The present invention relates to a method for improving quality of a digital signal being processed at high speed in a linear device. The present invention also relates to an apparatus using this method.
Due to the high data rates in recently developed communication systems having data transmission rates of, for instance, 25 Gbps, signal integrity has become a major concern.
One cause of signal quality degradation in linear devices is bandwidth limitation. This is due to the physical properties of the components in the communication system. In order to compensate for bandwidth limitation, post-transition pre-emphasis signal processing is usually applied to signals transmitted/received in a conventional communication system.
The effect of post-transition pre-emphasis signal processing on a rectangular pulse signal, transitioning between “0”-level and “1”-level, is shown in
Ringing causes degradation of the signal quality. It is an unwanted oscillation in the step response of a linear system, particularly of systems having a resonance frequency, or systems described by a Laplace-filter having more than one pole. Ringing is not desired, because it enhances the jitter in the digital signal.
It is therefore an object of the present invention to provide a method for improving signal quality/integrity of a digital signal in a linear device, particularly by compensating for bandwidth limitation without enhancing ringing. It is also an object of the present invention to provide an apparatus that is adapted to use this method.
This objective is achieved by the features as set forth in the independent claims. Further embodiments of the present invention are set forth in the dependent claims.
The present invention is based on the idea that the negative effects of bandwidth limitation and ringing on a digital (binary) signal, propagating through a linear system/device, can be effectively reduced by pre-transition pre-emphasis of the digital signal. Pre-transition pre-emphasis of a digital signal making a transition from a first level to a second level involves applying an undershoot to the first level before the transition, when the first level is lower than the second level, and/or applying an overshoot to the first level before the transition, when the first level is higher than the second level.
Referring now to
The pre-emphasis driver 401 of the apparatus for processing a digital signal according to the first embodiment of the present invention is adapted to emphasis/peak a (binary) signal level of a digital signal immediately before the transition from one binary signal level to the other binary signal level. In particular, the pre-emphasis driver 401 is adapted to pre-emphasize the digital signal by applying an undershoot to the first level immediately before the transition, when the first level is lower than the second level (i.e. at a positive transition), and to pre-emphasize the digital signal by applying an overshoot to the first level immediately before the first transition, when the first level is higher than the second level (i.e. at a negative transition). Therefore, pre-emphasis driver 401 is denoted in the following as pre-transition pre-emphasis driver 401.
Referring now to
The curve 501 in
The curve 511 in
For achieving the effects shown in
In
Furthermore, it is not mandatory for the present invention that the undershoot applied to the lower level is immediately before the positive transition of pulse 502 and that the overshoot applied to the upper level is immediately before the negative transition of pulse 502. It is rather important that the undershoot applied to the lower level of pulse 502 is closer to the positive transition of pulse 502 than to the negative transition of a pulse preceding pulse 502, and that the overshoot applied to the upper level of pulse 502 is closer to the negative transition of pulse 502 than to the positive transition of pulse 502.
In
Furthermore, it is not mandatory for the present invention that the overshoot applied to the upper level is immediately before the negative transition of pulse 512 and that the undershoot applied to the lower level is immediately before the positive transition of pulse 512. It is rather important that the overshoot applied to the upper level of pulse 512 is closer to the negative transition of pulse 512 than to the positive transition of a pulse preceding pulse 512, and that the undershoot applied to the lower level of pulse 512 is closer to the positive transition of pulse 512 than to the negative transition of pulse 512.
In
In the apparatus for processing a digital signal according to the first embodiment of the present invention, the input of the linear device 402 is connected (directly) to the output of the pre-transition pre-emphasis driver 401, so that the linear device 402 receives at its input the pre-emphasized electrical digital signal output by the pre-transition pre-emphasis driver 401. However, the apparatus for processing a digital signal according to the present invention can have one or more digital signal processing units interposed between the output of the pre-transition pre-emphasis driver 401 and the input of the linear device 402, so that the linear device 402 receives at its input a pre-emphasized electrical digital signal that has been further processed by the one or more digital signal processing units interposed between pre-transition pre-emphasis driver 401 and linear device 402. It is important for the present invention that the digital signal is pre-emphasized by the pre-transition pre-emphasis driver 401 before it is processed by the linear device 402.
The pre-transition pre-emphasis driver 401 compensates/reduces the effects caused by bandwidth limitation in the digital signal output by the linear device 402. However, the quality of the digital signal output by the linear device 402 of the first embodiment of the present invention is better than the quality of the digital signal output by the linear device 102 of the optical receiver 100 shown in
Referring now to
The effect/response of the pre-transition pre-emphasis circuit 601 on a received electric digital signal is the same as the effect/response of the pre-transition pre-emphasis driver 401 used in the first embodiment. Also, the description of the pre-transition pre-emphasis driver 401 of the first embodiment applies to the pre-transition pre-emphasis circuit 601 of the second embodiment. Therefore, a detailed description of the pre-transition pre-emphasis circuit 601 is omitted.
The effect of the pre-transition pre-emphasis circuit 601 on the electric digital signal output by the transimpedance amplifier becomes evident from Table 1. The table indicates parameters of (positive) pulses output by the transimpedance amplifier of an optical receiver that: i) does not apply pre-emphasis signal processing to the electric digital signal output by the PIN; ii) applies post-transition pre-emphasis signal processing, as shown in
Table 1 shows that pre-transition pre-emphasis signal processing leads to an opening of the eye diagram. This opening is greater than the opening caused by post-transition pre-emphasis signal processing. The deterministic jitter induced by pre-transition pre-emphasis signal processing is lower than the deterministic jitter induced by post-transition pre-emphasis signal processing, and only slightly increased compared to the deterministic jitter of a digital signal that has not been subjected to pre-emphasis signal processing.
As random jitter is proportional to rise/fall time, table 1 also indicates that random jitter of a digital signal that has been subjected to pre-transition pre-emphasis signal processing is lower than random jitter of a digital signal that has been subjected to post-transition pre-emphasis signal processing, and is much lower than random jitter of a digital signal that has not been subjected to pre-emphasis signal processing at all.
Hence, the present invention advantageously increases the opening of the eye diagram and decreases random jitter without increasing the deterministic jitter significantly.
Furthermore, table 1 shows that the overshoot/undershoot of a digital signal subjected to pre-transition pre-emphasis signal processing is lower than the overshoot/undershoot of a digital signal subjected to post-transition pre-emphasis signal processing, and is only a little higher than the overshoot/undershoot of a digital signal that has not been subjected to pre-emphasis signal processing at all.
This is evidence that the present invention compensates the disadvantageous effects caused by bandwidth limitation without enhancing ringing significantly.
In
Referring now to
The pre-transition pre-emphasis circuit 701 receives an electric digital signal, pre-emphasizes the received electric digital signal, and outputs the pre-emphasized electric digital signal to the optical transmitter 708. The effect/response of the pre-transition pre-emphasis circuit 701 on an electric digital signal is the same as the effect/response of the pre-transition pre-emphasis driver 401 used in the first embodiment. Also, the description relating to the pre-transition pre-emphasis driver 401 of the first embodiment applies to the pre-transition pre-emphasis circuit 701 of the third embodiment. Therefore, a detailed description of the pre-transition pre-emphasis circuit 701 is omitted.
The optical transmitter 708, which includes an amplifier and a laser device, for instance, a vertical-cavity surface-emitting laser 709, receives the pre-emphasized electric digital signal output by the pre-emphasis circuit 701, generates an optical digital signal corresponding to the received pre-emphasized electric digital signal by means of the vertical-cavity surface-emitting laser 709, and transmits the generated optical digital signal to the optical receiver via the optical fiber 707.
The optical receiver includes a photodiode 705, for instance, a positive intrinsic negative diode, and a transimpedance amplifier 706 connected to the photodiode 705 by means of interconnects 703. The photodiode 705 receives an optical digital signal from the optical fiber 707, converts the received optical digital signal into an electric digital signal, and outputs the electric digital signal to the interconnects 703. The transimpedance amplifier 706 receives the electric digital signal output by the photodiode 705 via interconnects 703.
As the optical transmitter 708 receives the pre-emphasized electric digital signal output by the pre-emphasis circuit 701, a pulse of the optical digital signal generated by the vertical-cavity surface-emitting laser 709 and transmitted to the optical receiver via the optical fiber 707, has the shape of the curve 502 shown in
In
In the communication system of
Also, the present invention relates to a communication system comprising: the optical receiver 600 according to the second embodiment, which includes a first pre-transition pre-emphasis circuit, and a second pre-transition pre-emphasis circuit 701 located at the optical transmitter's side. Preferably, the second pre-transition pre-emphasis circuit and the amplifier of the optical transmitter are integrated in one device. In this communication system, the digital signal communicated between optical transmitter and optical receiver is pre-emphasized according to the present invention on the transmitter's and on the receiver's side.
The present invention compensates/reduces the negative effects caused by bandwidth limitation without enhancing ringing. Also, the present invention increases the opening of the eye diagram and decreases random jitter without increasing the deterministic jitter significantly. Therefore, the present invention is especially suited in communication systems having high data transmission rates, such as 25 Gbps.
Number | Date | Country | Kind |
---|---|---|---|
14184895.2 | Sep 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP15/67182 | 7/27/2015 | WO | 00 |