This application is a continuation of U.S. application Ser. No. 12/537,891, filed Aug. 7, 2009, entitled Method for Improving Peer to Peer Network Communication, which is a continuation of U.S. application Ser. No. 11/040,364, filed Jan. 21, 2005, now U.S. Pat. No. 7,583,682, entitled Method for Improving Peer to Peer Network Communication, which is a continuation of U.S. application Ser. No. 10/764,111, filed Jan. 23, 2004, now U.S. Pat. No. 7,761,569, entitled Method for Monitoring and Providing Information Over a Peer to Peer Network.
The entire teachings of the above application(s) are incorporated herein by reference.
The present invention provides a method for improving peer to peer network communications, and, in particular, to connecting one or more peer to peer networks together and accepting communication messages from a node and providing the communication message to another node. The present invention may also change communication message radius parameters to increase the communication message radius of travel on the network.
As used herein, peer to peer networks which are the subject of the present invention comprise multiple nodes, each node typically consisting both of file server and client, which can send and receive data or “communication messages” to or from a node to which such is connected.
In a peer to peer network, each node is connected to other nodes over a communication medium, such as the internet, either directly or through some type of proxy. For example, when a search request is issued, such originating node sends a search request to all of the nodes to which it is connected (see
Some peer to peer networks utilize a leaf node/main node proxy topology (see
In peer to peer networks, communication messages are sent to the nodes to which they are connected and, in turn, each of those nodes send communication messages to other nodes to which they are connected.
Multiple peer to peer networks exist, usually each having a preferred set of attributes. Users wishing to utilize one peer to peer network for its specific attributes must install specific software to access a specific network. Often users wish to access multiple networks and therefore have multiple software applications installed on their computer. When the user wishes to search a specific network, the user must start the specific software application and initiate the search. If the result is not satisfactory, the user must launch a second application and search a second peer to peer network. Thus, it would be advantageous if users could search one network using the software application of their choice and have their communication messages be forwarded to a second network automatically.
Referring to
Accordingly, it is an object of the present invention to provide a method for improving peer to peer network communications. It is yet another object of the present invention to connect two or more peer to peer networks together and accept communication messages from one and provide it to another. It is yet another object of the present invention to accept communication messages from a peer to peer network and change the communication message radius parameters to an optimal or near optimal value and retransmit the communication message so that the radius or distance of the communication is extended.
Generally, the present invention provides a method for improving peer to peer network communications by utilizing at least one of the methods set forth below. The preferred method comprises:
Thus, the present invention provides a method for connecting one or more peer to peer networks together and accepting communication messages from one and providing it to another. The invention does not require that all communication messages be forwarded or that the improvement-node connect to multiple networks. In one such embodiment, the improvement-node only forwards search and search response communication messages while not forwarding other communication messages. In another embodiment, the improvement-node connects to the same network and accepts communication messages, changes the communication messages radius parameters to an optimal or near optimal value and resends it on the same network. In another embodiment, the improvement-node accepts all communication messages and forwards all communication messages. In another embodiment, the improvement-node accepts communication messages from one network and uses preconfigured information to decide if it should forward it on to another network. In yet another embodiment, the improvement-node accepts communication messages from a node on a network and issues new communication messages containing the same information onto the same network or different network on behalf of the original node.
In all of the embodiments, the improvement-node is configured to have one or more of the features set forth below. These features are employed in the method for improving peer to peer network communication to provide enhanced capabilities compared to the network nodes in the particular network being addressed. Thus, not all of the capabilities need to be programmed into each improvement-node in order to accept and forward communication messages. The presently preferred configurations include:
Other advantages of the present invention will become apparent from a perusal of the following detailed description of presently preferred embodiments of the invention taken in connection with the accompanying drawings.
The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
A description of example embodiments of the invention follows.
With reference to
In one preferred embodiment of the present invention, an improvement-node comprises both a hardware system such as a computer, thin appliance, ASIC based device or other similar device, which can be programmed with specific logic or programming code (i.e., software). In the preferred embodiments, the device preferably has a capability of being connected with a physical network either directly or through the use of gateway. The programming logic provides the device with the capability to transmit and receive on both physical networks as well as the peer-to-peer networks, which typically ride on top of the physical network. In the preferred embodiment of the invention, programming logic is a software program, but may also be hard coded non-changeable procedural information such as typically found in a ASIC based device.
Referring generally to
Referring generally to
It may be advantageous to prevent transmission of communications from one network to the other, for instance, if the operator of the improvement-node was trying to prevent copyright infringement requests from transversing the networks. In this case, the programming logic can be configured to receive communication messages and compare them to criteria and to then perform some event whether or not a match is found. The programming logic may elect to drop the communication message and not pass it on to other networks. This election can be automatic depending on trigger points such as load or it can be configured to do so by the user of the programming logic.
The method for comparing may include inter-string, complete string, partial string, fuzzy logic, patricia-tree, or any other method that could be used to compare the likeness of two or more strings or portions of two or more strings. String comparison can occur in parallel with other searches to increase through-put or they can be compared serially (meaning one after another). If a match is made, the programming logic can drop the communication message if it is programmed to do so.
In one such embodiment, the improvement-node only forwards search and search response communication message while not forwarding other communication messages. In this embodiment, the improvement-node would accept the communication message, it decides if it is a search or response to a search, and then forward on or drop the communication message based on its findings. In another embodiment, the improvement-node is functioning as a “repeater” so the communication message can travel further on the network than it normally would. In this case, the improvement-node would accept the communication message from a node or network and set the communication message radius parameters to an optimal or near optimal value and retransmit the communication message.
In another embodiment, the improvement-node accepts all communication messages and forwards all communication messages. In this embodiment, the improvement-node would accept all communication messages from one network and forward it to another network.
In another embodiment, the improvement-node accepts communication messages from a node and makes a request onto the same network or a different network on behalf of the node. This would be used for caching environment or in an environment where the original node wish to hide its identity. The node would issue a communication message, which the improvement-node would accept. The improvement-node would replace original communication message with one of its own, making it appear as though it is sending the communication message for the benefit of itself. The improvement-node would maintain a table of node communication messages to “on behalf of” communication messages. As communication messages or services were returned to the improvement-node, the improvement-node would look in this table for a correlation. It would then forward the communication messages or services to the original node.
The following examples illustrate various embodiments to the methods according to the present invention.
Referring to
In this example, nodes A, B, and C are on a first network and nodes E, F, and G are on a second network. Each network is unable to communicate with each other because they speak different protocols. Node D is an improvement node and is part of both networks and speak both protocols. Node A searches for a file named “A” and sends the search request to nodes B and C. Nodes B and C accept this search request. Node C forwards the search request to node D. Node D accepts the search request and forwards it to node E. Node E accepts the search request and forwards it to nodes F and G. Nodes F and G accept the search request. All nodes process the search request. Node G finds that it has the file and sends a response to node E. Node E forwards this response to node D. Node D forwards this response to node C. Node C forwards this response to node A. Node A receives the response from node G, which is on another network.
Referring to
In this example, all nodes are on one network and node C is an improvement-node and is configured to accept any communication messages, change the communication message radius parameters to an optimal or near optimal value and retransmit the communication messages.
Node A is configured to send a search request no further than three hops away from where it is connected into the network. It sends a search to node B. Node B accepts the search in increments its hop value to 1 and forwards to node C. Node C accepts the search and resets the hop value to 0 and forwards the search to node D. Node D accepts the search and increments its hop value to 1 and forwards the search the node to E. Node E receives the search and increments its hop value to 2 and forwards the search to node F. Node F accepts the search. All nodes process the search request. Node F finds it has the file and generates a response with a hop value of 0 and sends the response to node E. Node E accepts the response and increments the hop value to 1 and forwards this response to node B. Node D accepts the response and increments the hop value to 2 and forwards the response to node C. Node C accepts the response and changes the hop value to 0. Node C forwards the response node B. Node B accepts the response and increments the hop value to 1 and then forwards the response to node A. Node A accepts the response. The end result is that even though node G was 5 hops away, it was still able to communicate with node A.
Referring to
Node A then searches for a file named “A” and sends this search request to nodes B and C. Nodes B and C accept the search request. Node C forwards the search request to node D. Since node D is configured to drop searches for “madonna.txt” and because node A searched for “A,” node D forwards the search request to node E. Node E accepts the search request and forwards it to nodes F and G. Nodes F and G accept the search request. All nodes process the search request. Node G finds that it has the file and sends a response to node E. Node E forwards the response to node D. Node D forwards this response to node C. Node C forwards this response to node A. Node A receives the response from node G which is on another network.
Again, referring to
In this example, nodes A, B, and C are on a first network and nodes E, F, and G are on a second network. Each network is unable to communicate with each other because they use different protocols. Node D is an improvement-node and is part of both networks and communicates with both protocols. Node A searches for file name “A” and sends this search request to nodes B and C. Nodes B and C accept this search request. Node C forwards the search request to node D. Node D accepts this search request and forwards it to node E. Node E accepts this search request and forwards it to node F and G. Nodes F and G accept the search request. All nodes process the search request. Node G finds that it has the file and sends a response to node E. Node E forwards the response to node D. Node D forwards this response to node C. Node C forwards this response to node A. Node A receives the response from node G which is on another network.
Node A then sends a ping request to nodes B and C. Node B receives the request and responds. Node C receives the request and responds. Node C forwards the ping request to node D. Because node D is configured to only forward search requests and responses, it accepts the ping and responds, but it does not forward the ping.
Referring to
In this example, node D is the improvement-node. Node C wishes to locate the file name “X” and sends the search request to node D. Node D accepts the search request and creates a new request with the same search terms, but with its own address information. Node D stores this request in a table so that it knows that if any requests are received, it should forward them to a node C. Node D forwards this request to node E. Node E accepts the search request and finds it has a match. Node E generates a response with node D's address information and forwards the response to node D. Node D accepts the response and looks in it's tables and finds that this response was meant for node C so it forwards this response to node C.
While presently preferred embodiments of the invention have been shown and described, the invention may be otherwise embodied within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
111604 | Bailey | Feb 1871 | A |
5233604 | Ahmadi et al. | Aug 1993 | A |
5600638 | Bertin et al. | Feb 1997 | A |
5794254 | McClain | Aug 1998 | A |
5949760 | Stevens et al. | Sep 1999 | A |
5987011 | Toh | Nov 1999 | A |
6069896 | Borgstahl et al. | May 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6147971 | Rochberger et al. | Nov 2000 | A |
6205146 | Rochberger et al. | Mar 2001 | B1 |
6397246 | Wolfe | May 2002 | B1 |
6483808 | Rochberger et al. | Nov 2002 | B1 |
6668289 | Cheng et al. | Dec 2003 | B2 |
6732180 | Hale et al. | May 2004 | B1 |
6742023 | Fanning et al. | May 2004 | B1 |
6839769 | Needham et al. | Jan 2005 | B2 |
6855660 | Tsou et al. | Feb 2005 | B2 |
6918113 | Patel et al. | Jul 2005 | B2 |
6965591 | Roy | Nov 2005 | B1 |
6983320 | Thomas et al. | Jan 2006 | B1 |
7003514 | Dutta et al. | Feb 2006 | B2 |
7010534 | Kraft | Mar 2006 | B2 |
7051102 | Gupta et al. | May 2006 | B2 |
7089301 | Labio et al. | Aug 2006 | B1 |
7120145 | Ohba et al. | Oct 2006 | B2 |
7164656 | Foster et al. | Jan 2007 | B2 |
7174382 | Ramanathan et al. | Feb 2007 | B2 |
7177295 | Sholander et al. | Feb 2007 | B1 |
7277946 | Humphrey et al. | Oct 2007 | B2 |
7318092 | Sutler | Jan 2008 | B2 |
7327683 | Ogier et al. | Feb 2008 | B2 |
7451217 | Wardrop | Nov 2008 | B2 |
7493363 | Huitema et al. | Feb 2009 | B2 |
7583682 | Hopkins | Sep 2009 | B2 |
7600033 | Bauer et al. | Oct 2009 | B2 |
7761569 | Hopkins | Jul 2010 | B2 |
7783749 | Hopkins | Aug 2010 | B2 |
20010003191 | Kovacs et al. | Jun 2001 | A1 |
20020044549 | Johansson et al. | Apr 2002 | A1 |
20020065832 | Mack | May 2002 | A1 |
20020069089 | Larkin et al. | Jun 2002 | A1 |
20020069098 | Schmidt | Jun 2002 | A1 |
20020073204 | Dutta et al. | Jun 2002 | A1 |
20020087885 | Peled et al. | Jul 2002 | A1 |
20020138471 | Dutta et al. | Sep 2002 | A1 |
20020143989 | Huitema et al. | Oct 2002 | A1 |
20020152262 | Arkin et al. | Oct 2002 | A1 |
20020161844 | Overtoom | Oct 2002 | A1 |
20020184310 | Traversat et al. | Dec 2002 | A1 |
20020184529 | Foster et al. | Dec 2002 | A1 |
20030005035 | Rodgers | Jan 2003 | A1 |
20030037167 | Garcia-Luna-Aceves et al. | Feb 2003 | A1 |
20030050966 | Dutta et al. | Mar 2003 | A1 |
20030055892 | Huitema et al. | Mar 2003 | A1 |
20030078889 | Lee et al. | Apr 2003 | A1 |
20030088544 | Kan et al. | May 2003 | A1 |
20030095660 | Lee et al. | May 2003 | A1 |
20030112823 | Collins et al. | Jun 2003 | A1 |
20030131258 | Kadri | Jul 2003 | A1 |
20030182428 | Li et al. | Sep 2003 | A1 |
20030191828 | Ramanathan et al. | Oct 2003 | A1 |
20030195852 | Campbell et al. | Oct 2003 | A1 |
20030202468 | Cain et al. | Oct 2003 | A1 |
20030208621 | Bowman | Nov 2003 | A1 |
20030212710 | Guy | Nov 2003 | A1 |
20040030651 | Kim et al. | Feb 2004 | A1 |
20040039921 | Chuang | Feb 2004 | A1 |
20040039940 | Cox et al. | Feb 2004 | A1 |
20040044790 | Loach et al. | Mar 2004 | A1 |
20040044996 | Atallah | Mar 2004 | A1 |
20040088347 | Yeager et al. | May 2004 | A1 |
20040098370 | Garland et al. | May 2004 | A1 |
20040111604 | Fournier | Jun 2004 | A1 |
20040122958 | Wardrop | Jun 2004 | A1 |
20040143842 | Joshi | Jul 2004 | A1 |
20040148434 | Matsubara et al. | Jul 2004 | A1 |
20040153658 | Gunyakti et al. | Aug 2004 | A1 |
20040158630 | Chang et al. | Aug 2004 | A1 |
20040162871 | Pabla et al. | Aug 2004 | A1 |
20040196784 | Larsson et al. | Oct 2004 | A1 |
20040218532 | Khirman | Nov 2004 | A1 |
20040230572 | Omoigui | Nov 2004 | A1 |
20040236945 | Risan et al. | Nov 2004 | A1 |
20040250106 | Annese et al. | Dec 2004 | A1 |
20040250122 | Newton | Dec 2004 | A1 |
20040260801 | Li | Dec 2004 | A1 |
20050038898 | Mittig et al. | Feb 2005 | A1 |
20050043548 | Cates | Feb 2005 | A1 |
20050047390 | Park et al. | Mar 2005 | A1 |
20050078660 | Wood | Apr 2005 | A1 |
20050080858 | Pessach | Apr 2005 | A1 |
20050091167 | Moore et al. | Apr 2005 | A1 |
20050091397 | Roberts et al. | Apr 2005 | A1 |
20050108203 | Tang et al. | May 2005 | A1 |
20050108248 | Natunen | May 2005 | A1 |
20050114709 | Moore | May 2005 | A1 |
20050144288 | Liao | Jun 2005 | A1 |
20050163050 | Hopkins | Jul 2005 | A1 |
20050163133 | Hopkins | Jul 2005 | A1 |
20050163135 | Hopkins | Jul 2005 | A1 |
20050187942 | Dutta et al. | Aug 2005 | A1 |
20050203851 | King et al. | Sep 2005 | A1 |
20050229243 | Svendsen et al. | Oct 2005 | A1 |
20050229255 | Gula et al. | Oct 2005 | A1 |
20050265259 | Thubert et al. | Dec 2005 | A1 |
20050267945 | Cohen et al. | Dec 2005 | A1 |
20060034177 | Schrempp | Feb 2006 | A1 |
20060129555 | Burdick et al. | Jun 2006 | A1 |
20060209819 | Jennings et al. | Sep 2006 | A1 |
20060248062 | Libes et al. | Nov 2006 | A1 |
20060282309 | Zhang et al. | Dec 2006 | A1 |
20070153703 | Floyd et al. | Jul 2007 | A1 |
20070153710 | Hopkins | Jul 2007 | A1 |
20080319861 | Hopkins | Dec 2008 | A1 |
20100042732 | Hopkins | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1107512 | Jun 2001 | EP |
07-079249 | Mar 1995 | JP |
WO 03009524 | Jan 2003 | WO |
WO 2005074229 | Aug 2005 | WO |
WO 2005074230 | Aug 2005 | WO |
WO 2008154016 | Dec 2008 | WO |
Entry |
---|
Shi, W. et al., “Tuxedo: A Peer/to/Peer Caching System,” Department of Computer Science, Wayne University. |
Hwang, J., and Aravamudham, P., “Proxy/based Middleware Services for Peer/to/Peer Computing in Virtually Clustered Wireless Grid Networks,” School of Information Studies, Syracuse University, CST 4/291. |
Kim, K., and Park , D., “Subway: Peer/to/Peer Clustering of Clients for Web Proxy,” Department of Electrical Engineering and Computer Science, 8 pages, Retrieved from Internet on Dec. 29, 2006. |
Goel, S. et al., “A Resilient Network That Can Operate Under Duress: To Support Communication Between Government Agencies during Crisis Situations,” IEEE, Proceedings of the 37th Annual Hawaii International Conference pp. 1-11, Jan. 2004. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Civil Division, Case No. GD 07/001515, Court of Common Pleas of Allegheny County, Pennsylvania, “Complaint,” 89 pages, dated Sep. 5, 2007. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Court of Common Pleas of Allegheny County, Pennsylvania, “Preliminary Objections and Brief in Support of Preliminary Objections,” 18 pages, dated Oct. 15, 2007. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Court of Common Pleas of Allegheny County, Pennsylvania, “First Amended Complaint,” 90 pages, dated Nov. 5, 2007. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Civil Division, Case No. GD 07/001515, Court of Common Pleas of Allegheny County, Pennsylvania, “Defendant's Preliminary Objections to First Amended Complaint and Brief in Support,” 14 pages, dated Nov. 21, 2007. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Civil Division, Case No. GD 07/001515, Court of Common Pleas of Allegheny County, Pennsylvania, “Court Order re: Defendant's Preliminary Objections to First Amended Complaint and Brief in Support,” 14 pages, dated Nov. 27, 2007. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Civil Division, Case No. GD 07/001515, Court of Common Pleas of Allegheny County, Pennsylvania, “Second Amended Complaint,” 89 pages, dated Dec. 11, 2007. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Civil Division, Case No. GD 07/001515, Court of Common Pleas of Allegheny County, Pennsylvania, “Answer to Second Amended Complaint,” 454 pages, dated Jan. 30, 2008. |
Tiversa, Inc. et al v. Cohen & Grigsby, P.C., Civil Division, Case No. GD 07/001515, Court of Common Pleas of Allegheny County, Pennsylvania, “Reply to New Matter,” 16 pages, dated Feb. 19, 2008. |
Goel, S. et al., “A Resilient Network That Can Operate Under Duress: To Support Communication Between Government Agencies During Crisis Situations,” In System Sciences 2004, Proceedings of the 37th Annual Hawaii International Conference on, Jan. 5-8, 2004, Posted online: Feb. 26, 2004 10:51:19.0. (retrieved on Jun. 16, 2007) Retrieved from the Internet: URL:http://csd2.computer.org/comp/proceedings/hiscc/2004/2056/05/205650123a.dpf. |
Zupeng, Li et al., “Research of Peer-to-Peer Network Architecture,” Proceedings of ICCT2003, pp. 312-315. |
Marmor, M.S., “Make the P2P Lead with Toadnode,” www.webtechniques.com, Dec. 2000, pp. 44-49. |
Ueda, K. et al., “Peer-to-Peer Network Topology Control within a Mobile Ad-hoc Network,” 2003 IEEE, pp. 243-247. |
Liu, J. et al., “Distributed Distance Measurement for Large-Scale Networks,” Computer Networks 41 (2003) 177-192. |
Siu Man Lui and Sai Ho Kowk, “Interoperability of Peer-to-Peer File Sharing,” ACM SIGecom Exchanges, vol. 3, No. 3, Aug. 2002, pp. 25-33. |
Brandon Wiley, Freenet, “Inoperability Through Gateways,” Chapter 19, pp. 381-392. |
Zhenyun Zhuang et al., “Hybrid Periodical Flooding in Unstructured Peer-to-Peer Networks,” Proceedings of the 2003 International Conference on Parallel Proceeding. |
Hessing, S., “Peer to Peer Messaging Protocol,” Internet-Draft, Apr. 2002, pp. 1-57. |
Mondal, A. et al., “Effective Load-Balancing of Peer-to-Peer Systems,” Online, Mar. 2002, XP002299388. |
Andersen, S. et al., Changes to Functionality in Microsoft Windows XP Service Pack 2 Part 2: Network Protection Technologies, Online, Sep. 15, 2004, p. 1-56, XP002330123. |
Markatos, E.P., “Tracing a Large-Scale Peer to Peer System: An Hour in the Life of Gnutella, Cluster Computing and the Grid,” 2nd IEEE/ACM International Symposium CCGRID2002 Berlin, Germany, May 21-24, 2002, IEEE Comput. Soc., US, p. 65-74. |
Oram, A., “Peer-to-Peer: Harnessing the Power of Distruptive Technologies,” Ch. 19: Inoperability Through Gateways, Mar. 2001, p. 381-392. |
Lindemann, C. et al., “A Distributed Search Service for Peer-to-Peer File Sharing in Mobile Applications,” Peer-to-Peer Computing, Proceedings of the Second International Conference on Peer-to-Peer Computer, Sep. 5-7, 2002. |
Findeli, M., “Peer-to-Peer (P2P) Networking,” Online, Jul. 1, 2001, p. 1-21. |
Scarlata, V. et al., “Responder Anonymity and Anonymous Peer-to-Peer File Sharing,” Proceedings of the International Conference on Network Protocols, Nov. 11, 2001, p. 272-280. |
Xiao, L. et al., “Mutual Anonymity Protocols for Hybrid Peer-to-Peer Systems,” Proceedings of the 23rd International Conference on Distributed Computing Systems, May 19-22, 2003. |
Microsoft TechNet, Changes to Functionality in Microsoft Windows XP Service Pack 2, Introduction [online Retrieved on Oct. 26, 2007] Retrieved from URL: http://technet.microsoft.com/en-us/library/bb457151(d=printer).aspx. pp. 1-3. |
Microsoft TechNet, Changes to Functionality in Microsoft Windows XP Service Pack 2, Part 2: Network Protection Technologies [online Retrieved on Oct. 26, 2007] Retrieved from URL: http://technet.microsoft.com/en-us/library/bb457156(d=printer).aspx. pp. 1-37. |
Wiley, B., edited by Andy Oram “Peer-to-Peer: Harnessing the Benefits of Disruptive Technology,” Ch. 19 Interoperability Through Gateways, 380-397 (18 pages) (2001). |
Notification Concerning Transmittal of International Preliminary Report on Patentability and Written Opinion for PCT/US2008/007262, date of mailing: Feb. 11, 2010 (7 pages). |
Notification Relating to Priority Claim and Notification Concerning Submission or Transmital of Priority Document with Partial International Search Report for PCT/US2005/001623, date of mailing: Jul. 12, 2005, (7 pages). |
Notification Concerning Transmittal of International Preliminary Report on Patentability for PCT/US2005/001623, date of mailing: Aug. 3, 2006 (2 pages). |
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority for PCT/US2005/001623, date of mailing: Jul. 25, 2005 (26 pages). |
Li,Z., et al. , “Research of Peer-to-Peer Network Architecture,” Proceedings of ICCT, pp. 312-315, 2003. |
Lui, S.M. and Kowk, S.H., “Interoperability of Peer-to-Peer File Sharing Protocols,” ACM SIGecom Exchanges 3(3): 25-33 (2002). |
Oram, A., “Afterword,” In Peer-to-Peer Harnessing the Power of Disruptive Technologies, Andy Oram editor (Beijing Cambridge, Farnham, Koln, Paris Sebastopol, Taipei, Tokyo: O'Reilly) pp. 393-397. |
Number | Date | Country | |
---|---|---|---|
20110314100 A1 | Dec 2011 | US |