The present invention relates generally to communication systems, and more particularly to frequency reuse in digital communication systems.
LTE/E-UTRA (Long Term Evolution/Evolved UMTS Terrestrial Radio Access) systems use the Orthogonal Frequency Division Multiplexing (OFDM)-based radio access technology for downlink transmissions. Unlike CDMA-based downlink transmissions, where neighboring cells/sectors are assigned with different codes so that the entire frequency is reused in all cells/sectors, the OFDM-based downlink transmissions suffer the reduction of frequency reuse due to the issue of inter-cell interference. Therefore, overall system performance in terms of spectral efficiency and the achieved data rate at the cell edges is greatly reduced.
Note, in LTE/E-UTRA, all cells are using the same frequency, but the entire frequency is divided into small pieces called sub-carriers. Twelve consecutive sub-carriers during one time slot correspond to one downlink resource block.
A second method of dealing with frequency reuse issues is depicted in
One proposal for solving the frequency reuse issue is the so called “soft frequency reuse” as shown in
When a user is limited to a fraction of the total available sub-carriers, the data rate the user obtains is much lower than the advertised data rate of the system.
In addition, due to the interference effect, the modulation used for the transmission at the edge of a cell will be lower than modulation used at the cell's center, which will reduce the actual data rate even further for the users at the edge of a cell. Therefore, the spectrum efficiency, and consequently the performance of the overall system, is reduced without a solution for the frequency reuse problem in OFDM-based radio access.
This problem will be more pronounced for service providers utilizing the newly auctioned 700 MHz spectrum. Electronic signals at this lower frequency travel farther with better penetration than at the higher frequency. This allows service providers to provide better coverage while utilizing fewer base stations. However, in a densely populated area, it is the capacity, not the coverage, that determines the location of base stations. To provide enough capacity for all the users in the coverage area, the distance between base stations will have to be limited.
This means that the effectiveness of the soft frequency reuse shown in
Therefore, a need exists for a method of maximizing the efficiency of frequencies in digital communication systems while minimizing the effects of interference from adjacent cells.
The present invention provides a solution to the problems associated with the prior art. In accordance with an exemplary embodiment of the present invention, downlink resource blocks allocated for transmission to a user equipment (commonly referred to as a mobile unit) from multiple base stations are synchronized. In accordance with an exemplary embodiment, the base stations use the upper half of the sub-carriers for transmitting to a first mobile unit and the lower half of the sub-carriers for transmitting to a second mobile unit. This allows the base stations to reuse all frequencies, otherwise known as sub-carriers.
In accordance with the exemplary embodiment, both mobile stations combine the OFDM signals from both base stations. Therefore the actual signal strength received by both mobile units is significantly improved due to the better signal-to-noise ratio (SNR) improvement, because signals from both base stations are exactly the same. Because they are identical, they can be combined by the receiving mobile unit. When two similar signals are added together, the power received by the UEs is quadrupled such that much better data reception can be achieved. Due to this much better data reception, the actual data rate can be increased as a higher level of modulation or higher coding rate can be used. Utilizing this exemplary embodiment, data rates for both mobile units are increased significantly with less usage of downlink resource blocks.
By utilizing this exemplary embodiment, the overall system performance is significantly improved. In prior art systems, two mobile units use up all the resources. Conversely, in the exemplary embodiment of the present invention, additional mobile units can be served with the same amount of resources as the two mobile units in the prior art.
A communication system in accordance with an exemplary embodiment of the present invention comprises user equipment (also known as a mobile unit), a serving base station, a helping base station, and an EPC. The EPC preferably comprises an MME and an S/P Gateway. The EPC is connected to the serving base station via a first link. The first link preferably utilizes an S1 interface.
The synchronization between the serving base station and the helping base station for downlink resource blocks is a second link. The second link is preferably an X2-interface. The serving base station preferably utilizes the SYNC protocol that is introduced as part of the GTP-U in supporting eMBMS services. The GTP-U is the protocol used on top of UDP/IP (IP transport) for carrying user plane protocol data units (PDUs). The SYNC information added to GTP-U is utilized to synchronize data used to generate a certain radio frames. The SYNC protocol provides information related to transmission timing and means to detect and recover packet loss.
In accordance with an exemplary embodiment, one radio frame has ten sub-frames and each sub-frames has two slots. The serving base station sends the user plane PDUs to the helping base station. The helping base station buffers the packets and waits for the transmission timing indicated by the SYNC protocol.
Utilizing this exemplary embodiment, the UE receives identical signals from both the serving and the helping base station and combines the signals.
In one exemplary embodiment of the present invention, the MCH (multicast channel) is used as the transport channel. The serving base station schedules the MCH and the MCH is mapped to the PMCH (physical multicast channels) that utilizes the radio frames specified.
The present invention thereby improves fractional frequency reuse by coordination transmission between adjacent cells. For example, if a downlink resource block is allocated for a UE at the edge of the cell, this would mean that the UE is also close to the corresponding adjacent cell and the downlink resource block shall not be used by the adjacent cell for at least the UEs that are also located in the impacted area.
In addition, the present invention also requests that the adjacent cell transmits the same PDUs synchronously, by using the identical downlink resource blocks for a mobile unit in this situation. The resource blocks comprise the same sub-carriers and the same time slots. This strengthens the signals received by the mobile units as they will be able to combine the OFDM signals from the adjacent cells to improve the actual data reception, because interference is eliminated and SNR is greatly improved, such that much higher data rate can be achieved.
The present invention can be better understood with reference to
In accordance with the exemplary embodiment depicted in
By utilizing this exemplary embodiment, the overall system performance is significantly improved. With the existing method depicted in
As can be seen, this exemplary embodiment of the present invention communicates the same data to mobile units 601 and 602 while only using one fourth of the resource block. This is due to an improvement in the data rate, in the exemplary embodiment by a factor of four. Utilizing the present invention in the exemplary embodiment provides a great increase in throughput. It should be understood that the time slots and frequencies are only one embodiment of the present invention, and that the idea of the present invention can be utilized with other numbers of frequencies and other number of time slots while still increasing the amount of data that can be transmitted while concurrently improving the frequency reuse among adjacent cells while minimizing or eliminating the effects of intercell interference.
EPC 803 preferably comprises an MME and an S/P Gateway. EPC 803 is connected to base station 811 via link 804. Link 804 preferably utilizes an S1 interface.
The synchronization between serving base station 811 and helping base station 812 for downlink resource blocks is link 805. Link 805 is preferably an X2-interface. Serving base station 811 preferably utilizes the SYNC protocol that is introduced as part of the GTP-U in supporting eMBMS services. The GTP-U is the protocol used on top of UDP/IP (IP transport) for carrying user plane protocol data units (PDUs). The SYNC information added to GTP-U is utilized to synchronize data used to generate a certain radio frames. The SYNC protocol provides information related to transmission timing and means to detect and recover packet loss.
In accordance with an exemplary embodiment, one radio frame has ten sub-frames and each sub-frames has two slots. Serving base station 811 sends the user plane PDUs to helping base station 812. Helping base station 812 buffers the packets and waits for the transmission timing indicated by the SYNC protocol.
Utilizing this exemplary embodiment, UE 801 receives identical signals from both base station 811 and base station 812 and combines the signals.
In one exemplary embodiment of the present invention, the MCH (multicast channel) is used as the transport channel. The serving base station schedules the MCH and the MCH is mapped to the PMCH (physical multicast channels) that utilizes the radio frames specified.
It should be noted that, although two cells from two eNodeBs are used in this exemplary embodiment, the present invention works for cells from the same eNodeB as well. In such a configuration, the eNodeB handles data transmission for both cells rather than utilizing the X2-interface.
While this invention has been described in terms of certain examples thereof, it is not intended that it be limited to the above description, but rather only to the extent set forth in the claims that follow.