Method for improvement of cellulite appearance

Information

  • Patent Grant
  • 9919168
  • Patent Number
    9,919,168
  • Date Filed
    Friday, July 23, 2010
    14 years ago
  • Date Issued
    Tuesday, March 20, 2018
    6 years ago
Abstract
A method and apparatus are provided for treating connective tissue. The method and apparatus includes elongating connective tissue including septa and/or fascia to achieve a lasting improvement (e.g., a long term, durable and/or substantially irreversible treatment of the connective tissue) to improve the appearance of cellulite.
Description
BACKGROUND OF THE INVENTION

The appearance of cellulite on a person's body can create a perception that the person is unfit and/or overweight. Individuals, generally women who have cellulite, often view it as unflattering and as a source of embarrassment. It is desirable to improve and/or eliminate the appearance of cellulite such that the appearance of cellulite is improved and/or eliminated in one or more locations of a subject's body for a relatively long period of time. It is most desirable to achieve a long term and/or durable improvement and/or to eliminate the appearance of cellulite in treated regions.


SUMMARY OF THE INVENTION

In accordance with the methods and devices disclosed herein the invention relates to the treatment of connective tissue in a subject's body to improve the appearance of cellulite on a subject's body. In some embodiments, the methods and devices treat connective tissue with substantially lasting, durable and/or irreversible results. Long lasting, durable and/or irreversible treatment of connective tissue can improve the appearance of cellulite for a relatively long period of time and/or substantially permanently.


In one aspect, the invention relates to a method of improving the appearance of cellulite and the method includes applying a stretching force to at least one of a septa tissue and a fascia tissue that is adjacent to fat tissue and is located beneath a region of a subject's skin having the appearance of cellulite. At least one of the septa tissue and the fascia tissue are heated for a period of time and at a temperature less than is required to fully coagulate any of the septa tissue, the fascia tissue and the fat tissue. In some embodiments, there is heating with no coagulation. After heating the length of at least one of the septa tissue and the fascia tissue is increased relative to the length of at least one of the septa tissue and the fascia tissue prior to applying the stretching force and/or the heating. The method can also include the step of removal of the stretching force. Improvement of the appearance of cellulite can be determined by visual inspection of the region of the subject's skin that is treated.


In another aspect, the invention relates to a method of improving the appearance of cellulite. The method includes applying a stretching force to at least one of a septa tissue and a fascia tissue that is adjacent to fat tissue and is beneath a region of a subject's skin having the appearance of cellulite. The method also includes heating at least one of the septa tissue and the fascia tissue for a period of time and at a temperature sufficient to achieve lasting elongation of at least one of the septa tissue and the fascia tissue upon release of the stretching force. In some embodiments, applying the stretching force and heating at least one of the septa tissue and the fascia tissue occur simultaneously. In other embodiments, heating of at least one of the septa tissue and the fascia tissue occurs in the presence of the previously applied stretching force.


In one embodiment, vacuum pressure applies the stretching force. Applying the stretching force can include inserting fluid into the subject's tissue. The fluid can be, for example, tumescent fluid or gas. Optionally, the fluid can be pre-heated such that the fluid itself provides heat at least one of the septa tissue and the fascia tissue. In another embodiment, one or more of radiofrequency energy, ultrasound energy, light energy, and microwave energy are employed to heat at least one of the septa tissue and the fascia tissue.


The method of improving the appearance of cellulite can further include employing a cannula to apply an energy source to heat at least one of the septa tissue and the fascia tissue. A suitable cannula can apply one or more of radiofrequency energy, ultrasound energy, light energy, and microwave energy to at least one of the septa tissue and the fascia tissue.


In one embodiment, heating includes bringing the temperature of at least one of the septa and the fascia to the temperature range from about 37° C. to about 60° C., or from about 40° C. to about 48° C. In accordance with methods of improving the appearance of cellulite, the increase in temperature of at least of the septa and the fascia can also heat the surrounding subcutaneous tissue (e.g., fat tissue) in the region of the targeted fascia and/or septa tissue.


In one embodiment, at least one of the septa tissue and the fascia tissue are heated for a period of time that ranges from about 10 seconds to about 60 minutes or from about 30 seconds to about 30 minutes. The method can also include cooling the external surface of the region of the subject's skin. The method can also include the step of removal of the stretching force.


Improvement of the appearance of cellulite can be determined by visual inspection of the region of the subject's skin that has been treated.





DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic view of the inside of a female subject's body in a region of cellulite; the schematic view depicts the subcutaneous tissue, which is located between the skin (e.g., the epidermis and dermis) and muscle and bone. The subcutaneous tissue includes a relatively thin layer (e.g., a single layer) of subcutaneous fat.



FIG. 1B is a schematic view of the inside of a female subject's body of FIG. 1A where the region of tissue is stretched (by an external device or by the addition of tumescent fluid, which is injected inside the female subject's body) to increase the volume of the subcutaneous tissue region thereby enabling connective tissue (e.g., septa) in the subcutaneous tissue region to be stretched in a manner that is substantially lasting, durable and/or irreversible.



FIG. 1C is a schematic view of the inside of a female subject's body of FIG. 1B after the stretching force is removed (e.g., the external device is removed or the tumescent fluid is removed) and the connective tissue (e.g., septa) remains stretched in a manner that is substantially lasting, durable and/or irreversible.



FIG. 2A is a schematic view of the inside of a female subject's body in a region of cellulite; the schematic view depicts the subcutaneous tissue, which is located between the skin (e.g., the epidermis and dermis) and muscle and bone. The subcutaneous tissue includes a relatively thick layer (e.g., a multiple layers) of subcutaneous fat.



FIG. 2B is a schematic view of the inside of a female subject's body of FIG. 2A where the region of tissue is stretched (by an external device or by the addition of tumescent fluid, which is injected inside the female subject's body) to increase the volume of the subcutaneous tissue region thereby enabling connective tissue (e.g., septa and fascia) in the subcutaneous tissue region to be stretched in a manner that is substantially lasting, durable and/or irreversible.



FIG. 2C is a schematic view of the inside of a female subject's body of FIG. 2B after the stretching force is removed (e.g., the external device is removed or the tumescent fluid is removed) and the connective tissue (e.g., septa and fascia) remains stretched in a manner that is substantially lasting, durable and/or irreversible.



FIG. 3A shows a diagram of the generalized relationship of force applied to connective tissue on the x axis and the elongation of the connective tissue in response to the applied force on the y axis.



FIG. 3B shows a cellulite dimple under which fascia having a length L is located prior to elongation treatment.



FIG. 3C shows the improvement in the appearance of the cellulite dimple previously shown in FIG. 3B due to the elongation treatment of the fascia, after elongation treatment the fascia has a length of L+ΔLo.



FIG. 4 shows a device for externally heating subcutaneous tissue including septa and/or fascia, the device includes a first vacuum, one or more energy source(s), a cooling plate, and a second vacuum.



FIG. 5 shows a cross section of a device for externally heating a region of tissue, the device includes an energy source with adjacent cooling plate(s) and applies vacuum to the subcutaneous tissue including septa and/or fascia.



FIG. 6A shows a side view of a device having an outer housing which allows the recess in the device to accommodate varying tissue thicknesses (e.g., tissue fold thicknesses). The device features one or more energy source(s) and is adapted to apply vacuum pressure to the tissue region that is held within the device recess during treatment.



FIG. 6B shows a cross section of the device of FIG. 6A.





DETAILED DESCRIPTION

Anatomically, the cutaneous formation of cellulite is often due to fibrosis of the connective tissues present in the dermis and/or in the subcutaneous tissue. Connective tissue of the reticular dermis is connected to the deep fascia by fibrous septum from adipose or fat tissue. Subcutaneous fat lobules are separated from each other by fibrous septum (i.e., septa), which are generally relatively thin and usually rigid strands of connective tissue. The fibrous septa cross the fatty layer and connect the dermis to the underlying fascia tissue. The septa stabilize the subcutis and divide the fat tissue. Shortening of these septa due, for example, to fibrosis, causes retraction of the septa which in turn causes the depressions in the skin that are recognized as cellulite.


Thus, cellulite appears in the subcutaneous level of skin tissue where fat cells are arranged in chambers of fat tissue that are surrounded by bands of connective tissue called septae and/or fascia. Under certain conditions, for example, as water is retained, fat cells held within the perimeters of these fat tissue chambers expand and stretch the connective tissue. In some situations, the septa tissue is physiologically short and/or the septa tissue contracts and hardens holding the skin at a non-flexible length, while the surrounding tissue continues to expand with weight, or water gain, which results in areas of the skin being held down while other sections bulge outward, resulting in the lumpy, “cottage-cheese” appearance recognized as cellulite.


Referring now to FIG. 1A, inside a female subject's body 1000, between muscle 1009 and dermis 1008 is connective tissue called fiber stents or septa 1007. In some embodiments, bone 1013 is adjacent to muscle 1009. Fiber septa 1007 are bundles of connective tissue fibers that are held between the dermis 1008 and the muscle 1009. As discussed here, fiber stents include soft tissue such as fibrous septa, which is composed of collagen fiber material similar to what is found in the dermis tissue, vascular tissue, and lymph tissue. Septa 1007 align and connect the muscle 1009 and the dermis 1008 to one another. The septa 1007 traverse through at least a portion of fat tissue 1006 inside the subject's body 1002. In some subject's, generally in females, when a volume of fat tissue 1006 between septa 1007 (e.g., between one septae 1007a and another septae 1007b) is over a threshold amount it creates an uneven, dimpled, and/or bumpy appearance on the external portion of the body 1004 and these dimples 1003 and/or bumps in the tissue are recognized as cellulite appearance. Cellulite appears due to the interaction of the existing fat 1006 with the septa 1007. A person with low fat could have cellulite because they have tight septa 1007. In some instances, cutting the septa 1007 in the region of the dimples 1003 e.g., in the areas between the bumps with a knife to relieve the stress caused by the volume of fat tissue 1006 between septa 1007 (e.g., adjacent septa 1007a and 1007b) provides relief to the stress on the skin tissue that previously resulted in a dimpled and/or bumpy appearance. Cutting the septa 1007 can result in a flattening of the skin that was formerly bumpy in the region of the septa 1007. However, cutting the septa 1007 inside the skin is dangerous because it risks unintended consequences including nerve damage and muscle damage, for example.


Cellulite is generally a problem for females but is less common in males. In females the septa 1007 between the dermis 1008 and the muscle 1009 are substantially vertical relative to the plane of the dermis 1008 and/or the plane of the muscle 1009. Generally, the fibrous septa in women are orientated in a direction perpendicular to the cutaneous surface. In contrast, males have septa between the dermis and the muscle that are shifted to the side at an angle relative to the substantially vertical direction of the septa found in females. In males the septa have an angled or criss-cross pattern that does not feature the perpendicular direction relative to the cutaneous surface. Without being bound to a single theory, it is believed that the shifted angle of septa found in males provides a level of “give” that enables changes in fat quantity inside a male's body to not result in the cellulite appearance. In addition, subcutaneous fat is divided into lobules and in women the fat lobules are relatively larger and more rectangular when compared with the fat lobules found in men. The substantially vertical septa 1007 found in females does not afford the “give” provided by the criss-cross pattern in males, further, the relatively larger size of fat lobules in women contribute to the cellulite appearance problem being more common for females than for males.


Thus, the substantially vertically oriented septa 1007 in females are primarily responsible for the typical orange peel/bumpy appearance that is recognized as cellulite. FIG. 1A depicts body areas having relatively thin subcutaneous fat (e.g., a single layer of fat tissue 1006) such as, for example, the under arms and the abdomen (i.e., the belly). The relative thickness or thinness of a body area will vary depending on individual anatomy.



FIG. 2A like FIG. 1A shows a female subject's body 3000, more specifically, shows the inside 3002 of a female subject's body. FIG. 2A depicts a body area having a relatively thick layer of subcutaneous fat made up of multiple chambers of fat tissue (e.g., 3006a, 3006b, 3006c, 3006d, 3006e, and 3006f) some of which are stacked on one another (e.g., 3006b and 3006e). Relatively thick layers of subcutaneous fat that are made up of multiple chambers of fat tissue can include, for example, the buttocks and/or the thighs. The inside of a female subject's body 3000 under the epidermis 3010, between muscle 3009 and dermis 3008 includes connective tissues including septa 3007 (also referred to as fiber stents) and fascia 3011. In some embodiments body areas that include cellulite have bone 3013 adjacent to muscle 3009.


A woman's anatomy features connective tissue including one or more substantially vertical septa 3007; the substantially vertical septa 3007 are substantially vertical relative to at least one of the fascia 3011, the muscle 3009, and/or the skin (e.g., the epidermis 3010 and the dermis 3008). The septa 3007 traverse through at least a portion of fat tissue 3006 inside the subject's body 3002. Referring still to FIG. 2A in body areas having a relatively thick layer of subcutaneous fat, multiple layers of fat tissue 3006 are stacked between, above and below connective tissue. More specifically, inside the subject's body 3002 in the region of some body areas having a relatively thick region of subcutaneous fat, the fat tissue 3006 is stacked between substantially vertical septa 3007 and above and below substantially horizontal fascia 3011. In some embodiments, the fat tissue 3006 chambers (e.g., 3006a, 3006b, 3006c, 3006d, 3006e, and 3006f) have an irregular pattern.


The connective tissue including the septa 3007 and the fascia 3011 align and connect the muscle 3009 and the dermis 3008 to one another. In some subjects, generally in females, when a volume of fat tissue 3006 between connective tissue 3007 (e.g., between one septa 3007b another septa (e.g., 3007a and 3007d) and fascia 3011) is over a threshold amount it creates an uneven, dimpled, and/or bumpy appearance on the external portion of the body 3004 and these dimples 3003 and/or bumps in the tissue are recognized as cellulite appearance. Cellulite appears due to the interaction of the existing fat 3006 with the connective tissue (e.g., the septa 3007 and/or the fascia 3011). Without being bound to any single theory it is believed that in some embodiments, the fascia 3011 connects to the septa 3007 and acts as an anchor that holds the septa 3007 in a position that increases the pull of the septa 3007 against the dermis 3008 and/or the epidermis 3010 and this tension/pull contributes to the cellulite appearance provided by the dimples 3003.



FIG. 3A is a diagram that shows the generalized relationship of force applied to connective tissue and the elongation of the connective tissue in response to the applied force. The force applied to connective tissue (e.g., septa and/or fascia) is shown on the x axis (force shown as F in arbitrary units (au)) and the y axis shows the elongation of the connective tissue (e.g., septa and/or fascia) as ΔL (in arbitrary units). The x axis also shows Fel which is the elasticity limit of the connective tissue being treated. The elasticity limit is the maximum force which provides a change in length ΔL of the connective tissue that is directly proportional to the applied force F. The x axis also shows Fm, which is the maximum force applied during a given elongation treatment. The y axis shows ΔLo, which is the lasting elongation after releasing the force F applied to the connective tissue. Lasting elongation includes elongation that lasts for several hours after treatment, e.g., two or more hours after treatment and can include elongation that is substantially irreversible (i.e., elongation that is maintained and is substantially permanent) after treatment.



FIG. 3B shows a cellulite dimple 2003 under which septa 2007 having a length L is located prior to treatment. FIG. 3C shows the improvement in the appearance of the cellulite dimple previously shown in FIG. 3B due to the elongation treatment of the septa 2007. After the elongation treatment the septa 2007 in FIG. 3B has a length of (L+ΔLo).


As seen in FIG. 3A when the maximum force Fm is higher than the elasticity limit Fel then elongation of the connective tissue becomes non-linear such that it responds to the applied force that is greater than Fel in a non-linear manner. After releasing the applied force F the length of the connective tissue demonstrates hysteresis behavior as is shown in FIG. 3A, which results in the lasting elongation having the quantity depicted as ΔLo. The Fel can be a function of the tissue temperature and the time of application of the temperature to tissue. By elevating tissue temperature, the Fel may be lowered and the lasting elongation ΔLo can be achieved with the relatively lower Force than is required in the absence of an elevated temperature. Thus, by increasing the temperature of the connective tissue to be treated with a force F the amount of force required to improve the length of (e.g., elongate) the connective tissue is reduced. In this way, negative side effects to the body area being treated including tearing, bruising and pain can be reduced and/or avoided.


Without being bound to any single theory it is believed that similar improvement of the appearance of cellulite may be achieved by exposing at least one of the fascia and/or the septa to a relatively cold temperature (e.g., from about −5° C. to about 20° C., or from about 0° C. to about 10° C.) and a stretching force (applied simultaneous with or subsequent to exposure of the tissue to the cold temperature). This stretching force may be applied to the tissue for a time period that ranges from about 1 second to about 1 hour in order to achieve a lasting elongation of the septa and/or the fascia in order to a fracture the septa and/or the fascia, both elongation and fraction are believed to improve cellulite appearance. Cooling can be done externally by employing a cold plate with circulated water, a thermoelectric cooler, an ice pack or any other suitable external cooling means. Cooling may also be done internally by, for example, injecting cooled fluid into the treatment area (e.g., cooled tumescence or cooled water) or by inserting a cooled cannula to the treatment area.


In accordance with any method(s) or device(s) for elongating connective tissue disclosed herein, a chemical such as glycerol may be added to the connective tissue prior or during the elongation process. The chemical such as glycerol can enhance elasticity of the connective tissue to increase the amount of elongation achieved in accordance with the methods and devices disclosed herein.


Treatment of Subcutaneous Tissue by Stretching Connective Tissue


In one embodiment, referring now to FIG. 1A, the substantially vertical septa 1007 (also referred to as stents) that lie between the muscle 1009 and the dermis 1008 can be stretched in order to elongate the septa 1007 and to provide “give” to the septa 1007 that avoids and/or lessens the appearance of cellulite caused by substantially vertical septa 1007 in females. In some embodiments, the septa 1007 is stretched in a manner that is substantially lasting, durable and/or irreversible. In some embodiments, a septa 1007 is determined to be stretched in a lasting or durable manner such that the septa retains its elongated length for a period that ranges from about 1 hour to about 20 years, from about 2 hours to about 5 years, or from about thirty minutes to about 1 year.


In one embodiment, the septa 1007 (i.e., the stents) are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. In some embodiments, the temperature range is selected to avoid full coagulation of tissue in the region of the septa 1007. Stretching can be applied to the substantially vertical septa 1007 to increase the length of each septum by a percentage increase that ranges from about 2% to about 70%, or from about 5% to about 50% from the length of the septum prior to stretching. Stretching can be applied simultaneously or after heating within a prescribed temperature range.


In one embodiment, the septa 1007 are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. and simultaneously and/or subsequent to heating a stretching action is applied to the septa for a period of time necessary to maintain a substantially lasting, durable and/or irreversible extension of the septa 1007. The period of time over which the stretching action can be applied can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes.


Over time in a subject's life time the elasticity of their connective tissue (including septa and fascia) can decline for example due to contraction and hardening of connective tissue. The decline in connective tissue can be due, for example, to sclerosis which makes the connective tissue become less flexible or elastic. This loss of elasticity contributes to the cellulite appearance. In other embodiments, referring to FIG. 2A the septa 3007 and/or the fascia 3011 that lie between the muscle 3009 and the dermis 3008 can be stretched in order to elongate the septa 3007 and/or stretch the fascia 3011 to provide “give” to the septa 3007 and/or the fascia 3011 to improve the loss of elasticity associated with cellulite. Stretching the septa 3007 and/or the fascia 3011 can avoid and/or lessen the appearance of cellulite caused by substantially vertical septa 3007 and/or fascia 3011 that has lost elasticity in females.


The septa 3007 and/or the fascia 3011 may be stretched in a manner that is substantially lasting, durable and/or irreversible. In some embodiments, septa 3007 and/or fascia 3011 is determined to be stretched in a lasting or durable manner when the connective tissue (e.g., the septa 3007 and/or the fascia 3011) retains its elongated length for a period that ranges from about 1 hour to about 20 years, from about 2 hours to about 5 years, or from about thirty minutes to about 1 year. The connective tissue (e.g., the septa 3007 and/or the fascia 3011) may be heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. Temperature ranges may be selected to avoid melting and/or to avoid full coagulation of tissue in the region of the septa 3007 and/or the fascia 3011. Stretching can be applied to the connective tissue (i.e., the substantially vertical septa 3007 and the connective tissue 3011) to increase the length of each septum by a percentage increase that ranges from about 2% to about 70%, or from about 5% to about 50% from the length of the connective tissue prior to stretching. Stretching can be applied simultaneously or after heating within a prescribed temperature range.


In one embodiment, the connective tissue (e.g., septa 3007 and/or fascia 3011) are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. and simultaneously and/or subsequent to heating a stretching action is applied to the septa for a period of time necessary to maintain a substantially lasting, durable and/or irreversible extension of the septa. The period of time over which the stretching action can be applied can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes.


The temperature rise in septa and/or the fascia can be implemented in an internal manner and/or an external manner.


Internal Temperature Change Implementation


An internal temperature rise in septa and/or fascia can be implemented internally via an incision in the tissue of a subject and by delivering a probe into the subject's tissue through the incision. The probe can include a tip, for example a tip of a handpiece that emits energy. The tip can be inserted into a subject's tissue in the region of connective tissue to be treated, e.g., septa 1007 and fascia. The clinical endpoint of such treatment is when the connective tissue to be treated (e.g., the septa and/or the fascia) has reached a temperature of from about 45° C. to about 60° C., or from about 44° C. to about 50° C. or more generally a temperature that is less than the temperature at which the connective tissue being treated becomes fully coagulated.


The handpiece tip can emit, for example, a laser or other light emission, ultrasound energy, ohmic resistance that generates energy by simple current, microwave energy, and/or radio frequency energy (e.g., RF energy). These energy sources can have a power level of from about 1 watt to about 100 watts, or from about 10 watts to about 60 watts. The size of the tip can be from about 1 mm to about 6 mm, or from about 1 mm to about 2 mm. Where the energy source is a laser the wavelength can range from about 600 nm to 2300 nm or from about 900 nm to about 1850 nm.


In another embodiment, the handpiece tip can be heated by circulating a fluid such as, for example, hot water inside the tip. The tip temperature can range from about 50° C. to about 100° C.


In another embodiment, a preheated fluid (i.e., a preheated tumescent fluid) or a preheated gas can be injected into an internal region of a subject's body to preheat a volume of the tissue. The preheated fluid is heated up to about 60° C. or from about 40° C. to about 60° C. The temperature of the connective tissue being treated by internal treatment or external treatment can be measured by any of a number of means including, for example, inserting a thermal measurement probe that measures the connective tissue being treated. Thermal probes can be employed to measure and/or enable control of the temperature rise in the connective tissue (e.g., septa and/or fascia) being treated via feedback control such that desired clinical endpoint of connective tissue treatment is when the connective tissue to be treated (e.g., the septa and/or the fascia) has reached a temperature below the temperature of full coagulation for example, from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. Thus in some embodiments the temperature change of the connective tissue form normal body temperature 37° C. ranges from about 7° C. to about 23° C. In one embodiment, internal heating heats a selected volume and/or region of a subcutaneous tissue. In another embodiment, internal heating selectively heats the fascia and/or the septa 1007 themselves. In another embodiment, internal heating heats a portion of tissue in contact with the septa.


External Temperature Change Implementation


In some embodiments, the temperature rise in connective tissue (e.g., fascia and/or septa) is implemented in an external manner. External heating can heat the whole subcutaneous region, a portion of the subcutaneous region, and/or selectively heat the fascia and/or the septa within the region. In another embodiment, external heating heats a portion of tissue in contact with the fascia and/or the septa. The external temperature rise can be accomplished externally using optical energy with wavelengths of from about 600 nm to 2300 nm or from about 900 nm to about 1850 nm. In another embodiment, microwave energy can be externally applied to the body of a subject; the microwave energy can have a power level suited to raise the temperature of a subcutaneous region and/or the connective tissue (e.g., the fascia and/or the septa) to from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. or more generally to a temperature that is less than the temperature at which the connective tissue being treated becomes fully coagulated. A suitable power level can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts. In another embodiment, radio frequency energy (RF energy) can be externally applied to the body of a subject, the RF energy having a power level suited to raise the temperature of a subcutaneous region and/or the targeted connective tissue (e.g., the fascia and/or the septa) to from about 37° C. to about 100° C., or from about 38° C. to about 50° C., or from 45° C. to about 60° C., or from about 44° C. to about 50° C. A suitable power level can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts. In another embodiment, ultrasound energy (US energy) can be externally applied to the body of a subject, the US energy having a power level suited to raising the temperature of a subcutaneous region and/or the targeted connective tissue (e.g., the fascia and/or the septa) to from about 37° C. to about 100° C., or from about 38° C. to about 50° C., or from 45° C. to about 60° C., or from about 44° C. to about 50° C., for example. A suitable power level can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts.


In another embodiment, a subcutaneous region and/or the targeted connective tissue (e.g., the fascia and/or the septa) are heated via thermal conduction from the surface of the subject's body (i.e., from the patient's skin) using a hot plate. In some embodiments, one or more of optical energy, microwave energy, RF energy, ultrasound energy, and thermal conduction can be combined with surface cooling to protect the skin (e.g., the epidermis and the dermis) from overheating. Surface cooling methodologies can include contacting the skin surface with a cold gel plate, spray cooling, cold liquid or gas flow cooling, for example. Generally, the cooling medium that contacts the surface of the skin should have a temperature of from about −10° C. to about 20° C., more specifically, a sapphire cooling plate may have a temperature that falls within the range of from about −5° C. to about 10° C.


Methods that can be employed to selectively heat fascia, and/or septa include optical energy employed for selective absorption of subcutaneous tissue (e.g., fat tissue) in preference to skin tissue at suitable wavelength(s). Suitable wavelengths include wavelengths of about 915 nm, about 1208 nm, and about 1715 nm, because these wavelengths provide peak absorption of lipid(s), which is desirable when treating the fat contained (e.g., the lipids) in subcutaneous tissue in preference to skin tissue. Other methods that can be employed include employing microwave energy, US energy, and/or RF energy by selective current through septa due to the relatively low electrical impedance of connective tissue (e.g., fascia and/or septa) compared to surrounding lipid rich tissue.


Stretching of the Septa


The septa and/or the region of tissue including the septa are heated to a temperature in the range of from about 37° C. to about 100° C., or from about 38° C. to about 50° C., or from about 44° C. to about 60° C., or and from about 45° C. to about 50° C. and simultaneously with and/or subsequent to heating a stretching action is applied to the septa for a period of time necessary to maintain a substantially lasting, durable and/or irreversible extension of the septa. The period of time over which the stretching action can be applied can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes.


The temperature to which the connective tissue is heated and the time that the connective tissue is exposed to the temperature should be selected to avoid full or complete coagulation of the connective tissue. In one embodiment, the septa and/or region of tissue including the septa are heated to a temperature of about 45° C. or greater and the septa and/or the region of tissue including septa are stretched for a period of time of about 1 minute or greater.


Adipose tissue (i.e., fat tissue) in the region of cellulite has a relatively high heat capacity and a relatively low thermal conductivity compared to skin tissue and has a relatively large volume compared to other types of tissue, for example, skin tissue. Because adipose tissue has a relatively high heat capacity and a relatively large volume after exposure to a temperature increase, adipose tissue in the region of cellulite holds the increased temperature for a period of time that enables stretching to occur over a period of time after the heat source has been applied for example for up to about 1 hour. It is conceivable that heat applied internally (i.e., via heated tumescent solution having a temperature of up to 60° C. and ranging from about 40° C. to about 60° C. can raise the temperature of the septa and/or the fascia to from about 44° C. to about 60° C.) can hold the heat for a period of time that enables internal and/or external stretching to be applied for a period of up to about one hour after injecting the tumescent into the subject's body.


Stretching can be applied to the septa by any of a number of methods or means. For example, in one embodiment, suction is applied to the external surface of a portion of the skin via a vacuum applicator that suctions a portion of the skin thereby placing the skin under negative pressure. In another embodiment, stretching is applied by pushing fluid (e.g., liquid and/or gas) into the tissue in the region to be treated. Optionally, the fluid extends the tissue in the region to be treated by increasing the volume of the region of tissue to be treated by a factor of from about 10% to about 500%, or from about 20% to about 200%, or from about 50% to about 100%. In some embodiments, the fluid is pushed directly into the tissue in the region to be treated. Optionally, in some embodiments, a balloon or bladder in inserted in the region to be treated and is placed, for example, under the skin and/or above the muscle to accept the fluid and to hold the expanded shape for the desired period of time. Fluid can be inserted into the balloon and/or the bladder via injection. Once stretching is completed, the balloon and/or bladder can be deflated by, for example, removing the fluid using the device previously used to inject the fluid into the bladder. In some embodiments, once the balloon and/or the bladder are deflated the balloon and/or the bladder can be removed from the region to be treated. In one embodiment, the balloon and/or the bladder are inserted through an incision made in the subject's body, likewise, the balloon and/or the bladder may be removed via the same incision (e.g., the incision through which the balloon and/or the bladder were placed inside the subject's body).


Referring again to FIG. 1A the fat tissue 1006 includes adipose cells with lipid droplets 1016a that have extracellular space 1005 between lipid droplets 1016a. FIG. 1A shows that in tissue the adipose cells with lipid droplets 1016a are closely packed such that there is a relatively small amount of extracellular space 1005 in the fat tissue.



FIG. 1B shows the region of cellulite tissue discussed in relation to FIG. 1A being stretched. Such stretching of tissue in a region having the appearance of cellulite can be accomplished by external means, such as the devices disclosed in association with FIGS. 4, 5, 6A and 6B or by internal means, for example, by introducing fluid internally to the subject's body.


In one embodiment, FIG. 1B depicts a region of cellulite tissue after tumescent fluid has been injected inside the subject's body 1002 in the region of cellulite.


The quantity of tumescent fluid increases the volume of the region of cellulite in the subject's body by from about 10% to about 500%, or from about 20% to about 200%, or from about 50% to about 100%, or from about 25% to about 75%, or from about 35% to about 50%, or by about 100%. Thus, the tumescent fluid substantially increases the size of the subcutaneous region. Referring to the fat tissue 1006 shown in FIG. 1B, introduction of the tumescent fluid into the subject's body increases the extracellular space 1005 such that the adipose cells with the lipid droplets 1016a of the fat tissue 1006 are no longer as closely packed as they were prior to introduction of the tumescent fluid (as is depicted in FIG. 1A). Introduction of the tumescent fluid extends and/or stretches the skin (epidermis 1010 and dermis 1008) due to the increase in volume provided by the introduction of tumescent fluid to the tissue. In addition, the introduction of the tumescent fluid increases the length of the septa 1007a and 1007b while decreasing the septa thickness. Stretching the tissue region having cellulite by external means would result in a similar increase in the extracellular space 1005 between the lipid droplets 1006a of the fat tissue 1006 and in a similar lengthening of the septa 1007a and 1007b.


In order to maintain the elongated length of the septa 1007a and 1007b for a substantially lasting, durable and/or irreversible period of time, the temperature of the septa 1007a and 1007b must be increased so that it ranges from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C., Such a temperature increase in the septa can be accomplished by external means such as the devices disclosed in association with FIGS. 4, 5, 6A and 6B.


In some embodiments, the tumescent solution is preheated such that upon injection into the subject's body 1000 the preheated tumescent solution heats the tissue in the region of the septa 1007 to have a temperature of from about 44° C. to about 60° C., or from about 37° C. to about 50° C., or from about 38° C. to about 42° C. The pre-heated tumescent solution has a temperature of up to 60° C. and ranging from about 40° C. to about 60° C. in order to raise the temperature of the septa and/or the fascia to from about 44° C. to about 60° C.).


In other embodiments, the tissue region is stretched (e.g., by external means and/or by unheated tumescent solution) and the septa 1007 are heated by external means such as, for example, by applying ultrasound energy and/or laser or light energy to the region of tissue including the fascia and/or the septa themselves. The temperature of the septa 1007 and the period of time of stretching of the septa 1007 in the presence of the temperature increase are selected to achieve substantially lasting, durable and/or irreversible elongation of the septa 1007 to the length depicted in FIG. 1B. In order to maintain the elongated length of the septa 1007a and 1007b for a substantially lasting, durable and/or irreversible period of time, the temperature of the septa 1007a and 1007b must be increased so that it ranges from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. The one or more energy sources employed to increase the connective tissue temperature can have a power level of from about 1 watt to about 100 watts, or from about 10 watts to about 60 watts. Once the connective tissue temperature is increased, the stretching action can be applied to the tissue region for a period of time that can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes. For example, the stretching action can be applied to the tissue region by the tumescent solution by maintaining the tumescent solution in the subject's body in the presence of the temperature increase for the desired time period (e.g., the time period necessary to achieve lasting elongation of the septa).



FIG. 1C shows the region of cellulite tissue discussed in relation to FIG. 1B after removal of the stretching force (e.g., removal of an external stretching force such as a vacuum and/or removal of an internal stretching force such as the tumescent solution). The septa 1007a and 1007b shown in FIG. 1C are elongated as a result of the stretching and exposure of increased temperature discussed in relation to FIG. 1B. As a result, the septa 1007a and 1007b shown in FIG. 1C enjoy a decrease of tension in the substantially vertical septa 1007 as compared to the septa 1007 shown in FIG. 1A prior to exposure to stretching and temperature increase. Exposing the septa 1007 to stretching and increased temperature provides an improved appearance of cellulite on the external surface 1004 of the female subject's body 1000.


Referring now to FIG. 2A the fat tissue 3006 includes adipose cells with lipid droplets 3016a that have extracellular space 3005 between lipid droplets 3016a. FIG. 2A shows that in tissue the adipose cells with lipid droplets 3016a are closely packed such that there is a relatively small amount of extracellular space 3005 in the fat tissue 3006.



FIG. 2B shows the region of cellulite tissue discussed in relation to FIG. 2A after the region of cellulite tissue has been stretched (e.g., by external means or by internal means such as injection of tumescent fluid inside the subject's body 3002 in the region of cellulite).


Still referring to FIG. 2B, in an embodiment where the tumescent fluid is injected to increase the volume of the region to be treated in the subject's body the tumescent fluid increased the volume of the region of tissue to be treated by a factor of from about 10% to about 500%, or from about 20% to about 200%, or from about 50% to about 100%, or from about 25% to about 75%, or from about 35% to about 50%, or by about 100%. Thus, the tumescent fluid substantially increases the size of the subcutaneous region. Referring to the fat tissue 3006 shown in FIG. 1B, introduction of the tumescent fluid into the subject's body increases the extracellular space 3005 such that the adipose cells with the lipid droplets 3016a of the fat tissue 3006 are no longer as closely packed as they were prior to introduction of the tumescent fluid (as is depicted in FIG. 2A).


Introduction of the tumescent fluid extends and/or stretches the skin (epidermis 3010 and dermis 3008) due to the increase in volume provided by the introduction of tumescent fluid to the tissue. In addition, the introduction of the tumescent fluid increases the length of the septa 3007a, 3007b, 3007d, and 3007e, which increases the length of the septa 3007 and increases the length of the fascia 3011 while decreasing the septa 3007 thickness and decreasing the fascia 3011 thickness. Stretching the tissue region having cellulite by external means would result in a similar increase in the extracellular space 3005 between the lipid droplets 3016a of the fat tissue 3006, a similar lengthening of the septa 3007a, 3007b. 3007d, and 3007e and in a similar lengthening of the fascia 3011 as described when stretching was accomplished by introduction of the tumescent fluid in the subject's body.


Referring still to FIG. 2B, in order to maintain the elongated length of the septa and/or the fascia for a substantially lasting, durable and/or irreversible period of time, the temperature of the septa 3007 and/or the fascia 3011 must be increased so that it ranges from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C. In some embodiments, tumescent solution is preheated such that the preheated tumescent solution has a temperature of up to 60° C. and a temperature that ranges from about 40° C. to about 60° C. such that upon injection into the subject's body 3000 the preheated tumescent solution heats the tissue in the region of the septa 3007 and/or the tissue in the region of the fascia 3011 to have a temperature of from about 44° C. to about 60° C., or from about 37° C. to about 50° C., or from about 38° C. to about 42° C.


In other embodiments, the tissue region is stretched (e.g., by external means and/or by unheated tumescent solution) and the connective tissue (e.g., the septa 3007 and/or the fascia 3011) are heated by an energy source provided by external means such as, for example, by applying ultrasound energy and/or laser or light energy to the region of tissue including the septa, the septa themselves, the region of tissue including the fascia and/or the fascia itself. The temperature of the septa 3007 and/or the fascia 3011 and the period of time of stretching of the septa 3007 and/or the fascia 3011 are selected to achieve substantially lasting, durable and/or irreversible elongation of the connective tissue (e.g., the septa 3007 and/or the fascia 3011) to the length depicted in FIG. 2B. The connective tissue to be treated (e.g., the septa and/or the fascia) is treated to reach a temperature below the temperature of full coagulation for example, from about 37° C. to about 100° C., or from about 38° C. to about 60° C., from about 44° C. to about 60° C., or from about 45° C. to about 50° C.


Once the connective tissue temperature is increased in the presence of a stretching force the temperature increase is held for a period of time that can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour, or from about 10 minutes to about 30 minutes. The external energy sources employed to increase the connective tissue temperature can have a power level of from about 1 watt to about 100 watts, or from about 10 watts to about 60 watts.



FIG. 2C shows the region of cellulite tissue discussed in relation to FIGS. 2A and 2B after removal of the stretching force (e.g., removal of an external stretching force such as a vacuum and/or removal of an internal stretching force such as the tumescent solution).



FIG. 2C shows that the septa 3007 and fascia 3011 are elongated as a result of the stretching and exposure to the increased temperature discussed in relation to FIG. 2B. As a result, the septa 3007 and fascia 3011 shown in FIG. 2C enjoy a decrease of tension in the substantially vertical septa 3007 as compared to the septa 3007 shown in FIG. 2A prior to exposure to stretching and temperature increase. Likewise, exposure to stretching and increased temperature reduces the tension in the fascia 3011 by, for example, elongating at least a portion of the fascia 3011. Exposing the septa 3007 and the fascia 3011 to stretching and increased temperature provides an improved appearance of cellulite on the external surface 3004 of the female subject's body 3000.


In some embodiments, in order to avoid the muscle (e.g., the muscle underlying the fascia and/or the septa to be treated) from moving and/or pulling as a result of exposure to a stretching mechanism the practitioner can instruct the subject to flex their muscle in the treatment region. Flexing the muscle can aid in fixing the muscle and help prevent the muscle from being suctioned as well. In one embodiment, a flexing action can be accomplished in a desired muscle by using electrical conduction to fixate the muscle during application of an external stretching technique (e.g., by applying electrical muscle stimulation to the muscle beneath the area being treated to contract the muscle). The muscle can be stretched prior to, simultaneous with and/or subsequent with use of a stretching mechanism (e.g., an external stretching mechanism such as an external vacuum).


In one embodiment, during stretching, ultrasound energy is delivered to the septa. Ultrasound energy can support the substantially permanent expansion (i.e., stretching) of the septa by creating cavitation bubbles in the fiber of the septa. Cavitation bubbles in the fiber of the septa can weaken the septa to promote stretching. Ultrasound energy can be applied to generate one or more acoustic shock wave(s) that propagate through the dermis and the subcutaneous region to reach the septa. Ultrasound energy can be applied to generate oscillation of septa and oscillation of septa can support lasting (e.g., irreversible) elongation of the septa. In some embodiments the ultrasound frequency is selected to match or to substantially match the resonance frequency of oscillation of the septa and/or of the septa and any subcomponents that the septa contain. The resonance frequency of oscillation can range from about 10 MHz to about 1 GHz. In other embodiments, the ultrasound frequency is selected to match or to substantially match harmonics of the resonance frequency of the septa and any subcomponents that the septa contain. The harmonics of the resonance frequency can range from about 20 MHz to about 2 GHz.


In one embodiment, stretching is combined with vibration (e.g., vacuum is externally applied to the subject's skin together with a vibration action). In another embodiment, stretching is combined with torquing (e.g., twisting) of tissue, for example, vacuum is externally applied to the subject's skin together with a twisting action. The twisting action can have a torque that ranges from about 0.3 N-m to about 3 N-m. The vibration action can have a frequency that ranges from about 5 Hz to about 200 Hz.


Referring again to FIGS. 1A and 2A, the practitioner can be visually guided by the dimples 1003, 3003 on the subject's body 1000, 3000 to determine the region for treatment in an internal portion of the body 1002, 3002. In one embodiment, a handpiece including an aiming beam provides a visual aid to assist treatment of the subject. For example, where cellulite is being treated, a portion of the handpiece is inserted into the internal portion of the subject's body 1000, 3000. The practitioner can line the aiming beam of the handpiece in line with a visible dimple 1003, 3003 indicative of cellulite present on the external position of the body 1004, 3004. Once aligned with the visible dimple, with the aid of the aiming beam, the waveguide is positioned to treat the septa 1007 (e.g., to heat and/or stretch the septa) in the region of the visible dimple 1003. Alternatively, referring to FIG. 2A the waveguide is positioned to treat the septa 3007 and/or the fascia 3011 (e.g., to heat and/or stretch the septa and/or the fascia) in the region of the visible dimple 3003. In another embodiment, referring now to FIG. 1A, an aiming beam can be employed to locate individual septa (e.g., 1007a) in a region of skin. The aiming beam can make visible to the practitioner the presence of the septa 1007 in the subject's body 1000. Once the septa 1007 is made visible to the practitioner the septa 1007 and/or the region of the septa 1007 may be heated to a suitable temperature and simultaneous with or subsequent to heating the septa 1007 may be stretched by, for example, applying vacuum to the septa 1007.


In one embodiment, the treatment is combined with other visualization techniques that enable visualization of the connective tissue structure (e.g., the septa and/or fascia tissue structure) to control the location of the applicator and/or the results of the treatment. Suitable visualization techniques can include, for example, use of diagnostic ultrasound as a visualization technique.


In one embodiment, a cannula having a diameter that ranges from about 0.5 mm to about 8 mm, or about 2 mm is inserted into the body of a subject through an incision. The cannula includes an energy source (e.g., a light source) that heats the region of tissue into which the cannula has been inserted. The cannula and the energy source heat the region of tissue, which includes septa to a temperature of about 45° C. A source of vacuum is employed to stretch the connective tissue (e.g., the septa and/or the fascia tissue). The temperature of about 45° C. is employed because it avoids coagulation and it avoids melting of the adipose cells in the region of the connective tissue (e.g., the septa and/or the fascia tissue).


The desired level of connective tissue elongation may be confirmed via visual confirmation that the appearance of cellulite is reduced and/or eliminated. Where the treatment is non invasive (e.g., external treatment) the visual confirmation may be made just after treatment. Where the treatment is invasive (i.e., internal treatment with a cannula) the visual confirmation may likewise be made after the treatment is completed once the cannula is removed from the subject's body. Where the invasive treatment includes a fluid for example a liquid such as water or tumescent or a gas injected into the subject's body, the visual confirmation may be made upon release of the fluid (e.g., the tumescent or the gas). In some embodiments, the connective tissue that is elongated (e.g., the fascia and/or the septa) is increased in length by from about 5% to about 50%.



FIG. 4 shows a device 4000 for externally heating a region of tissue, including septa, and for applying vacuum and/or suction to the region to stretch the heated septa. More specifically, the device includes a first vacuum 4020, one or more energy source 4012, a cooling plate 4014, and a second vacuum 4030. The device ensures good contact of the energy source 4012 by applying a first vacuum 4020 to a region of tissue prior to exposing the tissue to one or more energy source 4012 and, after heating of the tissue region is complete, a second vacuum 4030 is applied to the tissue region. In this way, the septa contained in the tissue region may be heated via the energy source 4012 and then stretched by a vacuum (e.g., 4020 or 4030). The vacuum pressure can range from about −500 mmHg to about −5 mmHg, or from about −350 mmHg to about −50 mmHg. The one or more energy source(s) 4012 may include one or more of the energy sources described herein (e.g., ultrasound, RF energy, light energy etc.). The power level of the energy source can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts. Where the energy source is light based the wavelength can range from about 600 nm to 2300 nm, or from about 900 nm to about 1850 nm. The cooling plate may include or incorporate any suitable cooling means known to the skilled person including, but not limited to, any of the cooling means disclosed herein. Generally, the cooling plate can have a temperature range of from about −5° C. to about 20° C. more specifically a sapphire cooling plate may have a temperature range of from about −5° C. to about 10° C. In this way the septa in the tissue region stretched in a manner that is substantially lasting, durable and/or irreversible. The device 4000 is employed on an external surface of the subject's body to improve the appearance of cellulite caused by substantially vertical and/or substantially tight septa and/or fascia in the tissue region.



FIG. 5 shows a device for externally heating a region of tissue including septa 5007a-5007e disposed between skin tissue 5011 and muscle 5009. The device includes an energy source 5012 and adjacent the energy source 5012 are two cooling plates 5014 and 5016 that surround a cooling liquid 5015. The device also includes a source of vacuum 5099. The vacuum pressure can range from about −500 mmHg to about −5 mmHg, or from about −350 mmHg to about −50 mmHg. The vacuum source 5099 pulls the subject's tissue between the cooling plates 5014. The configuration of the device of FIG. 5 can create a “pinch” or a “fold” of tissue that is held adjacent the cooling plate 5014 of the device.


The cooling plate can be an optically transparent dielectric material. Generally, the cooling plate can have a temperature range of from about −5° C. to about 20° C. or the cooling plate can have a temperature range of from about −5° C. to about 10° C. The cooling plate may be made from sapphire. Cooling the plate to the temperature range of −5° C. to about 20° C. or from about −5° C. to about 10° C. allows deep heating by light without damaging the epidermis. Such cooling done in parallel with light delivery can allow irradiation times that can range from about a tenth of a second to about 24 hours, from about a tenth of a second to about 1 second, from about 30 seconds to about 24 hours, or from about 1 minute to about 1 hour or from about 10 minutes to about 30 minutes. In some embodiments, the treatment power density for wavelengths in the near-infrared wavelength range is on the order of from about 1 W/cm2 to about 100 W/cm2, or from about 1 W/cm2 to about 10 W/cm2. Heating and cooling may be cycled, cycling of heating and cooling can promote a substantially uniform temperature change in the area of tissue treatment. Thermocycling of heating and cooling can contribute to lasting elongation of connective tissue being treated (e.g., septa tissue and/or fascia tissue). Cycling of heating and cooling can be employed so that heating via the energy source and cooling have intensities that are matched to one another (e.g., as the energy for heating is increased the cooling temperature is decreased and as the energy for heating is decreased the cooling temperature is increased).


The energy source 5012 increases the temperature of the tissue region including the septa 5007. FIG. 5 depicts the energy source 5012 of the device applying energy to the tissue region, more specifically, to the septa 5007c in the tissue region while vacuum 5099 stretches the septa 5007c to which the energy source is being applied. In this way the septa 5007c is stretched in a manner that is substantially lasting, durable and/or irreversible. The vacuum 5099 may be modulated (e.g., the amount of suction may be alternated and/or modulated) to enhance stretching of the skin.


The device shown in FIG. 5 is employed on an external surface of the subject's body to improve the appearance of cellulite caused by substantially vertical and/or substantially tight septa 5007 and or by fascia (not shown in FIG. 5).


The power level of the energy source can range from about 1 watt to about 100 watts or from about 10 watts to about 60 watts. Where the energy source is a light based (e.g., laser) the wavelength can range from about 600 nm to 2300 nm or from about 900 nm to about 1850 nm.


The energy source 5012 can feature different optical schemes (i.e. with or without optical fibers) that can be used to irradiate the skin fold. In one embodiment, diode laser bars together with suitable optics are mounted in the device and create one or more irradiation areas (each having an irradiation area on the order of from about 5×20 mm2, or from about 25×200 mm2, or from about 15×70 mm2) that are adjacent to the skin fold. In one embodiment, two diode laser bars (each having an irradiation area on the order of 15×70 mm2) are located in the device each on one side of a skin fold. In another embodiment, diode light is delivered via beam-shaping optics through two cooled sapphire windows with one window located on each side of the skin fold (the cooled sapphire windows are on the order of 15×70 mm2).


Referring still to FIG. 5 in an embodiment where the energy source 5012 includes ultrasound energy (e.g., acoustic energy), which may be applied to the region of tissue being treated at the same time as the stretching force is applied to the region of tissue being treated. In some embodiments, lasting stretching is enhanced by the acoustic energy whereby the fascia, septa, and/or all of the connective tissue in the treatment region vibrates in the presence of the acoustic energy.


More specifically, the device applies vacuum 5099 to a region of tissue to be treated (e.g., to a pinch of tissue) at least a portion of a side of the pinch of tissue is exposed to ultrasound energy (e.g., acoustic energy). Ultrasound energy (e.g., acoustic energy) may be employed as the only energy source 5012 and/or acoustic energy may be employed in combination with other sources of energy, such as, for example, light energy. Acoustic energy can provide mechanical vibration when the acoustic energy has a frequency range of from about 10 Hz to about 10 kHz. Acoustic energy can produce cavitation in the subcutaneous tissue when it has a frequency range of from about 5 kHz up to 1 MHz. Acoustic energy can achieve a heating effect when it has a frequency range from about 0.5 MHz to about 1 GHz. In one embodiment, a cooling element (e.g., a cooling plate 5014, 5016) contacts the skin surface while the acoustic and/or light energy is being applied to the skin surface. In one embodiment, the cooling element cools the skin surface down to, for example, 0° C. Suitable cooling elements may be made from, for example, cooled sapphire. Any suitable cooling mechanism may be employed such as, for example, a peltier cooler.


In one embodiment, referring to FIGS. 6A and 6B, the device has an outer housing 6030 that may be structurally flexible (made, for example, from silicone rubber), which allows the device to accommodate varying skin fold thicknesses. Alternatively, the outer housing 6030 can be made from a rigid material. In such a device the energy source(s) 6012 (e.g., optical component(s)) may be located on only a portion of the device. For example, in one embodiment, the device features two separate sapphire treatment windows 6012 that are separated from one another by the material of the outer housing 6030 (e.g., the flexible material of the outer housing) and vacuum 6099 is pulled through the device. A region of tissue to be treated 6001 includes skin and subcutaneous tissue, and during treatment within the recess 6050 of the device the region of tissue to be treated 6001 can assume the shape of a pinch or a fold when the region to be treated 6001 is pulled into the recess 6050 within the device. During use of the device, additional mechanical pressure can be applied to the energy source(s) 6012 (e.g., two sapphire treatment windows) to ensure good thermal/optical contact and to displace blood in the region of tissue to be treated. For example, in one embodiment, mechanical pressure such as a pushing or a squeezing force may be applied to the sapphire treatment windows 6012 that are disposed on or are adjacent to the flexible material of the outer housing 6030. Such a mechanical force may be employed on the device alternatively or in addition to application of a vacuum pressure 6099. In some embodiments, the skin fold is compressed and expanded (e.g., repeatedly compressed and expanded) to improve blood circulation during treatment of the tissue held within the device recess 6050 during treatment. The energy source 6012 may include one or more cooling element(s) employed to cool the region of skin tissue to be treated, suitable cooling elements can include the cooling plates disclosed in relation to FIG. 5. FIGS. 6A and 6B show the energy source(s) 6012 on the external surface of the outer housing 6030, however, suitable devices can include energy source(s) on the internal surface of the outer housing such that the energy source(s) directly contact the region to be treated 6001 when it enter the recess 6050 therein.


Optionally, the device includes vibration and/or massage. In one embodiment, massage is used in a twisting motion and/or a shearing motion provided in a direction parallel to the skin fold. In one embodiment, contact sensors are disposed on within the portion of the device in contact with the skin tissue and the contact sensors can be employed to ensure the skin being treated (e.g., a skin fold) stays in contact with the sapphire cooling windows. In one embodiment, a skin color sensor is employed to automatically adjust the power of the energy source (e.g., the diode laser) based on a measurement of the skin melanin optical density. In some embodiments, a temperature sensor is embedded in the device (e.g., in the sapphire window) and the temperature sensor can be employed to ensure that the skin does not overheat during treatment. The device may employ photon recycling to enhance heating of the skin fold by redirecting photons scattered out of the skin fold back into the skin fold. In other embodiments, one or more septa may be stretched by any of the means described herein and all or a portion of one or more septa may be cut and/or may fraction thereby to diminish and/or eliminate the tension in the septa that can cause the cellulite appearance. The one or more septa may be cut by any of the internal or external means described herein. Alternatively, the one or more septa may be cut by employing surgical tools known for cutting such as, for example, knives, scalpels, and/or cauterization devices.


The techniques described herein for improvement of cellulite appearance may be employed to treat the cellulite of subjects ranging in age from relatively young subjects that have just begun to exhibit the cellulite appearance (e.g., teenagers) or relatively older subject's including post menopausal and/or elderly female subjects.

Claims
  • 1. A method of improving the appearance of cellulite, the method comprising: applying a stretching force to at least one of a septa tissue and a fascia tissue that is adjacent to fat tissue beneath a region of a subject's skin having the appearance of cellulite; andheating at least one of the septa tissue and the fascia tissue for a period of time and at a temperature in a range of about 38° C. to about 60° C. to achieve lasting elongation of at least one of the septa tissue and the fascia tissue upon release of the stretching force.
  • 2. The method of claim 1 wherein applying the stretching force and heating at least one of the septa tissue and the fascia tissue occur simultaneously.
  • 3. The method of claim 1 wherein the heating of at least one of the septa tissue and the fascia tissue occurs in the presence of the previously applied stretching force.
  • 4. The method of claim 1 wherein applying the stretching force comprises inserting fluid into the subject's tissue.
  • 5. The method of claim 4 wherein the fluid is pre-heated to heat at least one of the septa tissue and the fascia tissue.
  • 6. The method of claim 1 wherein one or more of radiofrequency energy, ultrasound energy, light energy, and microwave energy are employed to heat at least one of the septa tissue and the fascia tissue.
  • 7. The method of claim 1 further comprising utilizing a cannula to apply an energy source to heat at least one of the septa tissue and the fascia tissue.
  • 8. The method of claim 7 wherein the cannula applies one or more of radiofrequency energy, ultrasound energy, light energy, and microwave energy to at least one of the septa tissue and the fascia tissue.
  • 9. The method of claim 1 wherein vacuum pressure applies the stretching force.
  • 10. The method of claim 1 wherein the temperature of at least one of the septa and the fascia range from about 44° C. to about 60° C.
  • 11. The method of claim 1 wherein the temperature of at least one of the septa and the fascia range from about 40° C. to about 48° C.
  • 12. The method of claim 1 wherein the period of time ranges from about 10 seconds to about 60 minutes.
  • 13. The method of claim 1 wherein the period of time ranges from about 30 seconds to about 30 minutes.
  • 14. The method of claim 1 further comprising cooling the external surface of the region of the subject's skin.
RELATED APPLICATION

The present application claims priority to a provisional application entitled “Method for Improvement of Cellulite Appearance” and having U.S. Ser. No. 61/271,593. This provisional application is herein incorporated by reference in its entirety.

US Referenced Citations (776)
Number Name Date Kind
853033 Roberts May 1907 A
1590283 Catlin Jun 1926 A
1706161 Hollnagen Mar 1929 A
2472385 Rollman Jun 1949 A
2669771 Burge et al. Feb 1954 A
3261978 Brenman Jul 1966 A
3327712 Kaufmann Jun 1967 A
3486070 Engel Dec 1969 A
3527932 Thomas Sep 1970 A
3538919 Meyer Nov 1970 A
3597652 Gates, Jr. Aug 1971 A
3622743 Muncheryan Nov 1971 A
3653778 Freiling Apr 1972 A
3667454 Prince Jun 1972 A
3693623 Harte et al. Sep 1972 A
3793723 Kuris et al. Feb 1974 A
3818914 Bender Jun 1974 A
3834391 Block Sep 1974 A
3846811 Nakamura et al. Nov 1974 A
3857015 Clark et al. Dec 1974 A
3890537 Park et al. Jun 1975 A
3900034 Katz et al. Aug 1975 A
3909649 Arsena Sep 1975 A
3939560 Lyall Feb 1976 A
3977083 Leslie et al. Aug 1976 A
4047106 Robinson Sep 1977 A
4213462 Sato Jul 1980 A
4233493 Nath et al. Nov 1980 A
4254333 Bergstrom Mar 1981 A
4269067 Tynan et al. May 1981 A
4273109 Enderby Jun 1981 A
4275335 Ishida et al. Jun 1981 A
4298005 Mutzhas Nov 1981 A
4316467 Muckerheide Feb 1982 A
4333197 Kuris Jun 1982 A
4335726 Kolstedt Jun 1982 A
4388924 Weissman et al. Jun 1983 A
4409479 Sprague et al. Oct 1983 A
4452081 Seppi Jun 1984 A
4456872 Froeschle Jun 1984 A
4461294 Baron Jul 1984 A
4504727 Melcher et al. Mar 1985 A
4512197 von Gutfeld et al. Apr 1985 A
4524289 Hammond et al. Jun 1985 A
4539987 Nath et al. Sep 1985 A
4553546 Javelle Nov 1985 A
4561440 Kubo et al. Dec 1985 A
4566271 French et al. Jan 1986 A
4591762 Nakamura May 1986 A
4601753 Soileau et al. Jul 1986 A
4608978 Rohr Sep 1986 A
4608979 Breidenthal et al. Sep 1986 A
4617926 Sutton Oct 1986 A
4623929 Johnson et al. Nov 1986 A
4629884 Bergstrom Dec 1986 A
4653495 Nanaumi Mar 1987 A
4677347 Nakamura et al. Jun 1987 A
4686986 Fenyo et al. Aug 1987 A
4695697 Kosa Sep 1987 A
4710677 Halberstadt et al. Dec 1987 A
4718416 Nanaumi Jan 1988 A
4733660 Itzkan Mar 1988 A
4736745 Gluckman Apr 1988 A
4745909 Pelton et al. May 1988 A
4747660 Nishioka et al. May 1988 A
4749913 Stuermer et al. Jun 1988 A
4775361 Jacques et al. Oct 1988 A
4779173 Carr et al. Oct 1988 A
4784135 Blum et al. Nov 1988 A
4799479 Spears Jan 1989 A
4819669 Politzer Apr 1989 A
4826431 Fujimura et al. May 1989 A
4832024 Boussignac et al. May 1989 A
4840174 Gluckman Jun 1989 A
4840563 Altendorf Jun 1989 A
4845608 Gdula Jul 1989 A
4852549 Mori et al. Aug 1989 A
4860172 Schlager et al. Aug 1989 A
4860744 Johnson et al. Aug 1989 A
4862903 Campbell Sep 1989 A
4871479 Bachelard et al. Oct 1989 A
4884560 Kuracina Dec 1989 A
4898438 Mori Feb 1990 A
4905690 Ohshiro et al. Mar 1990 A
4914298 Quad et al. Apr 1990 A
4917084 Sinofsky Apr 1990 A
4926227 Jensen May 1990 A
4928038 Nerone May 1990 A
4930504 Diamantopoulos et al. Jun 1990 A
4932954 Wondrazek et al. Jun 1990 A
4945239 Wist et al. Jul 1990 A
4973848 Kolobanov et al. Nov 1990 A
4976308 Faghri Dec 1990 A
4979180 Muncheryan Dec 1990 A
4992256 Skaggs et al. Feb 1991 A
5000752 Hoskin et al. Mar 1991 A
5030090 Maeda et al. Jul 1991 A
5032178 Cornell Jul 1991 A
5046494 Searfoss et al. Sep 1991 A
5050597 Daikuzono Sep 1991 A
5057104 Chess Oct 1991 A
5059192 Zaias Oct 1991 A
5065515 Iderosa Nov 1991 A
5066293 Furumoto Nov 1991 A
5071417 Sinofsky Dec 1991 A
5108388 Trokel Apr 1992 A
5127395 Bontemps Jul 1992 A
5133102 Sakuma et al. Jul 1992 A
5137530 Sand Aug 1992 A
5140984 Dew et al. Aug 1992 A
5159601 Huber Oct 1992 A
5160194 Feldman Nov 1992 A
5171564 Nathoo et al. Dec 1992 A
5178617 Kuizenga et al. Jan 1993 A
5182557 Lang Jan 1993 A
5182857 Simon Feb 1993 A
5192278 Hayes et al. Mar 1993 A
5196004 Sinofsky Mar 1993 A
5207671 Franken et al. May 1993 A
5222907 Katabuchi et al. Jun 1993 A
5225926 Cuomo et al. Jul 1993 A
5226907 Tankovich Jul 1993 A
5267399 Johnston Dec 1993 A
5281211 Parel et al. Jan 1994 A
5282797 Chess Feb 1994 A
5287372 Ortiz Feb 1994 A
5287380 Hsia Feb 1994 A
5293880 Levitt Mar 1994 A
5300097 Lerner et al. Apr 1994 A
5303585 Lichte Apr 1994 A
5304170 Green Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306143 Levy Apr 1994 A
5306274 Long Apr 1994 A
5320618 Gustafsson Jun 1994 A
5334191 Poppas et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5336217 Buys et al. Aug 1994 A
5342358 Daikuzono et al. Aug 1994 A
5344418 Ghaffari Sep 1994 A
5344434 Talmore Sep 1994 A
5348551 Spears et al. Sep 1994 A
5350376 Brown Sep 1994 A
5353020 Schurmann Oct 1994 A
5353790 Jacques et al. Oct 1994 A
5356081 Sellar Oct 1994 A
5358503 Bertwell et al. Oct 1994 A
5360426 Muller et al. Nov 1994 A
5369831 Bock Dec 1994 A
5380317 Everett et al. Jan 1995 A
5386427 Zayhowski Jan 1995 A
5403306 Edwards et al. Apr 1995 A
5405368 Eckhouse Apr 1995 A
5409446 Rattner Apr 1995 A
5415654 Daikuzono May 1995 A
5422112 Williams Jun 1995 A
5425728 Tankovich Jun 1995 A
5425735 Rosen et al. Jun 1995 A
5425754 Braun et al. Jun 1995 A
5445608 Chen et al. Aug 1995 A
5445611 Eppstein et al. Aug 1995 A
5454807 Lennox et al. Oct 1995 A
5458140 Eppstein et al. Oct 1995 A
5474549 Ortiz et al. Dec 1995 A
5486170 Winston et al. Jan 1996 A
5486172 Chess Jan 1996 A
5501680 Kurtz et al. Mar 1996 A
5502582 Larson et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505727 Keller Apr 1996 A
5519534 Smith et al. May 1996 A
5522813 Trelles Jun 1996 A
5527368 Supkis et al. Jun 1996 A
5531739 Trelles Jul 1996 A
5531740 Black Jul 1996 A
5536168 Bourke et al. Jul 1996 A
5549660 Mendes et al. Aug 1996 A
5558667 Yarborough et al. Sep 1996 A
5561881 Klinger et al. Oct 1996 A
5571098 Domankevitz et al. Nov 1996 A
5578866 DePoorter et al. Nov 1996 A
5595568 Anderson et al. Jan 1997 A
5611793 Wilson et al. Mar 1997 A
5616140 Prescott Apr 1997 A
5618284 Sand Apr 1997 A
5620478 Eckhouse et al. Apr 1997 A
5626631 Eckhouse et al. May 1997 A
5628744 Coleman et al. May 1997 A
5630811 Miller May 1997 A
5634711 Kennedy et al. Jun 1997 A
5649972 Hochstein Jul 1997 A
5652481 Johnson et al. Jul 1997 A
5653706 Zavislan et al. Aug 1997 A
5655547 Karni Aug 1997 A
5657760 Ying et al. Aug 1997 A
5658148 Neuberger et al. Aug 1997 A
5658323 Miller Aug 1997 A
5660836 Knowlton Aug 1997 A
5661744 Murakami et al. Aug 1997 A
5662643 Kung et al. Sep 1997 A
5662644 Swor Sep 1997 A
5673451 Moore et al. Oct 1997 A
5679113 Caisey et al. Oct 1997 A
5683380 Eckhouse et al. Nov 1997 A
5692509 Voss et al. Dec 1997 A
5698866 Doiron et al. Dec 1997 A
5707401 Martin et al. Jan 1998 A
5707403 Grove et al. Jan 1998 A
5713738 Yarborough Feb 1998 A
5714119 Kawagoe et al. Feb 1998 A
5720772 Eckhouse Feb 1998 A
5722397 Eppstein Mar 1998 A
5725522 Sinofsky Mar 1998 A
5728090 Martin et al. Mar 1998 A
5735844 Anderson et al. Apr 1998 A
5735884 Thompson et al. Apr 1998 A
5738678 Patel Apr 1998 A
5742392 Anderson et al. Apr 1998 A
5743901 Grove et al. Apr 1998 A
5743902 Trost Apr 1998 A
5746735 Furumoto et al. May 1998 A
5748822 Miura et al. May 1998 A
5755751 Eckhouse May 1998 A
5759200 Azar Jun 1998 A
5760362 Eloy Jun 1998 A
5769076 Maekawa et al. Jun 1998 A
5782249 Weber et al. Jul 1998 A
5802136 Carol Sep 1998 A
5810801 Anderson et al. Sep 1998 A
5812567 Jeon et al. Sep 1998 A
5813855 Crisio, Jr. Sep 1998 A
5814008 Chen et al. Sep 1998 A
5814040 Nelson et al. Sep 1998 A
5814041 Anderson et al. Sep 1998 A
5817089 Tankovich et al. Oct 1998 A
5820625 Izawa et al. Oct 1998 A
5820626 Baumgardner Oct 1998 A
5824023 Anderson Oct 1998 A
5827264 Hohla Oct 1998 A
5828803 Eckhouse Oct 1998 A
5830208 Muller Nov 1998 A
5835648 Narciso, Jr. et al. Nov 1998 A
5836877 Zavislan Nov 1998 A
5836999 Eckhouse et al. Nov 1998 A
5840048 Cheng Nov 1998 A
5849029 Eckhouse et al. Dec 1998 A
5851181 Talmor Dec 1998 A
5853407 Miller Dec 1998 A
5860967 Zavislan et al. Jan 1999 A
5868731 Budnik et al. Feb 1999 A
5868732 Waldman et al. Feb 1999 A
5871480 Tankovich Feb 1999 A
5879159 Cipolla Mar 1999 A
5883471 Rodman et al. Mar 1999 A
5885211 Eppstein et al. Mar 1999 A
5885273 Eckhouse et al. Mar 1999 A
5885274 Fullmer et al. Mar 1999 A
5891063 Vigil Apr 1999 A
5893828 Uram Apr 1999 A
5895350 Hori Apr 1999 A
5897549 Tankovich Apr 1999 A
5906609 Assa et al. May 1999 A
5908418 Dority et al. Jun 1999 A
5913883 Alexander et al. Jun 1999 A
5916211 Quon et al. Jun 1999 A
5920374 Vaphiades et al. Jul 1999 A
5921926 Rolland et al. Jul 1999 A
5928222 Kleinerman Jul 1999 A
5944687 Benett et al. Aug 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton Sep 1999 A
5949222 Buono Sep 1999 A
5954710 Paolini et al. Sep 1999 A
5955490 Kennedy et al. Sep 1999 A
5957915 Trost Sep 1999 A
5964749 Eckhouse et al. Oct 1999 A
5968033 Fuller et al. Oct 1999 A
5968034 Fullmer et al. Oct 1999 A
5974059 Dawson Oct 1999 A
5974616 Dreyfus Nov 1999 A
5977723 Yoon Nov 1999 A
5979454 Anvari et al. Nov 1999 A
5984915 Loeb et al. Nov 1999 A
6007219 O'Meara Dec 1999 A
6015404 Altshuler et al. Jan 2000 A
6022316 Eppstein et al. Feb 2000 A
6024095 Stanley, III Feb 2000 A
6026828 Altshuler Feb 2000 A
6027495 Miller Feb 2000 A
6029303 Dewan Feb 2000 A
6029304 Hulke et al. Feb 2000 A
6030378 Stewart Feb 2000 A
6030399 Ignotz et al. Feb 2000 A
6032071 Binder Feb 2000 A
RE36634 Ghaffari Mar 2000 E
6036684 Tankovich et al. Mar 2000 A
6044514 Kaneda et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
D424197 Sydlowski et al. May 2000 S
6056548 Neuberger et al. May 2000 A
6056738 Marchitto et al. May 2000 A
6058937 Doiron et al. May 2000 A
6059820 Baronov May 2000 A
6063108 Salansky et al. May 2000 A
6070092 Kazama et al. May 2000 A
6071239 Cribbs et al. Jun 2000 A
6074382 Asah et al. Jun 2000 A
6080146 Altshuler et al. Jun 2000 A
6080147 Tobinick Jun 2000 A
6083217 Tankovich Jul 2000 A
6086363 Moran et al. Jul 2000 A
6086580 Mordon et al. Jul 2000 A
6094767 Iimura Aug 2000 A
6096029 O'Donnell, Jr. Aug 2000 A
6096209 O'Brien et al. Aug 2000 A
6099521 Shadduck Aug 2000 A
6104959 Spertell Aug 2000 A
6106293 Wiesel Aug 2000 A
6106294 Daniel Aug 2000 A
6110195 Xie et al. Aug 2000 A
6113559 Klopotek Sep 2000 A
6117129 Mukai Sep 2000 A
6120497 Anderson et al. Sep 2000 A
6126655 Domankevitz et al. Oct 2000 A
6129723 Anderson et al. Oct 2000 A
6135774 Hack et al. Oct 2000 A
6142650 Brown et al. Nov 2000 A
6142939 Eppstein et al. Nov 2000 A
6149644 Xie Nov 2000 A
6149895 Kutsch Nov 2000 A
6159236 Biel Dec 2000 A
6162055 Montgomery et al. Dec 2000 A
6162211 Tankovich et al. Dec 2000 A
6162212 Kreindel et al. Dec 2000 A
6171300 Adams Jan 2001 B1
6171301 Nelson Jan 2001 B1
6171302 Talpalriu et al. Jan 2001 B1
6171332 Whitehurst Jan 2001 B1
6173202 Eppstein Jan 2001 B1
6174325 Eckhouse Jan 2001 B1
6176854 Cone Jan 2001 B1
6183434 Eppstein Feb 2001 B1
6183500 Kohler Feb 2001 B1
6183773 Anderson Feb 2001 B1
6187001 Azar et al. Feb 2001 B1
6187029 Shapiro et al. Feb 2001 B1
6197020 O'Donnell, Jr. Mar 2001 B1
6200134 Kovac et al. Mar 2001 B1
6200309 Rice et al. Mar 2001 B1
6202242 Salmon et al. Mar 2001 B1
6203540 Weber Mar 2001 B1
6210425 Chen Apr 2001 B1
6214034 Azar Apr 2001 B1
6221068 Fried et al. Apr 2001 B1
6221095 Van Zuylen et al. Apr 2001 B1
6228075 Furumoto May 2001 B1
6229831 Nightingale et al. May 2001 B1
6235015 Mead, III et al. May 2001 B1
6235016 Stewart May 2001 B1
6236891 Ingle et al. May 2001 B1
6239442 Iimura et al. May 2001 B1
6240306 Rohrscheib et al. May 2001 B1
6245093 Li et al. Jun 2001 B1
6251127 Biel Jun 2001 B1
6254388 Yarborough Jul 2001 B1
6263233 Zavislan et al. Jul 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6267779 Gerdes Jul 2001 B1
6267780 Streeter Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6273885 Koop et al. Aug 2001 B1
6280438 Eckhouse et al. Aug 2001 B1
6283956 McDaniel Sep 2001 B1
6287549 Sumian et al. Sep 2001 B1
6290496 Azar et al. Sep 2001 B1
6290713 Russell Sep 2001 B1
6306130 Anderson et al. Oct 2001 B1
6306160 Nidetzky Oct 2001 B1
6315772 Marchitto et al. Nov 2001 B1
6317624 Kollias et al. Nov 2001 B1
6319274 Shadduck Nov 2001 B1
6325769 Klopotek Dec 2001 B1
6328733 Trost Dec 2001 B1
6331111 Cao Dec 2001 B1
6340495 Sumian et al. Jan 2002 B1
6343400 Massholder et al. Feb 2002 B1
6343933 Montgomery et al. Feb 2002 B1
6350261 Domankevitz et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6354370 Miller et al. Mar 2002 B1
6355054 Neuberger et al. Mar 2002 B1
6358242 Cecchetti Mar 2002 B1
6358272 Wilden Mar 2002 B1
6383176 Connors et al. May 2002 B1
6383177 Balle-Petersen et al. May 2002 B1
6387089 Kreindel et al. May 2002 B1
6387353 Jensen et al. May 2002 B1
6395016 Oron et al. May 2002 B1
6400011 Miki Jun 2002 B1
6402739 Neev Jun 2002 B1
6406474 Neuberger et al. Jun 2002 B1
6409665 Scott et al. Jun 2002 B1
6413267 Dumoulin-White et al. Jul 2002 B1
6416319 Cipolla Jul 2002 B1
6419389 Fuchs et al. Jul 2002 B1
6424852 Zavislan Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6435873 Burgio Aug 2002 B1
6436094 Reuter Aug 2002 B1
6439888 Boutoussov et al. Aug 2002 B1
6440155 Matsumae et al. Aug 2002 B1
6443978 Zharov Sep 2002 B1
6451007 Koop et al. Sep 2002 B1
6461296 Desai Oct 2002 B1
6464694 Massengill Oct 2002 B1
6471712 Burres Oct 2002 B2
6471716 Pecukonis Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6484052 Visuri et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6491685 Visuri et al. Dec 2002 B2
6494900 Salansky et al. Dec 2002 B1
6497702 Bernaz Dec 2002 B1
6503486 Xu et al. Jan 2003 B2
6508785 Eppstein Jan 2003 B1
6508813 Altshuler Jan 2003 B1
6511475 Altshuler et al. Jan 2003 B1
6514243 Eckhouse et al. Feb 2003 B1
6517532 Altshuler et al. Feb 2003 B1
6519376 Biagi et al. Feb 2003 B2
6525819 Delawter et al. Feb 2003 B1
6527716 Eppstein Mar 2003 B1
6527764 Neuberger et al. Mar 2003 B1
6530915 Eppstein et al. Mar 2003 B1
6537270 Elbrecht et al. Mar 2003 B1
6547780 Sinofsky Apr 2003 B1
6551346 Crossley Apr 2003 B2
6554439 Teicher et al. Apr 2003 B1
6556596 Kim et al. Apr 2003 B1
6558372 Altshuler May 2003 B1
6561808 Neuberger et al. May 2003 B2
6569155 Connors et al. May 2003 B1
6570892 Lin et al. May 2003 B1
6570893 Libatique et al. May 2003 B1
6572634 Koo Jun 2003 B2
6572637 Yamazaki et al. Jun 2003 B1
6595934 Hissong et al. Jul 2003 B1
6600951 Anderson Jul 2003 B1
6602245 Thiberg Aug 2003 B1
6605080 Altshuler et al. Aug 2003 B1
6605083 Clement et al. Aug 2003 B2
6606755 Robinson et al. Aug 2003 B1
6616447 Rizoiu et al. Sep 2003 B1
6616451 Rizolu et al. Sep 2003 B1
6618531 Goto et al. Sep 2003 B1
6623272 Clemans Sep 2003 B2
6623513 Biel Sep 2003 B2
6629971 McDaniel Oct 2003 B2
6629989 Akita Oct 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635075 Li et al. Oct 2003 B2
6641578 Mukai Nov 2003 B2
6641600 Kohler Nov 2003 B1
6648904 Altshuler et al. Nov 2003 B2
6652459 Payne et al. Nov 2003 B2
6653618 Zenzie Nov 2003 B2
6659999 Anderson et al. Dec 2003 B1
6660000 Neuberger et al. Dec 2003 B2
6663620 Altshuler et al. Dec 2003 B2
6663658 Kollias et al. Dec 2003 B1
6663659 McDaniel Dec 2003 B2
6675425 Iimura et al. Jan 2004 B1
6676654 Balle-Petersen et al. Jan 2004 B1
6679837 Daikuzono Jan 2004 B2
6685639 Wang et al. Feb 2004 B1
6685699 Eppstein et al. Feb 2004 B1
6689124 Thiberg Feb 2004 B1
6692456 Eppstein et al. Feb 2004 B1
6699040 Hahn et al. Mar 2004 B1
6706035 Cense et al. Mar 2004 B2
6709269 Altshuler Mar 2004 B1
6709446 Lundahl et al. Mar 2004 B2
6723090 Altshuler et al. Apr 2004 B2
6743222 Durkin et al. Jun 2004 B2
6746444 Key Jun 2004 B2
6749623 Hsi et al. Jun 2004 B1
6770069 Hobart et al. Aug 2004 B1
6790205 Yamazaki et al. Sep 2004 B1
6801595 Grodzins et al. Oct 2004 B2
6808331 Hall et al. Oct 2004 B2
6808532 Andersen et al. Oct 2004 B2
RE38670 Asah et al. Dec 2004 E
6858009 Kawata et al. Feb 2005 B2
6860879 Irion et al. Mar 2005 B2
6862771 Muller Mar 2005 B1
6863781 Nocera et al. Mar 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6881212 Clement et al. Apr 2005 B1
6887260 McDaniel May 2005 B1
6888319 Inochkin et al. May 2005 B2
6893259 Reizenson May 2005 B1
6902397 Farrell et al. Jun 2005 B2
6902563 Wilkens et al. Jun 2005 B2
6936046 Hissong et al. Aug 2005 B2
6942658 Rizoiu et al. Sep 2005 B1
6953341 Black Oct 2005 B2
6974451 Altshuler et al. Dec 2005 B2
6976985 Altshuler et al. Dec 2005 B2
6989023 Black Jan 2006 B2
6991644 Spooner et al. Jan 2006 B2
6997923 Anderson et al. Feb 2006 B2
7001413 Butler Feb 2006 B2
7006223 Mullani Feb 2006 B2
7029469 Vasily Apr 2006 B2
7033349 Key Apr 2006 B2
7041100 Kreindel May 2006 B2
7044959 Anderson et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7066733 Logan et al. Jun 2006 B2
7070611 Biel Jul 2006 B2
7077840 Altshuler et al. Jul 2006 B2
7081128 Hart et al. Jul 2006 B2
7097639 Almeida Aug 2006 B1
7097656 Akopov et al. Aug 2006 B1
7135033 Altshuler et al. Nov 2006 B2
7144247 Black Dec 2006 B2
7144248 Irwin Dec 2006 B2
7145105 Gaulard Dec 2006 B2
7145108 Kanel et al. Dec 2006 B2
7160289 Cohen Jan 2007 B2
7182760 Kubota Feb 2007 B2
7198634 Harth et al. Apr 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7220254 Altshuler et al. May 2007 B2
7223270 Altshuler et al. May 2007 B2
7223281 Altshuler et al. May 2007 B2
7255691 Tolkoff et al. Aug 2007 B2
7274155 Inochkin et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7291140 MacFarland et al. Nov 2007 B2
7291141 Jay Nov 2007 B2
7309335 Altshuler et al. Dec 2007 B2
7311722 Larsen Dec 2007 B2
7322972 Viator et al. Jan 2008 B2
7329273 Altshuler et al. Feb 2008 B2
7329274 Altshuler et al. Feb 2008 B2
7331953 Manstein et al. Feb 2008 B2
7331964 Maricle et al. Feb 2008 B2
7333698 Israel Feb 2008 B2
7351252 Altshuler et al. Apr 2008 B2
7422598 Altshuler et al. Sep 2008 B2
7423767 Steinsiek et al. Sep 2008 B2
7431719 Altshuler et al. Oct 2008 B2
7531967 Inochkin et al. May 2009 B2
7540869 Altshuler et al. Jun 2009 B2
7624640 Maris et al. Dec 2009 B2
7647092 Motz et al. Jan 2010 B2
7758621 Altshuler et al. Jul 2010 B2
7763016 Altshuler et al. Jul 2010 B2
7935107 Altshuler et al. May 2011 B2
7938821 Chan et al. May 2011 B2
7942915 Altshuler et al. May 2011 B2
7942916 Altshuler et al. May 2011 B2
8002768 Altshuler et al. Aug 2011 B1
20010007068 Ota et al. Jul 2001 A1
20010008973 Van Zuylen et al. Jul 2001 A1
20010016732 Hobart et al. Aug 2001 A1
20010023363 Harth et al. Sep 2001 A1
20010024777 Azar et al. Sep 2001 A1
20010025173 Ritchie et al. Sep 2001 A1
20010041886 Durkin et al. Nov 2001 A1
20010046652 Ostler et al. Nov 2001 A1
20010048077 Afanassieva Dec 2001 A1
20020004066 Stanley et al. Jan 2002 A1
20020005475 Zenzie Jan 2002 A1
20020013572 Berlin Jan 2002 A1
20020016587 Furumoto Feb 2002 A1
20020018754 Sagel et al. Feb 2002 A1
20020019624 Clement et al. Feb 2002 A1
20020026225 Segal Feb 2002 A1
20020029071 Whitehurst Mar 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058890 Visuri et al. May 2002 A1
20020071287 Haase Jun 2002 A1
20020071827 Petersen et al. Jun 2002 A1
20020072676 Afanassieva Jun 2002 A1
20020081555 Wiesel Jun 2002 A1
20020090725 Simpson et al. Jul 2002 A1
20020091377 Anderson et al. Jul 2002 A1
20020108193 Gruber Aug 2002 A1
20020111610 Nordquist Aug 2002 A1
20020120256 Furuno et al. Aug 2002 A1
20020123745 Svaasand et al. Sep 2002 A1
20020127224 Chen Sep 2002 A1
20020128635 Altshuler et al. Sep 2002 A1
20020128695 Harth et al. Sep 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020161418 Wilkens et al. Oct 2002 A1
20020173780 Altshuler et al. Nov 2002 A1
20020182563 Boutoussov et al. Dec 2002 A1
20020183808 Biel Dec 2002 A1
20020198517 Alfano et al. Dec 2002 A1
20030004499 McDaniel Jan 2003 A1
20030009158 Perricone Jan 2003 A1
20030009205 Biel Jan 2003 A1
20030018373 Eckhardt et al. Jan 2003 A1
20030023235 Cense et al. Jan 2003 A1
20030023283 McDaniel Jan 2003 A1
20030023284 Gartstein et al. Jan 2003 A1
20030028227 Neuberger et al. Feb 2003 A1
20030032900 Ella Feb 2003 A1
20030032950 Altshuler et al. Feb 2003 A1
20030036680 Black Feb 2003 A1
20030040739 Koop Feb 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030057875 Inochkin et al. Mar 2003 A1
20030059738 Neuberger Mar 2003 A1
20030065314 Altshuler et al. Apr 2003 A1
20030083649 Margaron et al. May 2003 A1
20030084534 Kaizuka May 2003 A1
20030097122 Ganz et al. May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030104340 Clemans Jun 2003 A1
20030109787 Black Jun 2003 A1
20030109860 Black Jun 2003 A1
20030113684 Scott Jun 2003 A1
20030129154 McDaniel Jul 2003 A1
20030130709 D.C. et al. Jul 2003 A1
20030152528 Singh et al. Aug 2003 A1
20030163884 Weihrauch Sep 2003 A1
20030167080 Hart et al. Sep 2003 A1
20030169433 Koele et al. Sep 2003 A1
20030181896 Zvuloni et al. Sep 2003 A1
20030187486 Savage et al. Oct 2003 A1
20030195494 Altshuler et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030216719 Debenedictis et al. Nov 2003 A1
20030216795 Harth et al. Nov 2003 A1
20030232303 Black Dec 2003 A1
20040006332 Black Jan 2004 A1
20040010298 Altshuler et al. Jan 2004 A1
20040015156 Vasily Jan 2004 A1
20040015158 Chen et al. Jan 2004 A1
20040019120 Vargas et al. Jan 2004 A1
20040019990 Farrell et al. Feb 2004 A1
20040024388 Altshuler Feb 2004 A1
20040024430 Bader et al. Feb 2004 A1
20040030326 Altshuler et al. Feb 2004 A1
20040034319 Anderson et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040082940 Black et al. Apr 2004 A1
20040085026 Inochkin et al. May 2004 A1
20040092506 Thompson et al. May 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040093043 Edel et al. May 2004 A1
20040111132 Shenderova et al. Jun 2004 A1
20040116984 Spooner et al. Jun 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040143920 Nanda Jul 2004 A1
20040147984 Altshuler et al. Jul 2004 A1
20040156626 Thoms Aug 2004 A1
20040161213 Lee Aug 2004 A1
20040162549 Altshuler Aug 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040176764 Island et al. Sep 2004 A1
20040191729 Altshuler et al. Sep 2004 A1
20040193234 Butler Sep 2004 A1
20040193235 Altshuler et al. Sep 2004 A1
20040193236 Altshuler et al. Sep 2004 A1
20040199227 Altshuler et al. Oct 2004 A1
20040204745 Altshuler et al. Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040210276 Altshuler et al. Oct 2004 A1
20040214132 Altshuler Oct 2004 A1
20040225339 Yaroslaysky et al. Nov 2004 A1
20040230258 Altshuler et al. Nov 2004 A1
20040230260 MacFarland et al. Nov 2004 A1
20040234460 Tarver et al. Nov 2004 A1
20040260210 Ella et al. Dec 2004 A1
20050038418 Altshuler et al. Feb 2005 A1
20050049467 Stamatas et al. Mar 2005 A1
20050049582 DeBenedictis et al. Mar 2005 A1
20050049658 Connors et al. Mar 2005 A1
20050063931 Paus et al. Mar 2005 A1
20050065531 Cohen Mar 2005 A1
20050085875 Van Zuylen Apr 2005 A1
20050102213 Savasoglu et al. May 2005 A1
20050107849 Altshuler et al. May 2005 A1
20050143719 Sink Jun 2005 A1
20050168158 Inochkin et al. Aug 2005 A1
20050171517 Altshuler et al. Aug 2005 A1
20050171581 Connors et al. Aug 2005 A1
20050177026 Hoeg et al. Aug 2005 A1
20050182389 LaPorte et al. Aug 2005 A1
20050197681 Barolet et al. Sep 2005 A1
20050215988 Altshuler et al. Sep 2005 A1
20050220726 Pauly et al. Oct 2005 A1
20050251118 Anderson et al. Nov 2005 A1
20060004306 Altshuler et al. Jan 2006 A1
20060004347 Altshuler et al. Jan 2006 A1
20060009750 Altshuler et al. Jan 2006 A1
20060020309 Altshuler et al. Jan 2006 A1
20060047281 Kreindel Mar 2006 A1
20060058712 Altschuler et al. Mar 2006 A1
20060079947 Tankovich et al. Apr 2006 A1
20060089687 Spooner et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060100677 Blumenkranz et al. May 2006 A1
20060122668 Anderson et al. Jun 2006 A1
20060149343 Altshulter et al. Jul 2006 A1
20060161143 Altshuler et al. Jul 2006 A1
20060194164 Altshuler et al. Aug 2006 A1
20060206103 Altshuler et al. Sep 2006 A1
20060253176 Caruso et al. Nov 2006 A1
20060265032 Hennings et al. Nov 2006 A1
20060271028 Altshuler et al. Nov 2006 A1
20060287646 Altshuler et al. Dec 2006 A1
20070027440 Altshuler et al. Feb 2007 A1
20070038206 Altshuler et al. Mar 2007 A1
20070049910 Altshuler et al. Mar 2007 A1
20070060819 Altshuler et al. Mar 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070067006 Altshuler et al. Mar 2007 A1
20070073308 Anderson et al. Mar 2007 A1
20070073367 Jones Mar 2007 A1
20070078501 Altshuler et al. Apr 2007 A1
20070121069 Andersen et al. May 2007 A1
20070159592 Rylander et al. Jul 2007 A1
20070185552 Masotti et al. Aug 2007 A1
20070194717 Belikov et al. Aug 2007 A1
20070198004 Altshuler et al. Aug 2007 A1
20070213696 Altshuler et al. Sep 2007 A1
20070213698 Altshuler et al. Sep 2007 A1
20070213792 Yaroslaysky et al. Sep 2007 A1
20070219604 Yaroslaysky et al. Sep 2007 A1
20070219605 Yaroslaysky et al. Sep 2007 A1
20070239142 Altshuler et al. Oct 2007 A1
20070239143 Altshuler et al. Oct 2007 A1
20070255355 Altshuler et al. Nov 2007 A1
20070288071 Rogers Dec 2007 A1
20080009842 Manstein et al. Jan 2008 A1
20080058783 Altshuler et al. Mar 2008 A1
20080103565 Altshuler et al. May 2008 A1
20080132886 Cohen et al. Jun 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140164 Oberreiter et al. Jun 2008 A1
20080147054 Altshuler et al. Jun 2008 A1
20080154157 Altshuler et al. Jun 2008 A1
20080172047 Altshuler et al. Jul 2008 A1
20080183162 Altshuler et al. Jul 2008 A1
20080183250 Tanojo et al. Jul 2008 A1
20080186591 Altshuler et al. Aug 2008 A1
20080195183 Botchkareva et al. Aug 2008 A1
20080214988 Altshuler et al. Sep 2008 A1
20080248554 Merchant et al. Oct 2008 A1
20080294150 Altshuler et al. Nov 2008 A1
20080294152 Altshuler et al. Nov 2008 A1
20080306471 Altshuler et al. Dec 2008 A1
20080319430 Zenzie et al. Dec 2008 A1
20090048557 Yeshurun et al. Feb 2009 A1
20090069741 Altshuler et al. Mar 2009 A1
20090137995 Altshuler et al. May 2009 A1
20090248004 Altshuler et al. Oct 2009 A1
20090254076 Altshuler et al. Oct 2009 A1
20090287195 Altshuler et al. Nov 2009 A1
20100036295 Altshuler et al. Feb 2010 A1
20100145321 Altshuler et al. Jun 2010 A1
20100204686 Yaroslavksy et al. Aug 2010 A1
20100286673 Altshuler et al. Nov 2010 A1
20100298744 Altshuler et al. Nov 2010 A1
20110046523 Altshuler et al. Feb 2011 A1
20110137230 Altshuler et al. Jun 2011 A1
20110172651 Altshuler et al. Jul 2011 A1
20110184334 Altshuler et al. Jul 2011 A1
20110267830 Altshuler et al. Nov 2011 A1
Foreign Referenced Citations (215)
Number Date Country
400305 Apr 1995 AT
1851583 Mar 1984 AU
2053926 Mar 1990 CN
1073607 Jun 1993 CN
1182572 May 1998 CN
1351483 May 2002 CN
1535126 Oct 2004 CN
3304230 Aug 1984 DE
3719561 Jan 1988 DE
3837248 May 1990 DE
9102407 Jul 1991 DE
19803460 Aug 1999 DE
19944401 Mar 2001 DE
10140715 Mar 2002 DE
10112289 Sep 2002 DE
10120787 Jan 2003 DE
0000593 Feb 1979 EP
0142671 May 1985 EP
0172490 Feb 1986 EP
0320080 Jun 1989 EP
0324120 Jul 1989 EP
0563953 Oct 1993 EP
0565331 Oct 1993 EP
0593375 Apr 1994 EP
0598984 Jun 1994 EP
0709941 May 1996 EP
0724894 Aug 1996 EP
0726083 Aug 1996 EP
0736308 Oct 1996 EP
0743029 Nov 1996 EP
0755698 Jan 1997 EP
0763371 Mar 1997 EP
0765673 Apr 1997 EP
0765674 Apr 1997 EP
0783904 Jul 1997 EP
0884066 Dec 1998 EP
0885629 Dec 1998 EP
0920840 Jun 1999 EP
0 927 544 Jul 1999 EP
1038505 Sep 2000 EP
1057454 Dec 2000 EP
1075854 Feb 2001 EP
1138349 Oct 2001 EP
1147785 Oct 2001 EP
1219258 Jul 2002 EP
1226787 Jul 2002 EP
1 238 683 Sep 2002 EP
1250893 Oct 2002 EP
1457234 Sep 2004 EP
1495735 Jan 2005 EP
1512373 Mar 2005 EP
1535582 Jun 2005 EP
1627662 Feb 2006 EP
1839705 Oct 2007 EP
1854505 Nov 2007 EP
2199453 Apr 1974 FR
2591902 Jun 1987 FR
1546625 May 1979 GB
2044908 Oct 1980 GB
2059053 Apr 1981 GB
2059054 Apr 1981 GB
2123287 Feb 1984 GB
2239675 Jul 1991 GB
2270159 Mar 1994 GB
2356570 May 2001 GB
2360461 Sep 2001 GB
2360946 Oct 2001 GB
2364376 Jan 2002 GB
2368020 Apr 2002 GB
2390021 Dec 2003 GB
2397528 Jul 2004 GB
54129791 Oct 1979 JP
64-027554 Jan 1989 JP
10-099574 Apr 1989 JP
01-181877 Jul 1989 JP
02-013014 Apr 1990 JP
02-174804 Jul 1990 JP
03066387 Mar 1991 JP
06-022871 Feb 1994 JP
07-063957 Mar 1995 JP
09-084803 Mar 1997 JP
9141869 Jun 1997 JP
10-014661 Jan 1998 JP
10-503109 Mar 1998 JP
10-165410 Jun 1998 JP
11-047146 Feb 1999 JP
2000-037400 Feb 2000 JP
2000-153003 Jun 2000 JP
2000-300684 Oct 2000 JP
2001-029124 Feb 2001 JP
2001145520 May 2001 JP
2001520534 Oct 2001 JP
2001-343560 Dec 2001 JP
2002506362 Feb 2002 JP
2002522110 Jul 2002 JP
2002272861 Sep 2002 JP
2005-017796 Jan 2005 JP
2005027702 Feb 2005 JP
2009106767 Apr 2009 JP
2009136691 Jun 2009 JP
2082337 Jun 1997 RU
2089126 Sep 1997 RU
2089127 Sep 1997 RU
2096051 Nov 1997 RU
2122848 Dec 1998 RU
86002783 May 1986 WO
88004592 Jun 1988 WO
90000420 Jan 1990 WO
9102562 Mar 1991 WO
91013652 Sep 1991 WO
92016338 Jan 1992 WO
92019165 Nov 1992 WO
93005920 Apr 1993 WO
9510243 Apr 1995 WO
95015725 Jun 1995 WO
95032441 Nov 1995 WO
9622741 Aug 1996 WO
96023447 Aug 1996 WO
9624406 Aug 1996 WO
96025979 Aug 1996 WO
9628212 Sep 1996 WO
9636396 Nov 1996 WO
9641579 Dec 1996 WO
97013458 Apr 1997 WO
97013552 Apr 1997 WO
9722384 Jun 1997 WO
9728752 Aug 1997 WO
98004317 Feb 1998 WO
9805286 Feb 1998 WO
9805380 Feb 1998 WO
9806456 Feb 1998 WO
9807379 Feb 1998 WO
9820937 May 1998 WO
98024507 Jun 1998 WO
9829134 Jul 1998 WO
9841158 Sep 1998 WO
98051235 Nov 1998 WO
98052481 Nov 1998 WO
98058595 Dec 1998 WO
9910046 Mar 1999 WO
9917668 Apr 1999 WO
9917666 Apr 1999 WO
9917667 Apr 1999 WO
99027997 Jun 1999 WO
99029243 Jun 1999 WO
9934867 Jul 1999 WO
99038569 Aug 1999 WO
9943387 Sep 1999 WO
9944638 Sep 1999 WO
99046005 Sep 1999 WO
99049937 Oct 1999 WO
9962472 Dec 1999 WO
9966988 Dec 1999 WO
0002491 Jan 2000 WO
0003257 Jan 2000 WO
00007514 Feb 2000 WO
0030714 Jun 2000 WO
0032272 Jun 2000 WO
0041278 Jul 2000 WO
0040266 Jul 2000 WO
0043070 Jul 2000 WO
0044294 Aug 2000 WO
0054685 Sep 2000 WO
0054649 Sep 2000 WO
0062700 Oct 2000 WO
0066226 Nov 2000 WO
0064537 Nov 2000 WO
0071045 Nov 2000 WO
0074583 Dec 2000 WO
0074781 Dec 2000 WO
0078242 Dec 2000 WO
01003257 Jan 2001 WO
01014012 Mar 2001 WO
01026573 Apr 2001 WO
01034048 May 2001 WO
0141872 Jun 2001 WO
01042671 Jun 2001 WO
01054606 Aug 2001 WO
01054770 Aug 2001 WO
01078830 Oct 2001 WO
0209813 Feb 2002 WO
0226147 Apr 2002 WO
02053050 Jul 2002 WO
02069825 Sep 2002 WO
02078559 Oct 2002 WO
02094116 Nov 2002 WO
03005883 Jan 2003 WO
03049633 Jun 2003 WO
04000150 Dec 2003 WO
04011848 Feb 2004 WO
04033040 Apr 2004 WO
04037068 May 2004 WO
04037287 May 2004 WO
04080279 Sep 2004 WO
04073537 Sep 2004 WO
04084752 Oct 2004 WO
04086947 Oct 2004 WO
05007003 Jan 2005 WO
05009266 Feb 2005 WO
05030317 Apr 2005 WO
0546793 May 2005 WO
05065288 Jul 2005 WO
0592438 Oct 2005 WO
05096981 Oct 2005 WO
05099369 Oct 2005 WO
05112815 Dec 2005 WO
06006123 Jan 2006 WO
06036968 Apr 2006 WO
06066226 Jun 2006 WO
06089227 Aug 2006 WO
06101735 Sep 2006 WO
06116141 Nov 2006 WO
0735444 Mar 2007 WO
07122611 Nov 2007 WO
0870747 Jun 2008 WO
Non-Patent Literature Citations (136)
Entry
US 6,230,044, 05/2001, Afanassieva et al. (withdrawn)
Grossman, M.C. et al., “Damage to hair follicles by normal-mode ruby laser pulses,” Journal of he American Academy of Dermatology, vol. 35, No. 6, pp. 889-894, Dec. 1996.
Grossman, M.C. et al., “Laser Targeted at Hair Follicles, ” Lasers Med Surg., Suppl. 7:221 (1995).
Hicks et al., “After Low Fluence Argon Laser and Flouride Treatment,” Compendium, vol. 18, No. 6, Jun. 1997.
Hicks et al., “Enamel Carries Initiation and Progression Following Low Fluence (energy) and Argon Laser and Fluoride Treatment,” The Journal of Clinical Pediatric Dentistry, vol. 20, No. 1 pp. 9-13, 1995.
Hsu et al., “Combined Effects of Laser Irradiation/Solution Flouride Ion on Enamel Demineralization,” Journal of Clinical Laser Medicine and Surgery, vol. 16, No. 2 pp. 93-105, 1998.
Hulsbergen Henning et al. “Clinical and Histological Evaluation of Portwine Stain Treatment with a Microsecond-Pulsed Dye-Laser at 577 NM,” Lasers in Surgery and Medicine, 4:375-380 (1984).
Hulsbergen Henning et al., “Port Wine Stain Coagulation Experiments with a 540-nm Continuous Wave Dye-Laser,” Lasers in Surgery and Medicine, 2:205-210 (1983).
Invention description to certificate of authorship, No. 719439, “The ring resonator of optical quantum generator”.
Invention description to certificate of authorship, No. 741747, “The modulator of optical radiation intensity”.
Invention description to certificate of authorship, No. SU 1257475 A1, “Laser interferometric device to determine no-linearity of an index of refraction of optical medium”.
Invention description to certificate of authorship, No. SU 1326962 A1, “The way of determination of non-linearity of an index of refraction of optical medium”.
Invention description to certificate of autorship, No. 532304, “The way of investigation of radiation time structure of optical quantum generator”.
[No Author] IPG Data Sheet for TFL Thulium Laser, Jun. 2001.
Ivanov, A.P. et al., “Radiation Propagation in Tissues and Liquids with Close Particle Packing,” Zhurnal Prikladnoi Spektroskopii, vol. 47, No. 4, pp. 662-668 (Oct. 1987).
Kalivradzhiyan et al., “The Usage of Low Intensity Laser Radiation for the Treatment of the Inflammatory processes of the Oral Cavity Mucosa after Applying Removable Plate Dentures,” SPIE vol. 1984 pp. 225-230.
Karu, “Cell Attachment to Extracellular Matrics is Modulated by Pulsed Radiation at 820 nm and Chemicals that Modify the Activity of Enzymes in the Plasma Membrane,” Laser in Surgery and Medicine, vol. 29, pp. 274-281, 2001.
Karu, “Photobiological Fundamentals of Low-Power Laser Therapy,” 8th Congress of International Society for Laser Surgery and Medicine, Mar. 30, 1987.
Kazmina et al., “Laser Prophlaxis and Treatment of Primary caries,” SPIE vol. 1984, pp. 231-233.
Klein, E. et al., “Biological effects of laser radiation 1.,” Northeast Electroncis Research and Engineering Meeting, NEREM Record, IEEE catalogue No. F-60, pp. 108-109, 1965.
Kozlov et al., “Laser in Diagnostics and Treatment of Microcirculation Disorders Under Parodontitis,” SPIE vol. 1984, pp. 253-264.
Kuhns, J.G. et al., “Biological effects of laser radiation II Effects of laser irradiation on the skin,” NEREM Record, pp. 152-153, 1965.
Kuhns, J.G. et al., “Laser injury in skin,” Laboratory Investigation, vol. 17, No. 1, pp. 1-13, Jul. 1967.
Levin, G. et al., “Designing with hyseretic current-mode control, ” EDN Magazine, pp. 1-8, Apr. 11, 1996.
Levin, G. et al., “Designing with hyseretic current-mode control, ” EDN Magazine, pp. 1-8, Apr. 28, 1994.
Maegawa, et al., “Effects of Near-Infrared Low-Level Laser Irradiation on Microcirculation,” Lasers in Surgery and Medicine, vol. 27, pp. 427-437, 2000.
Mamedova et al., “Microbiological Estimate of Parodontis Laser Therapy Efficiency,” SPIE vol. 1984, pp. 247-249.
Mang, “Effect of Soft Laser Treatment on Wound Healing in the Hamster Oral Mucosa,” American Society for Laser Medicine and Surgery Abstracts, Chapters 25, pp. 5-8.
Manstein, D. et al., “Selective Photothermolysis of Lipid-Rich Tissue,” American Society for Laser medicine and Surgery Abstracts, No. 17, American Society for Laser Medicine and Surgery Twenty-First Annual Meeting, Apr. 20-22, 2001, p. 6.
Margolis, R.J. et al., “Visible action spectrum for melanin-specific selective photothermolysis,” Lasers in Surgery and Medicine, vol. 9, pp. 389-397, 1989.
Marinelli et al., “Diode laser illuminated automotive lamp systems,” SPIE Proceedings vol. 3285:170-177 (1998).
Marshak, I.S., et al., “Pulsed Light Sources,” State Power Engineering Press, Moscow and Leningrad (1963).
McDaniel, et al., “Hexascan: A New Robotized Scanning Laser Handpiece,” Cutis, 45:300-305 (1990).
Nemeth, et al., “Copper vapor laser treatment of pigmented lesions,” Lasers Surg. Med. Supp. 2:51 (1990).
Ohbayashi, “Stimulatory Effect of Laser Irradiation on Calcified Nodule Formation in Human Dental Pulp Fibroblasts,” Abstract J-Endod. Jan. 1999; 25(1): 30-3.
Ohshiro et al., “The Ruby and Argon Lasers in the Treatment of the Naevi,” Annals Academy of Medicine, Apr. 1983, vol. 12, No. 2, pp. 388-395.
Oleinik, et al., “Automatized Securing Definition for Laser Therapy Indications in Case of Non-complicated Caries,” SPIE, vol. 1984, pp. 238-244.
Orchardson, “Effect of Pulsed Nd:YAG Laser Radiation on Action Potential Conduction in Nerve Fibres Inside Teeth in vitro,” Abstract J-Dent. Jul.-Aug. 1998; 26(5-6): 421-6.
Osigo et al, “Phase Transitions of Rat Stratum Corneum Lipids by an Electron Paramagnetic Resonance Study and Relationship of Phase States to Drug Penetration,” Biochimica et Biophysica Acta 1301:97-104 (1996).
Ozawa et al., “Stimulatory Effects of Low-Power Laser Irradiation on Bone Formation in vitro,” SPIE vol. 1984, pp. 281-288.
Parrish, J.A., “Selective thermal effects with pulsed irradiation from lasers: From organ to organelle,” Journal of Investigative Dermatology, vol. 80, No. 6 Supplement, pp. 75s-80s, 1983.
Petrischev et al. “Clinical and Experimental Low-Intense Laser Therapy in Dentistry,” SPIE, vol. 1984, pp. 212-214.
Petrischev et al., “Report on Low Intensity Laser Radiation Usage in Dentistry,” SPIE vol. 1984, pp. 202-211.
Polla, L. et al., “Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin,” Journal of Investigative Dermatology, vol. 89, No. 3, pp. 281-286, Sep. 1987.
Powell, “Laser Dental Decay Prevention: does it have a future?” SPIE vol. 3192, 1997.
Remillard et al., “Diode laser illuminated automotive brake lamp using a linear fanout diffractive optical element,” Proc. of the Diffractive Optics and Micro-Optics Conference, OSA Technical Digest Series vol. 10, 192-194 (1998).
Remillard et al., “Diode Laser Illuminators for Night-Vision Applications,” SPIE Proceedings vol. 4285:14-22 (2001).
Riggle et al., “Laser Effects on Normal and Tumor Tissue,” Laser Applications in Medicine and Biology, vol. 1, M.L. Wolbarsht, editor, Plenum Press, publishers, Ch. 3, pp. 35-65 (1971).
Rohrer, “Evaluating the Safety and Efficacy of a Novel Light Based Hair Removal System,” Lasers. Surg. Med. Supp. 13:97 (2001).
Rotteleur, et al., “Robotized scanning laser handpiece for the treatment of port wine stains and other angiodysplasias,” Lasers Surg. Med., 8:283-287 (1998).
Rubach et al., “Histological and Clinical Evaluation of Facial Resurfacing Using a Carbon Dioxide Laser With the Computer Pattern Generator,” Arch Otolaryngol Head Neck Surg., 123:929-934 (1997).
[No Author] BIOPTRON Light Therapy System. Website print-out, accessed Jul. 13, 2006 (2 pages).
[No Author] Derma Chiller advertisement (2 pages) from Paradigm Trex.
[No Author] Webpage www.gallery.com—Rutile (Titanium Oxide)—Retrieved Oct. 3, 2011 from Http://www.galleries.com/minerals/oxides/rutile/rutile.htm. 2 pages.
Altea Therapeutics—Medicines Made Better (single page website print-out).
Altshuler et al., “Human Tooth as an Optical Device,” SPIE vol. 1429 Holography and Interferometry and Optical Pattern Recognition in Biomedicine, pp. 95-104, 1991.
Altshuler et al., “Modern Optics and Dentistry,” Laser in Dentistry, pp. 283-297, 1995.
Altshuler et al., “New Optical Effects in the Human Hard Tooth Tissues,” Lasers and Medicine, Proc. SPIE vol. 1353, pp. 97-102, 1989.
Altshuler, G.B. et al., “Acoustic response of hard dental tissues to pulsed laser action,” SPIE, vol. 2080, Dental Application of Lasers, pp. 97-103, 1993.
Altshuler, G.B. et al., “Extended theory of selective photothermolysis,” Lasers in Surgery and Medicine, vol. 29, pp. 416-432, 2001.
Amy, R.L. et al., “Selective mitochondrial damage by a ruby laser microbeam: An electron microscopic study,” Science, vol. 15, pp. 756-758, Nov. 1965.
Anderson, R.R. et al., “Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation,” Science, vol. 220, pp. 524-527, Apr. 1983.
Anderson, R.R. et al., “The optics of human skin,” Journal of Investigative Dermatology, vol. 77, No. 1, pp. 13-19, 1981.
Apfelberg et al. “Analysis of Complications of Argon Laser Treatment for Port Wine Hemangiomas with Reference to Striped Technique,” Lasers in Surgery and Medicine, 2:357-371 (1983).
Apfelberg et al. “Dot or Pointillistic Method for Improvement in Results of Hypertrophic Scarring in the Argon Laser Treatment of Portwine Hemangiomas,” Lasers in Surgery and Medicine, 6:552-558 (1987).
Belikov, A.V. et al., “Identification of enamel and dentine under tooth laser treatment,” SPIE vol. 2623, Progress in Biomedical Optics Europt Series, Proceedings of Medical Applications of Lasers III, pp. 109-116, Sep. 1995.
Bjerring, P. et al., “Selective Non-Ablative Wrinkle Reduction by Laser,” J Cutan Laser Ther, vol. 2, pp. 9-15, 2000.
Blankenau et al., “In Vivo Caries-Like Lesion Prevention with Argon Laser: Pilot Study,” Journal of Clinical Laser Medicine and Surgery, vol. 17, No. 6, pp. 241-243, 1999.
Catalogue ILC, “High Performance flash and arc lamps,” Book 3, 3rd edition.
Chan, E.K., “Effects of Compression on Soft Tissue Optical Properties,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, pp. 943-950 (Dec. 1996).
Dabrowska, “Intravital Treatment of the Pulp with Stimulation Laser Biostimulation,” Abstract Rocz-Akad-Med-Bialymst. 1997; 42(1): 168-76.
Dixon et al. “Hypertrophic Scarring in Argon Laser Treatment of Port-Wine Stains,” Plastic and Reconstructive Surgery, 73:771-777 (1984).
Doukas et al., “Transdermal Drug Delivery With a Pressure Wave,” Advanced Drug Delivery Reviews 56 (2004), pp. 559-579.
Dover, J.S. et al., “Pigmented guinea pig skin irradiated with Q-switched ruby laser pulses,” Arch Dermatol, vol. 125, pp. 43-49, Jan. 1989.
European Search Report, European Patent Application No. 1 0012969.1, dated Jul. 13, 2011.
Finkelstein, L.H. et al., “Epilation of hair-bearing urethral grafts using the neodymium:yag surgical laser,” Journal of Urology, vol. 146, pp. 840-842, Sep. 1991.
Fiskerstrand, E.J. et al., “Hair Removal with Long Pulsed Diode Lasers: A Comparison Between Two Systems with Different Pulse Structures,” Lasers in Surgery and Medicine, vol. 32, pp. 399-404, 2003.
Forrest-Winchester et al., “The Effect of Infrared Laser Radiation on Dentinal Permeability in vitro,” Department of Dentistry, University of Queensland Dental School, pp. 1-8, 1992.
Ginsbach et al. “New Aspects in the Management of Benign Cutameous Tumors,” Laser 79 Opto-Electronics, Munich Conference Proceedings, 344-347 (1979).
Goldman, L. et al. “Treatment of basal cell epithelioma by laser radiation,” JAMA, vol. 189, No. 10, pp. 773-775.
Goldman, L. et al., “Effect of the laser beam on the skin, III. Exposure of cytological preparations,” Journal of Investigative Dermatology, vol. 42, pp. 247-251, 1964.
Goldman, L. et al., “Effect of the laser beam on the skin, Preliminary report” Journal of Investigative Dermatology, vol. 40, pp. 121-122, 1963.
Goldman, L. et al., “Impact of the laser on nevi and melanomas,” Archives of Dermatology, vol. 90, pp. 71-75, Jul. 1964.
Goldman, L. et al., “Laser action at the cellular level,” JAMA, vol. 198, No. 6, pp. 641-644, Nov. 1966.
Goldman, L. et al., “Laser treatment of tattoos, A preliminary survey of three year's clinical experience,” JAMA, vol. 201, No. 11, pp. 841-844, Sep. 1967.
Goldman, L. et al., “Long-term laser exposure of a senile freckle,” Arch Environ Health, vol. 22, pp. 401-403, Mar. 1971.
Goldman, L. et al., “Pathology, Pathology of the effect of the laser beam on the skin,” Nature, vol. 197, No. 4870, pp. 912-914, Mar. 1963.
Goldman, L. et al., “Preliminary investigation of fat embolization from pulsed ruby laser impacts of bone,” Nature, vol. 221, pp. 361-363, Jan. 1969.
Goldman, L. et al., “Radiation from a Q-switched ruby laser, Effet of repeated impacts of power output of 10 megawatts on a tattoo of man,” Journal of Investigative Dermatology, vol. 44, pp. 69-71, 1965.
Goldman, L. et al., “Replica microscopy and scanning electron microscopy of laser impacts on the skin,” Journal of Investigative Dermatology, vol. 52, No. 1, pp. 18-24, 1969.
Goldman, L. et al., “The biomedical aspects of lasers,” JAMA, vol. 188, No. 3, pp. 302-306, Apr. 1964.
Goldman, L. et al., “The effect of repeated exposures to laser beams,” Acta derm.-vernereol., vol. 44, pp. 264-268, 1964.
Goldman, L., “Dermatologic manifestations of laser radiation,” Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation, Federation of American Societies for Experimental Biology, Supp. No. 14, pp. S-92-S-93, Jan.-Feb. 1965.
Goldman, L., “Effects of new laser systems on the skin,” Arch Dermatol., vol. 108, pp. 385-390, Sep. 1973.
Goldman, L., “Laser surgery for skin cancer,” New York State Journal of Medicine, pp. 1897-1900, Oct. 1977.
Goldman, L., “Surgery by laser for malignant melanoma,” J. Dermatol. Surg. Oncol., vol. 5, No. 2, pp. 141-144, Feb. 1979.
Goldman, L., “The skin,” Arch Environ Health, vol. 18, pp. 434-436, Mar. 1969.
Goldman, L., Biomedical Aspects of the Laser, Springer-Verlag New York Inc., publishers, Chapts. 1, 2 & 23, 1967.
Gottlieb, I., “Power Supplies, Switching Regulators, Inverters & Converters,” 1976.
Greenwald et al. “Comparative Histological Studies of the Tunable Dye (at 577 nm) Laser and Argon Laser: The Specific Vascular Effects of the Dye Laser,” The Journal of Investigative Dermatology, 77:305-310 (1981).
Grossman, et al., “780 nm Low Power Diode Laser Irradiation Stimulates Proliferation of Keratinocyte Cultures: Involvement of Reactive Oxygen Species,” Lasers in Surgery and Medicine vol. 29, pp. 212-218, 1998.
Rylander, C.G. et al., “Mechanical Tissue Optical Clearing Devices: Enhancement of Light Penetration in Ex Vivo Porcine Skin and Adipose Tissue,” Lasers in Surgery and Medicine, vol. 40, pp. 688-694 (2008).
Sandford et al., “Thermal Effects During Desensitisation of Teeth with Gallium-Aluminum-Arsenide Lasers,” University of Queensland Dental School, Periodontology 15: 25-30 (1994).
Schindl, “Does Low Intensity Laser Irradiation Really Cause Cell Damage?” Laser in Surgery and Medicine vol. 22, pp. 105, 2001.
Sheehan-Dare, et al., “Lasers in Dermatology,” British Journal of Dermatology, 129:1-8 (1993).
Shimbashi, T. et al., “Ruby laser treatment of pigmented skin lesions,” Aesth. Plast. Surg., vol. 19, pp. 225-229, 1995.
Shimizu et al., “Prospect of Relieving Pain Due to Tooth Movement During Orthodontic Treatment Utilizing a Ga—Al As Diode Laser,” SPIE vol. 1984, pp. 275-280.
Shumilovitch et al., “Influence of Low Intensity Laser Radiation Upon the Microflora of Carious Cavities and Root Canal,” SPIE vol. 1984, pp. 215-220.
Sing, “Electroacupuncture and Laser Stimulation Treatment: Evaluation by Somatosensory Evoked Potential in Conscious Rabbits,” Abstract AM-J-Chin-Med. 1997; 25(3-4): 263-71.
Sliney et al., “Safety with Lasers and Other Optical Sources: A Comprehensive Handbook,” Plenum Press, pp. 477-480 (1980).
Sokolova et al., “Low-intense Laser Radiation in Complex Treatment of Inflammatory Diseases of Parodontium,” SPIE vol. 1984, pp. 234-237.
Stratton, K. et al., “Biological Effects of Laser Radiation II: ESR Studies of Melanin Containing Tissues after Laser Irradiation,” Northeast Electronics Research and Engineering Meeting—NEREM Record, IEEE Catalogue No. F-60, pp. 150-151, Nov. 1965.
Sumian, C.C. et al., “A Preliminary Clinical and Histopathological Study of Laser Skin Resurfacing Using a frequency-Doubled Nd:YAG Laser After Application of Chromofilma®,” Journal of Cutaneous Laser Therapy, vol. 1, pp. 159-166, 1999.
Sumian, C.C. et al., “Laser Skin Resurfacing Using a Frequency Doubled Nd:YAG Laser After Topical Application of an Exogenous Chromophore,” Lasers in Surgery and Medicine, vol. 25, pp. 43-50, 1999.
Taylor, C.R. et al., “Treatment of tattoos by Q-switched ruby laser,” Arch. Dermatol. vol. 126, pp. 893-899, Jul. 1990.
Togatov, V.V. et al., “Discharge Circuit for Solid-State Lasers Pumping,” Optical Journal, V. 67, n. 4, pp. 92-96 (2000).
Tuchin, V.V., “Laser light scattering in biomedical diagnostics and therapy,” Journal of Laser Applications, vol. 5, No. 2-3, pp. 43-60, 1993.
Unger, W.P., Laser hair transplantation III: Computer-assisted laser transplanting. Dermatol Surg. 1995;21:1047-1055.
Van Bruegel, “Power Density and Exposure Time of He—Ne Irradiation Are More Important Than Total Energy Dose in Photo-Biomodulation of Human Fibroblasts in Vitro,” Lasers in Surgery and Medicine, vol. 12 pp. 528-537, 1992.
Walsh, “Laser “Curettage”: a Critical Analysis,” Periodontology 14:4-12, 1993.
Walsh, “The Current Status of Low Level Laser Therapy in Dentistry. Part 1. Soft Tissue Applications” paper prepared by LJ Walsh, Department of Dentistry University of Queensland, pp. 1-16. Publication date unknown.
Watanabe, S. et al., “Comparative studies of femtosecond to microsecond laser pulses on selective pigmented cell injury in skin,” Photochemistry and Photobiology, vol. 53, No. 6, pp. 757-762, 1991.
Watanabe, S. et al., “The Effect of Pulse Duration on Selective Pigmented Cell Injury by Dye Lasers,” The Journal of Investigative Dermatology, 88:523, 1987.
Welch, A.J. et al., “Evaluation of cooling techniques for the protection of the epidermis during HD-yag laser iradiation of the skin,” Neodymium-Yag Laser in Medicine and Surgery, Elsevier Science Publishing Co., publisher, pp. 195-204, 1983.
Westerman et al., “Argon Laser Irradiation Effects on Sound Root Surfaces: In Vitro Scanning Electron Microscopic Observations,” Journal of Clinical Laser Medicine and Surgery, vol. 16, No. 2, pp. 111-115, 1998.
Yules, R.B. et al., “The effect of Q-switched ruby laser radiation on dermal tattoo pigment in man,” Arch Surg, vol. 95, pp. 179-180, Aug. 1967.
Zeitler, E. et al., “Laser Characteristics that Might be Useful in Biology,” Laser Applications in Medicine and Biology, vol. I, M.L. Wolbarsht, editor, Plenum Press, publishers, Chapter 1, pp. 1-18, 1971.
Zonios et al., “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed in Vivo Using Diffuse Reflectance Spectroscopy,” Journal of Investigative Dermatology,117:1452-1457 (Dec. 2001).
European Office Action dated Dec. 5, 2011 for Application No. 10012155.7 (3 Pages).
European Search Report dated Mar. 1, 2011 for Application No. 10012971.7.
European Search Report dated Mar. 1, 2011 for Application No. 10012972.5.
International Preliminary Report on Patentability dated Oct. 8, 2007 for Applciation No. PCT/US2006/035927.
International Preliminary Report on Patentability dated Dec. 7, 2007 for Application No. PCT/US2007/086827.
International Search Report dated Dec. 28, 2007 for Application No. PCT/US2007/089090.
International Search Report dated May 8, 2008 for Application No. PCT/US2007/089090.
International Preliminary Report on Patentability dated Oct. 13, 2011 for Application No. PCT/US2010/030010.
Related Publications (1)
Number Date Country
20110046523 A1 Feb 2011 US
Provisional Applications (1)
Number Date Country
61271593 Jul 2009 US