et al., “Designing with hyseretic current-mode control, ” EDN Magazine, pp. 1-8, Apr. 11, 1996. |
Levin, G. et al., “Designing with hyseretic current-mode control, ” EDN Magazine, pp. 1-8, Apr. 28, 1994. |
Maegawa, et al., “Effects of Near-Infrared Low-Level Laser Irradiation on Microcirculation,” Lasers in Surgery and Medicine, vol. 27, pp. 427-437, 2000. |
Mamedova et al., “Microbiological Estimate of Parodontis Laser Therapy Efficiency,” SPIE vol. 1984, pp. 247-249. |
Mang, “Effect of Soft Laser Treatment on Wound Healing in the Hamster Oral Mucosa,” American Society for Laser Medicine and Surgery Abstracts, Chapters 25, pp. 5-8. |
Manstein, D. et al., “Selective Photothermolysis of Lipid-Rich Tissue,” American Society for Laser medicine and Surgery Abstracts, No. 17, American Society for Laser Medicine and Surgery Twenty-First Annual Meeting, Apr. 20-22, 2001, p. 6. |
Margolis, R.J. et al., “Visible action spectrum for melanin-specific selective photothermolysis,” Lasers in Surgery and Medicine, vol. 9, pp. 389-397, 1989. |
Marinelli et al., “Diode laser illuminated automotive lamp systems,” SPIE Proceedings vol. 3285:170-177 (1998). |
Marshak, I.S., et al., “Pulsed Light Sources,” State Power Engineering Press, Moscow and Leningrad (1963). |
McDaniel, et al., “Hexascan: A New Robotized Scanning Laser Handpiece,” Cutis, 45:300-305 (1990). |
Nemeth, et al., “Copper vapor laser treatment of pigmented lesions,” Lasers Surg. Med. Supp. 2:51 (1990). |
Ohbayashi, “Stimulatory Effect of Laser Irradiation on Calcified Nodule Formation in Human Dental Pulp Fibroblasts,” Abstract J-Endod. Jan. 1999; 25(1): 30-3. |
Ohshiro et al., “The Ruby and Argon Lasers in the Treatment of the Naevi,” Annals Academy of Medicine, Apr. 1983, vol. 12, No. 2, pp. 388-395. |
Oleinik, et al., “Automatized Securing Definition for Laser Therapy Indications in Case of Non-complicated Caries,” SPIE, vol. 1984, pp. 238-244. |
Orchardson, “Effect of Pulsed Nd:YAG Laser Radiation on Action Potential Conduction in Nerve Fibres Inside Teeth in vitro,” Abstract J-Dent. Jul.-Aug. 1998; 26(5-6): 421-6. |
Osigo et al, “Phase Transitions of Rat Stratum Corneum Lipids by an Electron Paramagnetic Resonance Study and Relationship of Phase States to Drug Penetration,” Biochimica et Biophysica Acta 1301:97-104 (1996). |
Ozawa et al., “Stimulatory Effects of Low-Power Laser Irradiation on Bone Formation in vitro,” SPIE vol. 1984, pp. 281-288. |
Parrish, J.A., “Selective thermal effects with pulsed irradiation from lasers: From organ to organelle,” Journal of Investigative Dermatology, vol. 80, No. 6 Supplement, pp. 75s-80s, 1983. |
Petrischev et al. “Clinical and Experimental Low-Intense Laser Therapy in Dentistry,” SPIE, vol. 1984, pp. 212-214. |
Petrischev et al., “Report on Low Intensity Laser Radiation Usage in Dentistry,” SPIE vol. 1984, pp. 202-211. |
Polla, L. et al., “Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin,” Journal of Investigative Dermatology, vol. 89, No. 3, pp. 281-286, Sep. 1987. |
Powell, “Laser Dental Decay Prevention: does it have a future?” SPIE vol. 3192, 1997. |
Remillard et al., “Diode laser illuminated automotive brake lamp using a linear fanout diffractive optical element,” Proc. of the Diffractive Optics and Micro-Optics Conference, OSA Technical Digest Series vol. 10, 192-194 (1998). |
Remillard et al., “Diode Laser Illuminators for Night-Vision Applications,” SPIE Proceedings vol. 4285:14-22 (2001). |
Riggle et al., “Laser Effects on Normal and Tumor Tissue,” Laser Applications in Medicine and Biology, vol. 1, M.L. Wolbarsht, editor, Plenum Press, publishers, Ch. 3, pp. 35-65 (1971). |
Rohrer, “Evaluating the Safety and Efficacy of a Novel Light Based Hair Removal System,” Lasers. Surg. Med. Supp. 13:97 (2001). |
Rotteleur, et al., “Robotized scanning laser handpiece for the treatment of port wine stains and other angiodysplasias,” Lasers Surg. Med., 8:283-287 (1998). |
Rubach et al., “Histological and Clinical Evaluation of Facial Resurfacing Using a Carbon Dioxide Laser With the Computer Pattern Generator,” Arch Otolaryngol Head Neck Surg., 123:929-934 (1997). |
[No Author] BIOPTRON Light Therapy System. Website print-out, accessed Jul. 13, 2006 (2 pages). |
[No Author] Derma Chiller advertisement (2 pages) from Paradigm Trex. |
[No Author] Webpage www.gallery.com—Rutile (Titanium Oxide)—Retrieved Oct. 3, 2011 from Http://www.galleries.com/minerals/oxides/rutile/rutile.htm. 2 pages. |
Altea Therapeutics—Medicines Made Better (single page website print-out). |
Altshuler et al., “Human Tooth as an Optical Device,” SPIE vol. 1429 Holography and Interferometry and Optical Pattern Recognition in Biomedicine, pp. 95-104, 1991. |
Altshuler et al., “Modern Optics and Dentistry,” Laser in Dentistry, pp. 283-297, 1995. |
Altshuler et al., “New Optical Effects in the Human Hard Tooth Tissues,” Lasers and Medicine, Proc. SPIE vol. 1353, pp. 97-102, 1989. |
Altshuler, G.B. et al., “Acoustic response of hard dental tissues to pulsed laser action,” SPIE, vol. 2080, Dental Application of Lasers, pp. 97-103, 1993. |
Altshuler, G.B. et al., “Extended theory of selective photothermolysis,” Lasers in Surgery and Medicine, vol. 29, pp. 416-432, 2001. |
Amy, R.L. et al., “Selective mitochondrial damage by a ruby laser microbeam: An electron microscopic study,” Science, vol. 15, pp. 756-758, Nov. 1965. |
Anderson, R.R. et al., “Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation,” Science, vol. 220, pp. 524-527, Apr. 1983. |
Anderson, R.R. et al., “The optics of human skin,” Journal of Investigative Dermatology, vol. 77, No. 1, pp. 13-19, 1981. |
Apfelberg et al. “Analysis of Complications of Argon Laser Treatment for Port Wine Hemangiomas with Reference to Striped Technique,” Lasers in Surgery and Medicine, 2:357-371 (1983). |
Apfelberg et al. “Dot or Pointillistic Method for Improvement in Results of Hypertrophic Scarring in the Argon Laser Treatment of Portwine Hemangiomas,” Lasers in Surgery and Medicine, 6:552-558 (1987). |
Belikov, A.V. et al., “Identification of enamel and dentine under tooth laser treatment,” SPIE vol. 2623, Progress in Biomedical Optics Europt Series, Proceedings of Medical Applications of Lasers III, pp. 109-116, Sep. 1995. |
Bjerring, P. et al., “Selective Non-Ablative Wrinkle Reduction by Laser,” J Cutan Laser Ther, vol. 2, pp. 9-15, 2000. |
Blankenau et al., “In Vivo Caries-Like Lesion Prevention with Argon Laser: Pilot Study,” Journal of Clinical Laser Medicine and Surgery, vol. 17, No. 6, pp. 241-243, 1999. |
Catalogue ILC, “High Performance flash and arc lamps,” Book 3, 3rd edition. |
Chan, E.K., “Effects of Compression on Soft Tissue Optical Properties,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, pp. 943-950 (Dec. 1996). |
Dabrowska, “Intravital Treatment of the Pulp with Stimulation Laser Biostimulation,” Abstract Rocz-Akad-Med-Bialymst. 1997; 42(1): 168-76. |
Dixon et al. “Hypertrophic Scarring in Argon Laser Treatment of Port-Wine Stains,” Plastic and Reconstructive Surgery, 73:771-777 (1984). |
Doukas et al., “Transdermal Drug Delivery With a Pressure Wave,” Advanced Drug Delivery Reviews 56 (2004), pp. 559-579. |
Dover, J.S. et al., “Pigmented guinea pig skin irradiated with Q-switched ruby laser pulses,” Arch Dermatol, vol. 125, pp. 43-49, Jan. 1989. |
European Search Report, European Patent Application No. 1 0012969.1, dated Jul. 13, 2011. |
Finkelstein, L.H. et al., “Epilation of hair-bearing urethral grafts using the neodymium:yag surgical laser,” Journal of Urology, vol. 146, pp. 840-842, Sep. 1991. |
Fiskerstrand, E.J. et al., “Hair Removal with Long Pulsed Diode Lasers: A Comparison Between Two Systems with Different Pulse Structures,” Lasers in Surgery and Medicine, vol. 32, pp. 399-404, 2003. |
Forrest-Winchester et al., “The Effect of Infrared Laser Radiation on Dentinal Permeability in vitro,” Department of Dentistry, University of Queensland Dental School, pp. 1-8, 1992. |
Ginsbach et al. “New Aspects in the Management of Benign Cutameous Tumors,” Laser 79 Opto-Electronics, Munich Conference Proceedings, 344-347 (1979). |
Goldman, L. et al. “Treatment of basal cell epithelioma by laser radiation,” JAMA, vol. 189, No. 10, pp. 773-775. |
Goldman, L. et al., “Effect of the laser beam on the skin, III. Exposure of cytological preparations,” Journal of Investigative Dermatology, vol. 42, pp. 247-251, 1964. |
Goldman, L. et al., “Effect of the laser beam on the skin, Preliminary report” Journal of Investigative Dermatology, vol. 40, pp. 121-122, 1963. |
Goldman, L. et al., “Impact of the laser on nevi and melanomas,” Archives of Dermatology, vol. 90, pp. 71-75, Jul. 1964. |
Goldman, L. et al., “Laser action at the cellular level,” JAMA, vol. 198, No. 6, pp. 641-644, Nov. 1966. |
Goldman, L. et al., “Laser treatment of tattoos, A preliminary survey of three year's clinical experience,” JAMA, vol. 201, No. 11, pp. 841-844, Sep. 1967. |
Goldman, L. et al., “Long-term laser exposure of a senile freckle,” Arch Environ Health, vol. 22, pp. 401-403, Mar. 1971. |
Goldman, L. et al., “Pathology, Pathology of the effect of the laser beam on the skin,” Nature, vol. 197, No. 4870, pp. 912-914, Mar. 1963. |
Goldman, L. et al., “Preliminary investigation of fat embolization from pulsed ruby laser impacts of bone,” Nature, vol. 221, pp. 361-363, Jan. 1969. |
Goldman, L. et al., “Radiation from a Q-switched ruby laser, Effet of repeated impacts of power output of 10 megawatts on a tattoo of man,” Journal of Investigative Dermatology, vol. 44, pp. 69-71, 1965. |
Goldman, L. et al., “Replica microscopy and scanning electron microscopy of laser impacts on the skin,” Journal of Investigative Dermatology, vol. 52, No. 1, pp. 18-24, 1969. |
Goldman, L. et al., “The biomedical aspects of lasers,” JAMA, vol. 188, No. 3, pp. 302-306, Apr. 1964. |
Goldman, L. et al., “The effect of repeated exposures to laser beams,” Acta derm.-vernereol., vol. 44, pp. 264-268, 1964. |
Goldman, L., “Dermatologic manifestations of laser radiation,” Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation, Federation of American Societies for Experimental Biology, Supp. No. 14, pp. S-92-S-93, Jan.-Feb. 1965. |
Goldman, L., “Effects of new laser systems on the skin,” Arch Dermatol., vol. 108, pp. 385-390, Sep. 1973. |
Goldman, L., “Laser surgery for skin cancer,” New York State Journal of Medicine, pp. 1897-1900, Oct. 1977. |
Goldman, L., “Surgery by laser for malignant melanoma,” J. Dermatol. Surg. Oncol., vol. 5, No. 2, pp. 141-144, Feb. 1979. |
Goldman, L., “The skin,” Arch Environ Health, vol. 18, pp. 434-436, Mar. 1969. |
Goldman, L., Biomedical Aspects of the Laser, Springer-Verlag New York Inc., publishers, Chapts. 1, 2 & 23, 1967. |
Gottlieb, I., “Power Supplies, Switching Regulators, Inverters & Converters,” 1976. |
Greenwald et al. “Comparative Histological Studies of the Tunable Dye (at 577 nm) Laser and Argon Laser: The Specific Vascular Effects of the Dye Laser,” The Journal of Investigative Dermatology, 77:305-310 (1981). |
Grossman, et al., “780 nm Low Power Diode Laser Irradiation Stimulates Proliferation of Keratinocyte Cultures: Involvement of Reactive Oxygen Species,” Lasers in Surgery and Medicine vol. 29, pp. 212-218, 1998. |
Rylander, C.G. et al., “Mechanical Tissue Optical Clearing Devices: Enhancement of Light Penetration in Ex Vivo Porcine Skin and Adipose Tissue,” Lasers in Surgery and Medicine, vol. 40, pp. 688-694 (2008). |
Sandford et al., “Thermal Effects During Desensitisation of Teeth with Gallium-Aluminum-Arsenide Lasers,” University of Queensland Dental School, Periodontology 15: 25-30 (1994). |
Schindl, “Does Low Intensity Laser Irradiation Really Cause Cell Damage?” Laser in Surgery and Medicine vol. 22, pp. 105, 2001. |
Sheehan-Dare, et al., “Lasers in Dermatology,” British Journal of Dermatology, 129:1-8 (1993). |
Shimbashi, T. et al., “Ruby laser treatment of pigmented skin lesions,” Aesth. Plast. Surg., vol. 19, pp. 225-229, 1995. |
Shimizu et al., “Prospect of Relieving Pain Due to Tooth Movement During Orthodontic Treatment Utilizing a Ga—Al As Diode Laser,” SPIE vol. 1984, pp. 275-280. |
Shumilovitch et al., “Influence of Low Intensity Laser Radiation Upon the Microflora of Carious Cavities and Root Canal,” SPIE vol. 1984, pp. 215-220. |
Sing, “Electroacupuncture and Laser Stimulation Treatment: Evaluation by Somatosensory Evoked Potential in Conscious Rabbits,” Abstract AM-J-Chin-Med. 1997; 25(3-4): 263-71. |
Sliney et al., “Safety with Lasers and Other Optical Sources: A Comprehensive Handbook,” Plenum Press, pp. 477-480 (1980). |
Sokolova et al., “Low-intense Laser Radiation in Complex Treatment of Inflammatory Diseases of Parodontium,” SPIE vol. 1984, pp. 234-237. |
Stratton, K. et al., “Biological Effects of Laser Radiation II: ESR Studies of Melanin Containing Tissues after Laser Irradiation,” Northeast Electronics Research and Engineering Meeting—NEREM Record, IEEE Catalogue No. F-60, pp. 150-151, Nov. 1965. |
Sumian, C.C. et al., “A Preliminary Clinical and Histopathological Study of Laser Skin Resurfacing Using a frequency-Doubled Nd:YAG Laser After Application of Chromofilma®,” Journal of Cutaneous Laser Therapy, vol. 1, pp. 159-166, 1999. |
Sumian, C.C. et al., “Laser Skin Resurfacing Using a Frequency Doubled Nd:YAG Laser After Topical Application of an Exogenous Chromophore,” Lasers in Surgery and Medicine, vol. 25, pp. 43-50, 1999. |
Taylor, C.R. et al., “Treatment of tattoos by Q-switched ruby laser,” Arch. Dermatol. vol. 126, pp. 893-899, Jul. 1990. |
Togatov, V.V. et al., “Discharge Circuit for Solid-State Lasers Pumping,” Optical Journal, V. 67, n. 4, pp. 92-96 (2000). |
Tuchin, V.V., “Laser light scattering in biomedical diagnostics and therapy,” Journal of Laser Applications, vol. 5, No. 2-3, pp. 43-60, 1993. |
Unger, W.P., Laser hair transplantation III: Computer-assisted laser transplanting. Dermatol Surg. 1995;21:1047-1055. |
Van Bruegel, “Power Density and Exposure Time of He—Ne Irradiation Are More Important Than Total Energy Dose in Photo-Biomodulation of Human Fibroblasts in Vitro,” Lasers in Surgery and Medicine, vol. 12 pp. 528-537, 1992. |
Walsh, “Laser “Curettage”: a Critical Analysis,” Periodontology 14:4-12, 1993. |
Walsh, “The Current Status of Low Level Laser Therapy in Dentistry. Part 1. Soft Tissue Applications” paper prepared by LJ Walsh, Department of Dentistry University of Queensland, pp. 1-16. Publication date unknown. |
Watanabe, S. et al., “Comparative studies of femtosecond to microsecond laser pulses on selective pigmented cell injury in skin,” Photochemistry and Photobiology, vol. 53, No. 6, pp. 757-762, 1991. |
Watanabe, S. et al., “The Effect of Pulse Duration on Selective Pigmented Cell Injury by Dye Lasers,” The Journal of Investigative Dermatology, 88:523, 1987. |
Welch, A.J. et al., “Evaluation of cooling techniques for the protection of the epidermis during HD-yag laser iradiation of the skin,” Neodymium-Yag Laser in Medicine and Surgery, Elsevier Science Publishing Co., publisher, pp. 195-204, 1983. |
Westerman et al., “Argon Laser Irradiation Effects on Sound Root Surfaces: In Vitro Scanning Electron Microscopic Observations,” Journal of Clinical Laser Medicine and Surgery, vol. 16, No. 2, pp. 111-115, 1998. |
Yules, R.B. et al., “The effect of Q-switched ruby laser radiation on dermal tattoo pigment in man,” Arch Surg, vol. 95, pp. 179-180, Aug. 1967. |
Zeitler, E. et al., “Laser Characteristics that Might be Useful in Biology,” Laser Applications in Medicine and Biology, vol. I, M.L. Wolbarsht, editor, Plenum Press, publishers, Chapter 1, pp. 1-18, 1971. |
Zonios et al., “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed in Vivo Using Diffuse Reflectance Spectroscopy,” Journal of Investigative Dermatology,117:1452-1457 (Dec. 2001). |
European Office Action dated Dec. 5, 2011 for Application No. 10012155.7 (3 Pages). |
European Search Report dated Mar. 1, 2011 for Application No. 10012971.7. |
European Search Report dated Mar. 1, 2011 for Application No. 10012972.5. |
International Preliminary Report on Patentability dated Oct. 8, 2007 for Applciation No. PCT/US2006/035927. |
International Preliminary Report on Patentability dated Dec. 7, 2007 for Application No. PCT/US2007/086827. |
International Search Report dated Dec. 28, 2007 for Application No. PCT/US2007/089090. |
International Search Report dated May 8, 2008 for Application No. PCT/US2007/089090. |
International Preliminary Report on Patentability dated Oct. 13, 2011 for Application No. PCT/US2010/030010. |
Number | Date | Country | |
---|---|---|---|
20110046523 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61271593 | Jul 2009 | US |