The invention is based on a priority application EP 04291979.5 which is hereby incorporated by reference.
The present invention relates to a method for improving mobility and service delivery in discontinuous coverage networks.
Discontinuous coverage networks are radio access networks which do not provide a continuous radio coverage contrary to conventional second or third generation radio access networks as GSM or UMTS. Such discontinuous coverage networks are constituted by islands of coverage supporting very high bit rates and low power cells. Such networks are commonly referred as fourth generation access networks. They provide video/audio streaming services and fast download or upload of large data volumes.
The islands are nevertheless separated by zones of non-radio coverage so that usual hand over between cells is not to be realized by common techniques.
In such networks, mobile terminals have a reduced mobility. They cannot leave the radio coverage area without loosing the connection.
A fast mobile IP solution is currently investigated at the IETF for solving this problem. Mobile IP solutions consists in introducing a home agent between the content server and the access controller. The IP address of the moving terminal is modified during terminal mobility. The current IP address of the moving terminal is stored at the home agent together with a permanent IP address. The mobility is totally transparent for the content server which sends the content to the permanent IP address. The translation is performed at the home agent which in turn identifies the access controller under the coverage of which the moving terminal is currently located. This solution enables it to support mobility in IP networks. Nevertheless, even if the speed of the process is accelerated, such a solution do not provide an efficient answer to the need for providing very high rate streaming services to a moving terminal leaving temporarily the zone of radio coverage.
A particular object of the present invention is to provide a method for enabling a continuous streaming service provision in the context of discontinuous coverage networks.
Another object of the invention is to provide an entity of the radio access network supporting the method.
Introduce the fact that the cache is also needed in the terminal. These objects, and others that appear below, are achieved by a method for providing service to a terminal belonging to discontinuous coverage networks according to claim 1, an access controller according to independent claim, and a multicast element according to independent claim.
According to the present invention, the method consists in filling in, in advance, the cache memory of the access controller and/or of the radio access point likely to be visited by the moving terminal in the next future. This method necessitates to anticipate the possible destination of the mobile terminal so that the content necessary for uninterrupted streaming service, or another example non real time service is e.g. file transfer, is available in the appropriate island of radio coverage as soon as the moving terminal enters this island of coverage.
The method according to the present invention presents the advantage to provide a seamless micro mobility as well as a seamless macro mobility to mobile terminals belonging to discontinuous coverage networks.
The method according to the present invention further presents the advantage to support continuous streaming services or an other non real time service is e.g. file transfer.
Further advantageous features of the invention are defined in the dependent claims.
Other characteristics and advantages of the invention will appear on reading the following description of a preferred embodiment given by way of non-limiting illustrations, and from the accompanying drawings, in which:
Each pair (access controller, radio access point) (14, 161), (14, 162) defines a zone of radio coverage. In the example described below the radio coverage is discontinuous so that there remain areas of non radio coverage between two areas of radio coverage (14, 161), (14, 162). It will be understood by the person skilled in the art that the present invention may also apply to mixed continuous and discontinuous networks.
According to the present invention, access controller 14 determines a set of radio access points terminal 17 is likely to enter when moving further. Access controller then duplicate the data received form content server 11 and sends them data to all radio access points 161, 162 belonging to the set of radio access points. As a consequence the data are immediately available if terminal 17 enters in the near future one of this radio access points.
In
In
In
The data sent in advance and not immediately used have to be stored in an appropriate cache memory which should be large enough to ensure that the whole data received during the period where terminal 17 is not under any coverage are available in the cache memory. The cache memory should be dimensioned using for example parameter as the average data throughput on the link between access controller 14 and radio access points 161, 162 or the average duration of the non coverage period for terminal 17.
The present inventions enables it to quickly re-load terminal 17 with the necessary data when terminal 17 enters a new area of coverage after having spent some time in non coverage area. This quick reloading is possible since the needed data are already present in the cache memory of radio access points 161, 162. It will be clear for those skilled in the art that an appropriate cache memory management should be performed, taking especially into account the location of terminal 17. A cache memory is also present in the terminal.
Access controllers 141, 142 and radio access points 161, . . . , 164 are connected to a transmission network 15. Terminals 17 accessible from radio access points 161, . . . , 164 through an air interface.
Each pair access controller, radio access point (141, 161), (141, 162), (142, 163), (142, 164) defines a zone of radio coverage. In the example described below the radio coverage is discontinuous so that there remain areas of non radio coverage between two areas of radio coverage. It will be understood by the person skilled in the art that the present invention may also apply to mixed continuous and discontinuous networks.
According to the present invention, the serving access controller 141 determines a set of access controllers terminal 17 is likely to be controlled by when moving further.
The serving access controller 141 duplicates the data and send them in advance to all access controllers 142 belonging to the set of access controller. Access controller 142 then forward the data to radio access points 163 in order for the data to be immediately available if terminal 17 enters in the near future one of this radio access point.
In
The Home Agent is responsible for detecting the change of the serving access controller and to trigger the modification of the send in advance mechanism.
In
The data sent in advance and not used immediately have to be stored in an appropriate cache memory at the access controller 141, 142 which should be large enough to ensure that the whole data received during the period where terminal 17 is not under any coverage are available in the memory. The cache memory should be dimensioned using for example as parameter an average data throughput on the link between access controller 141, 142 and radio access points 161, 162 as well as an average duration of the non coverage period for terminal 17.
In a preferred embodiment of the present invention, the network topology is stored in a decentralized way in the radio access network so that each access controller has the knowledge of its associated radio access points and the location of the radio access points. Consequently, it can determine the neighbor radio access points to which the data have to be sent in advance (micro diversity). In the case of macro diversity the access controllers should know the identity of its neighbor access controller so as to know to which access controllers it has to send the duplicated data.
In another embodiment a centralized topology of the network is possible.
This embodiment presents the advantage that the multicast element is a central element in the radio access network which controls the macrodiversity. The access controllers 141, 142 may consequently have a reduced complexity. The microdiversity remains nevertheless under the control of access controller 141, 142 as in the mobile IP embodiment described in connection with
Mobile localization information comes from the radio access points. To increase performances, two zones are defined in a cell:
This information is given to higher levels devices (centralized or decentralized architecture) where sending in advance must be done.
Number | Date | Country | Kind |
---|---|---|---|
04 291 979.5 | Aug 2004 | EP | regional |